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Alveolar macrophages of GM-CSF knockout mice
exhibit mixed M1 and M2 phenotypes
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Abstract

Background: Activin A is a pleiotrophic regulatory cytokine, the ablation of which is neonatal lethal. Healthy
human alveolar macrophages (AMs) constitutively express activin A, but AMs of patients with pulmonary alveolar
proteinosis (PAP) are deficient in activin A. PAP is an autoimmune lung disease characterized by neutralizing
autoantibodies to Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF). Activin A can be stimulated,
however, by GM-CSF treatment of AMs in vitro. To further explore pulmonary activin A regulation, we examined
AMs in bronchoalveolar lavage (BAL) from wild-type C57BL/6 compared to GM-CSF knockout mice which exhibit a
PAP-like histopathology. Both human PAP and mouse GM-CSF knockout AMs are deficient in the transcription
factor, peroxisome proliferator activated receptor gamma (PPARy).

Results: In sharp contrast to human PAP, activin A mRNA was elevated in mouse GM-CSF knockout AMs, and
activin A protein was increased in BAL fluid. Investigation of potential causative factors for activin A upregulation
revealed intrinsic overexpression of IFNy, a potent inducer of the M1 macrophage phenotype, in GM-CSF knockout
BAL cells. IFNy mRNA was not elevated in PAP BAL cells. In vitro studies confirmed that IFNy stimulated activin A in
wild-type AMs while antibody to IFNy reduced activin A in GM-CSF knockout AMs. Both IFNy and Activin A were
also reduced in GM-CSF knockout mice in vivo after intratracheal instillation of lentivirus-PPARy compared to control
lentivirus vector. Examination of other M1 markers in GM-CSF knockout mice indicated intrinsic elevation of the
IFNy-regulated gene, inducible Nitrogen Oxide Synthetase (iNOS), CCL5, and interleukin (IL)-6 compared to wild-
type. The M2 markers, IL-10 and CCL2 were also intrinsically elevated.

Conclusions: Data point to IFNy as the primary upregulator of activin A in GM-CSF knockout mice which in
addition, exhibit a unique mix of M1-M2 macrophage phenotypes.
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Background

Activin A, a pleiotrophic cytokine belonging to the
transforming growth factor-beta (TGF-f) superfamily, is
synthesized by many cell types throughout the body
[1,2]. The molecular structure is a disulphide-linked,
homodimeric glycoprotein composed of two inhibin fA
chains. Activin A was first recognized as an endocrine
factor, but is now known to be essential to developmen-
tal and repair processes, and total ablation is neonatal
lethal [3]. Contrasting regulatory roles have been cited
for Activin A in inflammation [4]. Human monocytes
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synthesize activin A upon stimulation with classical M1
macrophage activation inducers such as GM-CSE, LPS,
and IFNy [5,6]. Exposure of GM-CSF treated macro-
phages to anti-Activin A reduces M1 markers and
enhances alternative M2 phenotype markers such as IL-
10 [7]. Activin A also inhibits monocyte production of
IL-1p and enhances IL-1 receptor antagonist production
[8]. Interestingly, in severe asthma, activin A may be
elevated in serum, and data from animal models suggests
that activin A may suppress T helper 2 (Th2) mediated
allergic responses [9]. Collectively these observations
suggest multifunctional roles for activin A in inflamma-
tory processes.

Maintenance of lung homeostasis is a complex process
dependent upon a network of interacting cells and cyto-
kines. GM-CSF is required for alveolar macrophage
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(AM) function and pulmonary homeostasis [10]. In
genetically altered mice homozygous for a disrupted
GM-CSF gene (GM-CSF knockout), hematopoiesis is
normal but there is accumulation of excess lung surfac-
tant [11,12]. This surfactant pathology mirrors that of
human PAP, an autoimmune disease characterized by
high levels of autoantibody to GM-CSF [12-14]. Aeroso-
lized GM-CSF resolves the pulmonary pathology of GM-
CSF knockout mice, thus demonstrating that surfactant
homeostasis can be influenced by local administration of
GM-CSF to the respiratory tract [15].

Previously we reported that healthy human AMs
synthesize activin A in response to GM-CSF but AMs of
patients with PAP are deficient in activin A [16]. In
addition, PAP AMs are deficient in the nuclear transcrip-
tion factor, Peroxisome Proliferator-activated Receptor,
(PPARY), a regulator of lipid and glucose metabolism that
is restored by GM-CSF treatment [17]. PPARy has also
been shown to be a negative regulator of inflammation
[18,19]. Interestingly, alveolar macrophages of GM-CSF
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knockout mice are also deficient in PPARy [20]. The role
of activin A in the lung has not been established. Because
of the phenotypic similarities between human PAP and
the GM-CSF knockout mouse, this study was undertaken
to investigate activin A regulation in the lung. Initially, it
was hypothesized that activin A might be impaired in
GM-CSF knockout mice based upon previous data from
PAP studies [16].

Results

Activin A and IFNy are intrinsically elevated in GM-CSF
knockout mice as compared to wild-type mice

Unlike previous findings of activin A deficiency in hu-
man PAP [16], activin A mRNA expression of BAL cells
was significantly (p <0.005) elevated in GM-CSF knock-
out mice compared to wild-type controls (Figure 1A).
Quantification of activin A protein in BAL fluids
confirmed mRNA findings with significantly (p < 0.05)
elevated protein levels in GM-CSF knockout compared
to wild-type (Figure 1B). GM-CSF knockout expression
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Figure 1 Activin A and IFNy are intrinsically elevated in GM-CSF knockout lung compared to wild-type mice. Expression of mRNA is
shown as a relative fold change as calculated from gPCR. (A) Activin A mRNA expression of BAL cells. (B) Levels of activin A protein in BAL fluids
were quantified by ELISA. (C) IFNy mRNA expression of BAL cells. (D) Cytospin preparations of wild-type C57BIl/6 and GM-CSF knockout BAL cells
were stained with anti-IFNy (green) and DAPI (blue), a nuclear counterstain. Elevated IFNy protein can be seen in GM-CSF knockout BAL cells
(right) compared to wild-type (left).
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of follistatin, an inhibitor of activin A [21], was similar
to wild-type mice (data not shown) and thus could not
account for the striking elevation of activin A.

Intrinsic factors that could potentially affect activin A
levels were subsequently investigated in GM-CSF
knockout mice. Macrophage colony-stimulating factor
(M-CSF) has been reported to be upregulated in GM-
CSF knockout mice [22]. Examination of M-CSF in the
current study, however, indicated no effect on activin A
in vitro in either wild-type or GM-CSF knockout AMs
(data not shown). Elevated IFNy has been reported in
lungs of GM-CSF knockout mice [23] therefore intrinsic
levels of IFNy were examined. [FNy mRNA expression
was significantly (p < 0.005) elevated in GM-CSF knockout
BAL cells compared to wild-type controls (Figure 1C).
Immunocytochemistry of GM-CSF knockout BAL cells
confirmed mRNA results and indicated markedly increa-
sed expression of intracellular IFNy protein compared to
wild-type (Figure 1D).

IFNy is not elevated in human PAP BAL cells

In contrast to results from GM-CSF knockout mice,
examination of IFNy expression in human BAL cells
from PAP patients revealed no significant increase com-
pared to healthy controls (Figure 2).

Activin A levels are enhanced by IFNy and reduced by
IFNy blockade

IFNy has been shown to upregulate activin A expression
in human monocytes [5] but AMs have not been studied.
Results from 24-hour in vitro cultures of wild-type AMs
indicated that IFNy (100 U/ml) significantly (p <0.05)
increased activin A expression (Figure 3A). To determine
whether blockade of IFNy with specific anti-IFNy anti-
body would alter intrinsic activin A expression, unstimu-
lated GM-CSF knockout AMs were cultured in vitro for
24 hours with irrelevant immunoglobulin (Ig) or anti-
IFNy. ELISA analysis of conditioned media indicated that
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Figure 2 Expression of IFNy is not detectable in BAL cells from
human PAP patients. Expression of [FNy mRNA in PAP patients
(n=06) did not significantly differ from that of healthy controls (n=5).
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Figure 3 Activin A levels are increased by IFNy and reduced by
IFNy blockade. (A) IFNy upregulates activin A mRNA in wild-type
alveolar macrophages cultured for 24 hours with IFNy (100 U/ml)
[n=4]. (B) Antibody to IFNy represses intrinsic activin A synthesis in
GM-CSF knockout alveolar macrophages. GM-CSF knockout alveolar
macrophages were cultured with irrelevant IgG or anti-IFNy for

24 hours and activin A was determined in conditioned media by
ELISA (n=2). (C) BAL cells from GM-CSF knockout mice receiving
intratracheal instillation of lentivirus-PPARy or control lentivirus-EGFP
were analyzed for IFNy and activin A mRNA expression at 10 days
post-transduction (n=5).
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anti-IFNy reduced activin A protein synthesis compared
to irrelevant Ig (Figure 3B) confirming that IFNy blockade
reduced intrinsic activin A production.

Because activin A is intrinsically elevated in PPARy de-
ficilent GM-CSF knockout mice but severely decreased
in PPARYy deficient human PAP patients [16], it appeared
unlikely that PPARy would exert a direct effect on
activin A. Observations made elsewhere [24] also found
no evidence of a PPARy effect on activin A. We have
shown, however, that [FNy is elevated in macrophage-
specific PPARy knockout mice and significantly reduced
after in vivo restoration of PPARY via a lentivirus vector
[25]. We utilized this approach to determine whether
PPARy restoration in GM-CSF knockout mice might
reduce IFNy and thereby reduce activin A. Results sup-
ported this action. Ten days post intratracheal inocula-
tion of lentivirus reagents into GM-CSF knockout mice,
BAL cell mRNA expression of both IFNy and activin A
was significantly reduced in animals receiving lentivirus-
PPARy compared to controls receiving lentivirus-eGFP
(p <0.05) (Figure 3C).

Human alveolar macrophage activin A is increased by IFNy
While the above studies clearly defined IFNy-mediated
regulation of activin A in murine alveolar macrophages,
it was necessary to confirm this pathway in human
alveolar macrophages. In vitro studies demonstrated that
IENy significantly enhanced activin A protein produc-
tion (Figure 4) in healthy human alveolar macrophages.
Thus activin A synthesis in both human and murine
alveolar macrophages is responsive to IFNy upregulation
even though intrinsic activin A levels differ between
human and mouse.
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Figure 4 Human alveolar macrophages from healthy donors
produce activin A in response to IFNy. Activin A protein is
increased in conditioned media from human alveolar macrophages
cultured with IFNy (1000 U/ml) for 24 hours in vitro.
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GM-CSF BAL cells show intrinsic elevation of both M1 and
M2 macrophage phenotypic markers

We and others reported previously that M-CSF gene
expression and protein, a cytokine associated with the
M2 macrophage phenotype, was elevated in GM-CSF
knockout mice [22,26]. Current data indicate that the
M1-associated cytokine, I[FNy (protein and gene expres-
sion) is also increased in these mice. Therefore, it was
unclear whether GM-CSF knockout BAL cells would
express predominantly M1 or M2 profiles. To address
this issue, we determined mRNA expression of several
M1 and M2 markers in GM-CSF knockout BAL cells.
With respect to M1 markers, we examined the IFNy-
regulated target gene, iNOS (Figure 5A), together with
CCL5 (Figure 5B), and IL-6 (Figure 5C), and found that
all were significantly elevated compared to wild-type
mice. The M2 marker, IL-10, has been reported to be
suppressed by elevated activin A [7,27], and in PAP,
activin A deficiency is accompanied by elevated IL-10
[16,28,29]. Surprisingly, analysis of IL-10 expression in
GM-CSF knockout BAL cells revealed significantly ele-
vated levels compared to wild-type mice (Figure 5D).
Analysis of another M2-associated marker, CCL2, also
indicated significant elevation compared to wild-type
mice (Figure 5E). These results suggested that GM-CSF
knockout alveolar macrophages might constitute a
mixed population of both M1 and M2 phenotypes.

Discussion

The current findings suggest that IFNy is a major
contributory factor to the intrinsic elevation of activin A
in AMs. Findings also point out a striking difference in
activin A expression in human PAP and GM-CSF knock-
out mice despite common deficiencies of GM-CSF and
PPARy (summarized in Table 1). In parallel with activin
A, GM-CSF knockout mice displayed over-expression of
IFNy [23], a positive regulator of activin A [5]. In con-
trast, BAL cells of PAP patients do not exhibit elevated
IFNy and activin A is deficient [16].

Elevated IFNy has been reported previously in the
BAL fluids of GM-CSF knockout mice [23]. Our pre-
vious studies also found elevated IFNy expression in
macrophage-specific PPARy knockout mice [25]. Restor-
ation of PPARY via lentivirus vector in these mice greatly
diminished IFNy expression [25]. In the current study,
similar results were seen after PPARy-lentivirus treat-
ment of GM-CSF knockout mice. Such findings suggest
that the PPARYy deficiency present in GM-CSF knockout
mice may contribute to elevated IFNy. GM-CSF has
been shown to be a critical upregulator of PPARy
[31,34]. The total lack of GM-CSF in knockout mice
may maintain an extreme PPARy deficiency which is
ineffective at repressing inflammatory mediators such as
IFNy. In human PAD, IFNy levels are not increased
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Figure 5 mRNA expression of both M1 and M2 macrophage phenotypic markers is intrinsically elevated in GM-CSF knockout BAL cells
compared to wild-type mice. Elevated mRNA expression of M1 markers: (A) iNOS; (B) CCL5, and (C) IL-6. Elevated mRNA expression of M2

GM-CSF KO

despite PPARy deficiency, furthermore, GM-CSF is not
totally absent [29]. The primary etiology of PAP is
considered to be an autoimmune response to GM-CSF
in the form of high levels of circulating, neutralizing
autoantibody to GM-CSF [13]. It is also possible that
additional regulatory mechanisms are present in human
lung to help prevent IFNy buildup in PAP.

The varying characteristics of activated macrophages
have led to attempts to categorize activation phenotypes
[35-39]. The M1 phenotype is characterized by produc-
tion of microbial or IFNy-triggered molecules such as
iNOS and IL-12. GM-CSF has been cited as an inducer
of M1 phenotypes while M-CSF has been shown to
induce the M2 alternative activation phenotype in which
IL-10 or TGEP may be produced [7,40]. We have shown
that M-CSF is elevated in GM-CSF knockout mice [22]
and in human PAP [33] which might suggest the

presence of an M2 macrophage phenotype (see Table 1).
Interestingly, PPARY, which is deficient in GM-CSF
knockout mice, is also a major driver of the M2 pheno-
type [41]. It has been pointed out however, that macro-
phage phenotypes were defined by carefully controlled
in vitro conditions which may be vastly different from the
in vivo milieu [42]. Thus the juxtaposition of both IFNy
and M-CSF in the lungs of GM-CSF knockout mice could
produce the novel combination of macrophage activation
phenotypes illustrated by elevated M1 (iNOS, CCLS5, IL-6)
and M2 (IL-10, CCL2) markers (Table 1). Other IFNy-
inducible pro-inflammatory mediators (chemokines CXCL9,
CXCL10, and CXCL11) have been noted in the lungs of
GM-CSF knockout mice [23]. Previously, we found that
MMP-2, a matrix metalloproteinase associated with
M-CSF and alternative M2 activation, is also elevated in
GM-CSF knockout BAL cells [33].
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Table 1 Summary: comparison of macrophage activation regulatory factors in human pulmonary alveolar proteinosis

(PAP) patients and GM-CSF knockout mice

Regulatory factors  Associated macrophage phenotype

PAP patients GM-CSF knockout mice

GM-CSF M1 Deficient protein, not mRNA [28] Absent [11]
Activin A M1 Deficient [16] Elevated
IL-6 M1 Not done Elevated
CCL5 M1 Not done Elevated

IFNy M1 mMRNA - not elevated (comparable to healthy controls) Elevated [23]
INOS M1 Undetectable in human alveolar macrophages Elevated

(unpublished observation)

M-CSF M2 Elevated [30] Elevated [22]

PPARyY M2 Deficient [31] Deficient [31]
CCL2 M2 Elevated [32] Elevated
IL-10 M2 Elevated [29] Elevated

MMP2 M2 Elevated [33] Elevated [33]

Conclusions R&D Systems. Neutralizing anti-IFNy and control

The current findings extend our previous studies exam-
ining pulmonary mechanisms operative in human PAP
and the GM-CSF knockout mouse. It is clear that path-
ways of activin A regulation may utilize GM-CSF or
IFNy as stimulatory factors. In the GM-CSF knockout
mouse, lack of GM-CSF may restrict production of
sufficient PPARY to control inflammation. The persistent
elevation of both M-CSF and IFNy may influence AMs to
express characteristics of both M1 and M2 phenotypes.
The current data emphasize the plasticity of alveolar
macrophages in assuming a unique activation phenotype
when regulatory pathways become dysfunctional.

Methods

Mice

Animal studies were conducted in conformity with
Public Health Service (PHS) Policy on humane care and
use of laboratory animals and were approved by the
institutional animal care committee. The GM-CSF
knockout mice were generated by Dr. Glenn Dranoff
and have been previously described [11]. Controls con-
sisted of C57BL/6 wild type mice obtained from Jackson
Laboratory (Bar Harbor, ME). BAL cells and fluids were
obtained from 8-12 week-old GM-CSF knockout mice
and age and gender matched wild-type C57BL/6 controls
as previously described [43]. Briefly, cytospins of BAL
cells were stained with a modified Wright-Giemsa stain
for differentials. A minimum of 100 cells was scored for
each lavage. Mean (+ SEM) BAL cells from C57BL/6
mice were composed of 98 +1% macrophages and 2 +
1% lymphocytes; GM-CSF knockout BAL cells were
composed of 91 +2% macrophages and 5+ 1% lym-
phocytes. For in vitro studies, BAL cells were plated at
150,000 cells/well in 48-well plates as previously descri-
bed [25]. Recombinant murine IFNy was obtained from

antibodies were purchased from BD Biosciences. For all
experiments a minimum of 3 sets of pooled BAL cells
from 3-5 mice were used except where indicated.

Human subjects

The protocol was approved by the East Carolina University
Institutional Review Board and written informed consent
was obtained from all patients and control subjects.
Healthy control subjects had no history of lung disease
and were not on medication. PAP subjects were recruited
from patients undergoing routine clinical evaluation. The
diagnosis of idiopathic PAP was confirmed by histo-
pathological examination of material from open lung or
transbronchial biopsies as previously described [29].
Alveolar macrophages were derived from bronchoalveolar
lavage (BAL) obtained by fiberoptic bronchoscopy as
previously described [29]. Differential cell counts were
obtained from cytospins stained with a modified Wright’s
stain. For PAP patients, the mean BAL cell percentages
(means + SEMs) were: alveolar macrophages, 83 + 9%, and
lymphocytes, 10 + 5%. Healthy control values were: alveo-
lar macrophages, 93 +2% and lymphocytes, 7 +2%. For
in vitro culture, BAL cells were plated into 24-well plates
(300,000 alveolar macrophages per well) or chamber slides
(60,000 cells/well) as previously described [16].

RNA purification and analysis

Total RNA was extracted from BAL cells or cultured
alveolar macrophages and analyzed by Q-PCR as previ-
ously described [25]. RNA specimens were analyzed in
duplicate using primer-probe sets for activin A, IL-10,
iNOS, CCL2, CCL5, IL-6, IENy and GAPDH as pre-
viously described [25]. Data were normalized to GAPDH
and expressed as fold change in mRNA expression com-
pared to controls values as previously described [44].
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Lentivirus plasmid and transduction

The self-inactivating lentivirus expression vector used
here has been described previously [45]. Construction of
the lentivirus-PPARy (lenti-PPARY) and control lenti-
virus construct has also been described in detail [20,25].
Control consisted of a lentivirus vector expressing En-
hanced Green Fluorescent Protein (eGFP) (lenti-EGFP).
Animals received 50 ug of lentivirus vector in 50 pl PBS
or PBS alone (sham) by intratracheal instillation. After
10 days, five animals per group were lavaged, BAL differ-
ential counts were obtained and RNA was extracted.

Activin A and follistatin protein assays

Activin A or follistatin proteins (pg/ml) in BAL fluids or
conditioned media from cultured alveolar macrophages
were quantified by ELISA according to the manufac-
turer’s instructions (Serotec, Raleigh, NC; R&D Systems,
Minneapolis, MN).

Immunocytochemistry

Immunocytochemistry for IFNy was carried out on
cytospin samples from freshly isolated BAL cells using
rat anti-mouse IFNy (Santa Cruz Biotechnology,1:100)
followed by goat anti-rat IgG (Invitrogen) as described
[25]. Slides were counter-stained with DAPI (Invitrogen)
to allow nuclear localization.

Statistics
Data were analyzed by student’s t-test using Prism
software (GraphPad). Values from treated cells were
compared to untreated. Significance was defined as
p <0.05.
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AM: Alveolar macrophage; GM-CSF: Granulocyte macrophage colony
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