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Abstract

leukocyte recruitment in preterm and term infants.

Background: Insufficient leukocyte recruitment may be one reason for the high incidence of life-threatening
infections in preterm infants. Since the receptor of advanced glycation end products (RAGE) is a known leukocyte
adhesion molecule and highly expressed during early development, we asked whether RAGE plays a role for

Methods: Leukocyte adhesion was analyzed in dynamic flow chamber experiments using isolated leukocytes of
cord blood from extremely premature (<30 weeks of gestation), moderately premature (30-35 weeks of gestation)
and mature neonates (>35 weeks of gestation) and compared to the results of adults. For fluorescent microscopy
leukocytes were labeled with rhodamine 6G. In the respective age groups we also measured the plasma
concentration of soluble RAGE (sRAGE) by ELISA and Mac-1 and LFA-1 expression on neutrophils by flow cytometry.

Results: The adhesive functions of fetal leukocytes significantly increase with gestational age. In all age groups,
leukocyte adhesion was crucially dependent on RAGE. In particular, RAGE was equally effective to mediate
leukocyte adhesion when compared to ICAM-1. The plasma levels of sSRAGE were high in extremely premature
infants and decreased with increasing gestational age. In contrast, expression of B,-Integrins Mac-1 and LFA-1 which
are known ligands for RAGE and ICAM-1 did not change during fetal development.

Conclusion: We conclude that RAGE is a crucial leukocyte adhesion molecule in both preterm and term infants.
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Background

During the past decades advances in neonatal medicine
led to strongly improved survival of extremely prema-
ture infants [1]. Nonetheless, especially among very im-
mature infants, infection and sepsis are still the leading
causes for mortality and morbidity [2-4]. As immaturity
of the innate immune system seems to be one of the rea-
sons for this observation, the role of leukocytes has been
addressed by numerous studies [2-5]. In particular, fetal
leukocyte recruitment has been increasingly examined
both in vitro and in vivo [6-8].

The cascade of leukocyte recruitment plays a crucial role
in the immune defense during inflammation [9]. Capture
of free flowing leukocytes is followed by leukocyte rolling
along the endothelial layer, triggering the activation of {3,-
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integrins, i.e. LFA-1 (CD 11a/CD18) and Mac-1 (CD 11b/
CD18), which interact with different endothelial ligands
such as ICAM-1 [10,11]. This leads to firm adhesion to
the inflamed endothelium and finally to leukocyte trans-
migration [9,12].

Recently, Nussbaum et al. and Sperandio et al. investi-
gated leukocyte recruitment during fetal development
using flow chamber experiments in humans and a new
fetal mouse model [6,8]. They showed that fetal leukocyte
recruitment matures during pregnancy, which may ac-
count for the high susceptibility of preterm infants to inva-
sive infections. Consistent with other studies, they also
observed that the expression of leukocyte rolling mole-
cules, L- and P-selectin and P-selectin-glycoprotein-ligand
1 and adhesion molecules ICAM-1, Mac-1 and IL-8-
receptor increase with gestational age [6,8,13-18].

The receptor of advanced glycation end products
(RAGE), a strong activator of nuclear factor kB (Nf-kB)
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[19], is highly expressed during fetal development [20,21].
RAGE plays a crucial role in a variety of inflammatory
diseases [22-25]. Beside its signaling function, RAGE
serves as a multiligand receptor, binding to high-mobility
group box 1 protein, protein S100, Mac-1 and others
[10,11,26-29]. Interestingly, RAGE was also discovered
to mediate leukocyte adhesion via direct binding to
Mac-1 [10,11].

Soluble RAGE (sRAGE) is formed by shedding of the
receptor’s extracellular domain and therefore lacks intra-
cellular signaling. Thus, sSRAGE may serve as a decoy re-
ceptor that may antagonize functions of full-length RAGE
[22,23]. Only very few studies investigated sRAGE-
expression in extremely premature infants. Similar to
inflammatory conditions in adults they showed de-
creased fetal SRAGE concentrations in the presence of
chorioamnionitis [30,31]. The high fetal RAGE expression
indicates a pivotal role of RAGE during early develop-
ment. However, its function for fetal leukocyte recruit-
ment remains unclear.

Therefore, we investigated RAGE-dependent leukocyte
adhesion in premature and term infants at different ges-
tational ages.

Methods

Sample collection and study population

All included infants were delivered by primary cesarean
section. 5-10 ml of umbilical cord blood was collected
immediately after delivery. Children with severe fetal
malformations, infectious maternal diseases (i.e. chor-
ioamnionitis) and familial immune diseases were excluded.
In addition, 10 ml of peripheral venous blood from
healthy adult volunteers was drawn by venipuncture.
Standard blood collection tubes (S-Monovette, Sarstedt,
Niimbrecht, Germany) containing trisodiumcitrate were
used for anticoagulation. Based on their gestational age, as
estimated by the date of the last menstrual period and by
ultrasound measurements, infants were grouped into ex-
tremely premature infants (<30 completed weeks of gesta-
tion), moderately premature infants (30-35 weeks of
gestation), and mature neonates (>35 completed weeks of
gestation). Infants older than 35 gestational weeks were
considered to be immunologically mature. Informed, writ-
ten consent was obtained from all adult volunteers and all
mothers whose children were included in our study. The
study was approved by the local Medical Ethical Commit-
tee of the Ruprecht-Karls-Universitat (S-047/2008).

Isolation of polymorph-nuclear leukocytes (PMNs)

As fetal leukocyte and differential white blood counts
may vary largely depending on the gestational age, we
isolated and quantified PMNs from the umbilical cord of
neonates, premature infants or peripheral venous blood of
healthy adults. Whole blood was layered onto a density
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gradient (LSM 1077; PAA Laboratories GmbH, Coelbe,
Germany) and centrifuged (1200 x g, 20 min, 4°C). The
resulting erythrocyte-granulocyte pellet was washed twice
in Dulbecco’s PBS (1x, without Ca™* and Mg"*; Invitrogen
GmbH, Darmstadt, Germany) and erythrocytes were lysed
by hypotonic buffer (0.15 M NH,C], 0.01 M NaHCOs3",
0.001 M EDTA, in Aqua ad injectabilia for 7 min in the
dark at room temperature). The remaining cells were
washed twice, resuspended in 1 ml PBS, and counted in a
Neubauer chamber (Bright-Line’, Hausser Scientific,
Horsham, PA, USA) using Turks solution (Merck,
Darmstadt, Germany). The number of PMNs, lympho-
cytes, erythroid and myeloid precursors was then quan-
tified by May Gruenwald staining (Merck, Darmstadt,
Germany) using known cytomorphological parameters
[7,32,33]. For additional cell differentiation we performed
flow cytometry using standard leukocyte clusters defined
by forward-side scatter analysis. To identify PMNs during
subsequent flow chamber experiments leukocytes were
stained with the fluorescent dye Rhodamine 6G (max
10 min) which does not stain erythroid cells [34,35].

Preparation of murine sRAGE

Mouse sRAGE was kindly provided by Prof. Peter
Nawroth (Dept of Medicine I & Clinical Chemistry, Uni-
versity Heidelberg). The preparation is summarized in
brief. A plasmid with the coding sequence of the mouse
extracellular domain of RAGE (1030 bp) was cloned into
pET-DEST42 (Invitrogen, Darmstadt, Germany) and
transformed into the Escherichia coli strain BL21. Next,
isopropyl D-thiogalactopyranoside induced soluble RAGE
(SRAGE) protein expression, which was purified using
Protino Ni-TED 2000 columns (Macherey-Nagel, Dueren,
Germany). Finally, potential endotoxin contamination was
removed by affinity chromatography EndoTrap blue 5/1
(Profos AG, Regensburg, Germany).

SRAGE ELISA

sRAGE concentrations in citrated plasma were measured
with a commercially available sandwich enzyme-linked
immunosorbent assay (Biovendor, Modrice, Czech
Republik) according to the manufacturer’s instruction.
This assay is known to specifically detect sSRAGE in
human plasma. Finally the extinction was determined
with a Flashscan microplate reader (Analytik Jena AG,
Jena, Germany) at 450 nm.

Flow cytometry

The expression of Mac-1 and LFA-1 was assessed by flow
cytometry as described previously [11]. After red blood
cell lysis, 10° cells were incubated in the dark with 2 pg
FITC-conjugated anti-LFA-1 or anti-Mac-1 (eBioscience,
San Diego, USA) or 2 ug FITC-conjugated isotype control
antibodies (Mouse IgG1, eBioscience, San Diego, USA).
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Mac-1 and LFA-1 expression was assessed on 10.000 cells
per mouse within the neutrophil cluster defined by
forward-sideward scatter analysis using LSRII with
DIVA software package (Becton Dickinson, San Jose,
USA). Expression of Mac-1 and LFA-1 was compared
to their respective isotype controls.

For differentiation of cells before and after isolation pro-
cedures flow cytometry was performed on 10° unstained
cells using standard neutrophil, monocyte and lymphocyte
clusters defined by forward-sideward scatter analysis.

Flow chamber experiments

Flow chamber experiments were conducted as described
[36,37]. In brief, rectangular microglass capillaries
(VitroCom, Mountain Lakes, USA) were coated with rh
P-selectin (4 pg/ml, R&D Systems, Wiesbaden, Germany),
rh CXCLS8/IL-8 (10 ug/ml, Peprotech, London, United
Kingdom), and rh ICAM1 (4 pg/ml, R&D Systems) or
SRAGE (4 pg/ml or as indicated) and connected via PE
tubing to a 2 ml syringe containing freshly isolated neutro-
phils. Due to the high number of erythroid progenitors in
some groups, cell suspension was then incubated with the
fluorescent dye Rhodamine 6G (75 ul/10° cells/ml) for
leukocyte staining. The number of neutrophils was now
set at 2x10° cells/ml by counting fluorescent cells in a
Neubauer chamber by fluorescent microscopy using the
FITC channel (BX51 WI , with a saline immersion ob-
jective x 20/0.95 NA, Olympus Hamburg). The cell sus-
pension was perfused through the flow chamber and
neutrophil adhesion was observed by fluorescent mi-
croscopy for 10 minutes under constant flow conditions
using a high precision perfusion pump (Harvard Instru-
ments, March-Hugstetten, Germany; wall shear stress
0.1 Pa). Images were recorded via a CCD camera system
(CF8HS; Kappa) on a Panasonic S-VHS recorder. Perma-
nent adherent fluorescent cells were counted as neutrophil
adhesion per field of view (FOV) after 10 min.

Statistics

Sigma Stat 3.5 (Systat Software, Erkrath, Germany) was
used for statistical analysis. Clinical and laboratory par-
ameter of patients, leukocyte adhesion, SRAGE concen-
tration and LFA-1 and Mac-1 expression between
groups were compared with one-way ANOVA followed
by a multiple pairwise comparison test (Dunn’s test) or
by Wilcoxon rank-sum test, as appropriate. Statistical
significance was set at p < 0.05 or as indicated.

Results and discussion

Study population

76 infants were included in our study from 7/2008 to 5/
2012. The participants consisted of mature infants (>35
gestational weeks, n=>50), moderately premature in-
fants (30-35 gestational weeks, n=14) and extremely
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premature infants (<30 gestational weeks, n=12). In
addition, we analyzed blood samples of 29 healthy adult
volunteers (male 13: female 16; mean age=27.6+
6.8 years). Reasons for prematurity were placental insuf-
ficiency, pre-eclampsia, HELLP syndrome, pathologic
Doppler flow, and twin pregnancy. Children with under-
lying infectious diseases of the mother, e.g. suspected
chorioamnionitis were excluded. The patient character-
istics and laboratory data are shown in Table 1.

Since children were included consecutively, the gender
distribution among the experimental groups shows some
variation. As expected, premature infants had a signifi-
cantly lower birth weight than mature neonates. In
addition, white blood-cell count and PMN count in
whole blood were significantly lower in premature than
in mature infants, an observation that has also been de-
scribed earlier [6]. Notably, levels of C-reactive protein
did not vary between investigated groups. Prenatal steroids
(betamethasone) were administered to the majority of
mothers of preterm infants. Although steroids are discussed
to alter neutrophil function, recently Nussbaum et al. were
able to exclude an impact of betamethasone on leukocyte
adhesion using the same setting of flow chamber experi-
ments as we did in our study [6]. Therefore, we argue
that prenatal steroid administration should not influ-
ence leukocyte adhesion in our study.

Age dependent characteristics of PMN isolates
Since we aimed to specifically investigate adhesion behavior
of neutrophils, we tested different PMN isolation proce-
dures and evaluated the resulting purity of the cell suspen-
sion. As standard PMN isolation methods using dextrose
density gradient centrifugation failed in newborns, we
performed an inverse separation with LSM 1077, which
primarily isolates lymphocytes. After May-Gruenwald
staining of the resulting cell suspension we counted about
90% PMN in mature newborns compared to 92% PMN in
adults (Figure 1, see also Additional file 1: Figure S1).
These results were confirmed by flow cytometric
counts of cell populations using standard gates defined
by forward-side scatter analysis: after isolation PMNs
increased to 93% (<1% monocytes and 7% lymphocytes
or others) in adults and to 88% (<1% monocytes and
12% lymphocytes or others) in term infants (Additional
file 1: Figure S2 and Figure S3). However, after the de-
scribed PMN isolation procedure we found only 60%
PMNs in moderately premature infants and only 40%
PMNs in extremely premature infants (Figure 1). Ac-
cording to differential staining, the remaining cells were
mostly erythroid progenitor cells (30% and 50%, re-
spectively) and, less prominent, lymphocytes and mye-
loid precursors, summed up as others (10%) at these
gestational ages (Figure 1). In contrast, erythroid pro-
genitor cells, lymphocytes and myeloid precursors were
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Table 1 Patient characteristics and laboratory values of umbilical cord blood

Data Extremely premature Moderately premature Mature neonates p value
(<30 weeks) (30-35 weeks) (>35 weeks) (ANOVA)

Number n=12 n=14 n=>50

Clinical

GA (weeks) 284/7+14/7 331/7+11/7 37 3/7+12/7 na

Birth weight (g) 1130+ 260" 1930 + 570* 3040 £ 520 <0.001

Female/male 4/8 6/8 23/27 na

APGAR 5 8+1 9+1 9+1 ns

10’ 8+1 9+1 9+1 ns

Laboratory

Arterial pH 7311007 7.30+0.04 728+ 0.05 ns

CrP (mg/dl) <0.05 <0.05 <0.05 na

WBC/nl 9.3 +36% 123+39 145+79 <0.05

PMN (%) 254+ 12.8% 324 +95% 455+142 <0.001

Hct (%) 0.45+0.05 050+ 0.04 048+ 0.06 ns

Data are given as mean + SEM if applicable. GA, gestational age; APGAR score; WBC, White blood cell count; Hct, haematocrit; CrP, C-reactive protein; na, not
applicable; ns, not significant. The asterisk (*) indicates significant differences vs. mature neonates and the pound key (*) vs moderately premature infants as given

by the P value (ANOVA).

hardly found in term infants and adults after isolation
(about 10% and less, Figure 1).

These results are in line with previous studies, demon-
strating that the number of circulating erythroid progeni-
tor cells is particularly high in premature infants and that
they are difficult to separate from leukocytes due to phys-
ical similarities [38-40]. Although these cells have been
shown to induce immunosuppression in neonates they
should not alter leukocyte adhesion in our flow chamber
experiments since they need the whole organism for inter-
action [38-40]. To answer the question whether erythroid

progenitor cells might directly mimic neutrophil behavior
during flow chamber experiments, it is important to men-
tion that they only express PSGL-1, but not IL-8 receptor,
Mac-1 nor LFA-1 which are crucial adhesion molecules in
this setting [9,12,41,42]. Thus, it is unlikely that erythroid
progenitor cells adhere to flow chambers coated with P-
selectin, IL-8 and ICAM-1/RAGE.

However, to exclude varying neutrophil count in cell
isolates of different age groups and misinterpretation of
adherent cells, all cell isolates were further treated with
the fluorescent dye Rhodamine 6G which predominantly
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Figure 1 Gestational age dependent distribution of blood cells after PMN isolation procedure. Granulocytes, erythroid progenitors and
other cells (lymphocytes and myeloid precursors) from extremely, moderately premature and mature infants as well as adults were counted using
differential May Gruenwald staining (mean + SEM). Significant differences to extremely premature infants (<30 weeks of gestation) are indicated
by asterisks (p <0.05).
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Figure 2 RAGE- and ICAM-1-dependent fetal neutrophil adhesion. Neutrophil adhesion of preterm and term infants and adults was analyzed
in dynamic microflow chamber experiments (A) Neutrophil adhesion upon P-selectin, IL-8 and ICAM-1 was compared between the various age
groups and to respective uncoated controls. (B) Neutrophil adhesion is shown for P-selectin and IL-8 coated flow chambers with and without
ICAM-1. (C) ICAM-1-and sRAGE-dependent neutrophil adhesion in combination with P-selectin and IL-8-coating. Results are presented as mean +
SEM from at least 5 separate individuals/experiments per group. Significant differences (p <0.05) to uncoated or P-selectin and IL-8 coated flow
chambers are indicated by asterisks and by the pound key (as indicated).

stains leukocytes, while erythroid cells remain unstained  In-vitro neutrophil adhesion in preterm and term infants

[34,35]. Using fluorescent microscopy we were now able  In order to investigate the role of RAGE for fetal leukocyte
to set the number of neutrophils at 2x10%/2 ml suspen-  recruitment, we measured adhesion of neutrophils of
sion in all age groups and to specifically analyze neutro-  adults, term and premature infants in dynamic micro-
phil adhesion in flow chamber experiments. flow chambers experiments (see also representative
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screenshot in Additional file 1: Figure S4). Different
coating of flow chambers allowed a functional analysis
of the used or omitted molecules. As reported previ-
ously [37,43], we first used a combination of P-selectin,
IL-8 and ICAM-1, which triggers significant adhesion of
adult neutrophils when compared to uncoated controls
(Figure 2A). This molecular coating also led to a relevant
adhesion of neutrophils of neonates or premature infants
compared to their respective controls. However, the
number of neutrophils that adhered on P-selectin, IL-8
and ICAM-1 gradually and significantly increased with
gestational age from only 6.8 + 1.4/FOV in very premature
infants to 8.1+ 1.7/FOV in moderately premature infants
and 10.5+ 0,8/FOV in term neonates (Figure 2A). Very
recently, Nussbaum et al. similarly reported a gestational
age-dependent increase of leukocyte adhesion in a
dynamic flow chamber approach [6]. They also found
comparable leukocyte adhesion when P-selectin is re-
placed by E-selectin [6].

To investigate the role of the integrins for leukocyte
adhesion preterm infants and neonates, we compared
leukocyte adhesion in flow chambers only coated with
P-selectin and IL-8 with those with additional ICAM-1
coating. We found reduced leukocyte adhesion in
ICAM-1 lacking flow chambers in all age groups, al-
though the level of significance was not reached in pre-
mature infants (Figure 2B). This might be caused by the
relatively small number of samples as well as the gener-
ally low level of adhesion in the premature groups.
Nevertheless, our results point towards an important
role of the interaction of (3,-integrins with their ligands
and suggest that the combination of all three adhesion
molecules used is crucial for effective in vitro leukocyte
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adhesion not only in adults [11], but also in preterm and
term infants.

To determine the role of RAGE for leukocyte adhesion in
preterm infants and neonates we replaced the [3,-integrin
ligand ICAM-1 by sRAGE and in a first step performed
dose-finding-experiments. In previous experiments, SRAGE
coating with 4 pg/ml was successfully used to induce adult
leukocyte adhesion [11]. sSRAGE coating concentrations
ranging from 0.5-20 pg/ml were tested in neonates in
combination with P-selectin and IL-8 and revealed
optimal leukocyte adhesion at 4 pg/ml sRAGE, too
(Additional file 1: Figure S5). Since this coating concen-
tration was exactly the same as for ICAM-1 it was used
in all consecutive experiments. Notably, sSRAGE con-
centrations higher than 10 pg/ml resulted in a decrease
in leukocyte adhesion which might be due to inhibiting
effects of free circulating SRAGE in the flow chamber as
a result of SRAGE coating overdose [44].

Next, we found that sSRAGE mediates leukocyte adhe-
sion in both adults and during investigated stages of fetal
life (Figure 2C). Similar to ICAM-1-coating, RAGE-
coating in combination with P-selectin and IL-8 induced
significant adhesion of neutrophils from infants and adults
when compared to uncoated controls (not depicted). As
observed for ICAM-1-dependent neutrophil adhesion, we
also found that the number of adherent neutrophils sig-
nificantly increased with gestational age, i.e. 7.8 + 1.4/FOV
in very premature infants, 9.4 + 1.7/FOV in moderately
premature infants and 11.6 + 0.8/FOV in term neonates
(Figure 2C, see also Additional file 1: Figure S4).

As demonstrated and discussed earlier in this study, the
preparation technique (separation or staining) cannot ex-
plain these observations. In order to rule out unspecific
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Figure 3 Effective RAGE- and ICAM-1-dependent fetal neutrophil adhesion. Neutrophil adhesion of preterm and term infants and adults
was analyzed in dynamic microflow chamber experiments. The difference of neutrophil adhesion between uncoated controls and coating with
P-selectin, IL-8 and RAGE or ICAM-1 is displayed as increase of adherent cells/FOV over background for the respective age groups. Results are
presented as mean + SEM from at least 5 separate individuals/experiments per group. Significant differences (p <0.05) are indicated by asterisks.
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background adhesion inducing the increase of specific
neutrophil adhesion during gestation, we first demon-
strated that uncoated control neutrophil adhesion
between investigated age groups is not statistically sig-
nificant (Figure 2A). In addition, we calculated the ef-
fective neutrophil adhesion which is the increase of
coated neutrophil adhesion over background (= coated-
uncoated controls, Figure 3). We found that specific,
P-selectin-, IL-8-, ICAM-1/RAGE-triggered neutrophil
adhesion matures during gestation independently from
background adhesion.

Thus, our results indicate that RAGE may be capable to
mediate leukocyte adhesion similar to ICAM-1 not only in
adults but also during early development. Former experi-
ments in adult mice and humans have shown that RAGE
may directly bind to the B,-integrin Mac-1 and thereby
mediate leukocyte adhesion in-vitro and in-vivo [10,11]. In
addition, we and others found that RAGE and ICAM-1
collaborate in mediating leukocyte recruitment in a stimu-
lus dependent manner. As addressed later in these studies,
RAGE predominantly binds to Mac-1, whereas ICAM-1 is
the preferred ligand of the {3,-integrin LFA-1 [10,11]. Up
to date however, it is unclear whether these observations
also hold true during fetal development. Moreover, only
little is known about signaling properties of RAGE or its
interaction with other ligands (ie. HMBGI, S100) during
early life [10,11,26-29].

Since RAGE, in contrast to ICAM-1, is highly expressed
during early life [19], our key results of flow chamber ex-
periments might also be of importance for the under-
standing of cellular immune defense mechanisms in
inflammatory conditions during the neonatal period [2-8].

Plasma sRAGE concentration during fetal development
To test the hypothesis of high fetal RAGE expression in
our study population, we measured the concentration of
fetal SRAGE in the respective plasma samples of our
preterm and term neonates and compared the results to
adult SRAGE plasma levels. Indeed, we found that sys-
temic sSRAGE concentration is highest in infants born
younger than 30 weeks GA and gradually decreases dur-
ing the course of pregnancy (Figure 4). In term neonates,
circulating SRAGE was only about 50% and during
adulthood only 25% of the values measured in extremely
immature infants. Cord blood sRAGE levels at this ges-
tational age were higher than previously reported which
might be explained by different techniques of detection
[30]. Nevertheless, these findings point towards a dis-
tinct role of sSRAGE for fetal life and a positive correl-
ation between increased sSRAGE and membrane RAGE
expression during fetal development [20,21]. With re-
gard to our flow chamber results we now argue that the
role of RAGE-dependent leukocyte adhesion may be
more prominent during early development than during
later life. In combination with an increasing expression
and role of ICAM-1 during fetal life [6] RAGE could
also be crucial for the tightly regulated balance of fetal
immunotolerance and cellular defense.

In a recent study of premature infants with funisitis,
sRAGE was found to be decreased in cord blood and in
the tracheal fluid [30], and there is increasing evidence
that low sRAGE blood levels correlate with poor out-
come in infants [21,45,46]. Although sRAGE has been
additionally described to be associated with many other
inflammatory conditions [28,30,31,47-49], it remains
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controversial whether a decrease in SRAGE levels is cau-
sative or a result of proinflammatory stimulation [25].
Therefore, the exact role of SRAGE for inflammatory con-
ditions particularly during early development still needs to
be determined.

LFA-1 and Mac-1 expression during fetal development
We next investigated the age-dependent expression of
the B,-integrins LFA-1 and Mac-1 which are known to
be relevant receptors of ICAM-1 and RAGE.

Our flow cytometric investigations of isolated neutrophils
revealed a constant LFA-1 and Mac-1 expression during
early and late development (Figure 5A-D). In particular,

neutrophils form premature and mature infants and adults
did not show significant differences in LFA-1 and Mac-1
expression. The tendency of slightly lower Mac-1 expres-
sion in some adults (Figure 5A + C) might be attributed to
faster isolation-induced Mac-1-upregulation in neonates
(data not shown). These results are consistent with former
studies which found similar levels of LFA-1 in preterm in-
fants, neonates and adults, while expression of Mac-1 was
reported to gradually increase during pregnancy in some
studies [16,50], which might be explained by different ex-
perimental conditions.

We suggest, however, that the increase of ICAM-1-
and RAGE-mediated leukocyte adhesion during early
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development is not primarily caused by altered fetal {3,-in-
tegrin expression. Since expression may differ from func-
tion, maturation of LFA-1 and Mac-1 activity or avidity
could be one explanation of our results. In addition, there
are other leukocyte-born binding partners of the adhe-
sion molecules coated in the flow chambers like PSGL-1
and IL-8 receptor [9]. Since PSGL-1 expression is
reported to gradually increase with gestational age, while
IL-8 receptor expression stays constant during fetal life
[6], maturation of PSGL-1 expression can be another ex-
planation of our findings. Moreover, fetal leukocytes could
express other or unknown ligands of the coated adhesion
molecules when compared to adult leukocytes. In this
context one may also ask whether the recently observed
homophilic RAGE-RAGE interaction [51] might take
place between leukocyte- expressed RAGE and endothe-
lial RAGE in the fetus. However, these questions have not
been addressed so far and should be investigated in future
studies.

Conclusion

Our results suggest that impaired neutrophil adhesion of
very premature infants only normalizes late during gesta-
tion. This study shows for the first time that RAGE con-
trols leukocyte adhesion not only in adults but also in
premature and mature infants. The pivotal importance of
RAGE is supported by its high expression during fetal life.
Thus, new therapeutic approaches for the treatment of
inflammatory diseases of preterm infants and neonates
could target RAGE, an approach which would most likely
be relevant in non-infectious inflammatory diseases. The
findings also expand our still incomplete knowledge of the
fetal development of the innate immune system.

Additional file

Additional file 1: Figure S1. Representative May-Gruenwald staining of
cell suspension after PMN isolation of cord blood of a term infant. Bar
represents 25 pum. Figure S2. Forward/sideward scatter dot plot of flow
cytometric analysis of cell suspension with 10° cells before (A) and after
(B) isolation of PMNs of adult whole blood (P1= neutrophils, P2 = monocytes,
P3 = lymphocytes). After isolation (B) 9300 cells (93%) were detected in the
neutrophil gate, <100 cells in the monocyte gate (<1%) and 300 cells in the
lymphocyte gate (3%) while about 400 cells were outside these gates (4%).
Figure S3. Forward/sideward scatter dot plot of flow cytometric analysis of
cell suspension before (A) and after (B) isolation of PMNs of term infants > 35
weeks of gestational age (P1 = neutrophilsP2 = monocytes, P3 = lymphocytes
and erythroid progenitors). After isolation (B) 8800 cells (88%) were detected
in the neutrophil gate, <100 cells in the monocyte gate (<1%), while 1200 cells
(12%) were in the lymphocyte gate or outside these gates. Figure S4.
Representative screenshot of a recorded flow chamber experiment

with leukocytes isolated from a term neonate flowing through a
chamber coated with P-selectin, IL-8 and sRAGE after 10 min. Big arrow
indicates flow direction. Small arrows indicate adherent leukocytes.
White bar represents 30 um. Figure S5. Neutrophil adhesion on flow
chambers coated with P-selectin (4ug/ml), IL-8 (10ug/ml) and different
concentrations of SRAGE is shown as mean + SEM from at least 5 newborns
and experiments per concentration. *indicates significant differences

(p < 0.05) vs Opg/ml sRAGE.
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