
The Author(s) BMC Immunology 2017, 18(Suppl 1):24
DOI 10.1186/s12865-017-0208-x

RESEARCH Open Access

A model of auto immune response
James K. Peterson1*, Alison M. Kesson2,3 and Nicholas J. C. King4

Abstract

Background: In this work, we develop a theoretical model of an auto immune response. This is based on
modifications of standard second messenger trigger models using both signalling pathways and diffusion and a
macro level dynamic systems approximation to the response of a triggering agent such as a virus, bacteria or
environmental toxin.

Results: We show that there, in general, will be self damage effects whenever the triggering agent’s effect on the
host can be separated into two distinct classes of cell populations.
In each population, the trigger acts differently and this behavior is mediated by the nonlinear interactions between
two signalling agents.

Conclusion: If these interactions satisfy certain critical assumptions this will lead to collateral damage. If the initial
triggering agent’s action involves any critical host cell population whose loss can lead to serious host health issues,
then there is a much increased probability of host death.
Our model also shows that if the nonlinear interaction assumptions are satisfied, there is a reasonable expectation of
oscillatory behavior in host health; i.e. periods of remission.

Keywords: Second messenger models, Abstract triggering agent, Signalling agent mediation, Host self damage and
death, Oscillation in health levels and remission, Auto immune responses

Background
In [1, 2] we explore a micro level simulation model of a
single host’s response to varying levels of West Nile Virus
(WNV) infection. In that infection, there is a substan-
tial self damage component and in those papers, we show
that this is probably due to the way that the virus infects
two cell populations differently. This difference, which
involves an larger upregulation of MHC-1 sites on the sur-
face of nondividing infected cells over dividing infected
cells, is critical in establishing a self damage or collateral
damage response. In [3], we develop a macro level model
of the nonlinear interactions between two critical sig-
nalling agents that mediate the interaction between these
two sets of cell populations. In the case of WNV infection,
the two signals are the MHC-1 upregulation level of the
cell and the free WNV antigen level. This macro model
allowed us to predict a host’s health response to varying
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levels of initial virus dose. Hence, we could begin to under-
stand the oscillations in collateral damage and host health
that lead to the survival data we see in WNV infections.
The more general musings of [3] will now be extended
to the setting of auto immune interactions in general.
The derivations here use standard ideas from advanced
calculus and differential equations.

The CMN model
We assume we have a large population of cells T which
consists of cells which are infected or altered in two dis-
tinct ways by a trigger V . based on signals I, J and K .
These two distinct populations of cells will be labeled
M and N . There are also non infected cells, H and non
infected cells which will be removed due to auto immune
action which we call C, for collateral damage. We will be
using the same approach to studying nonlinear interac-
tions that was used in [3].

We assume the dynamics here are

C′(t) = F1(C, M, N)

M′(t) = F2(C, M, N))

N ′(t) = F3(C, M, N))

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12865-017-0208-x&domain=pdf
mailto: petersj@clemson.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMC Immunology 2017, 18(Suppl 1):24 Page 48 of 65

There are then three nonlinear interaction functions
F1, F2 and F3 because we know C, M and N depend on
each other’s levels in very complicated ways. Usually, we
assume the initial trigger dose V0 gives rise to some frac-
tion of infected cells and the effect of the trigger will be
different in the two cell populations M and N .

Assumption 1 We assume the number of infected cells
is p0 V0 which is split into p1 p0 V0 in population N and
p2 p0 V0 in M, where p1 + p2 = 1.

For example, a reasonable choice is p1 = 0.99 and
p2 = 0.01. Thus, the total amount of trigger that goes
into altered cells is p0 V0 and the amount of free trigger is
therefore (1−p0)V0. Thus, we could expect C0 = 0, M0 =
p2 p0 V0 and N0 = M0 = p1 p0 V0. However, we will explic-
itly assume we are starting from a point of equilibrium
prior to the administration of the viral dose V0. We could
assume there is always some level of collateral damage, C0
in a host, but we will not do that. We will therefore assume
C, M and C have achieved these values C0 = 0, M0 = 0
and N0 = 0 right before the moment of alteration by the
trigger. Hence, we don’t expect to there to be initial contri-
bution to C′(0), M′(0) and N ′(0); i.e. F1(C0, M0, N0) = 0,
F2(C0, M0, N0) = 0 and F3(C0, M0, N0) = 0. We are inter-
ested in the deviation of C, M and N from their optimal
values C0, M0 and N0, so let c = C−C0, m = M−M0 and
n = N −N0. We can then write C = C0 + c, M = M0 +m
and N = N0 + n The model can then be rewritten as

(C0 + c)′ (t) = F1 (C0 + c, M0 + m, N0 + n)

(M0 + m)′ (t) = F2 ((C0 + c, M0 + m, N0 + n)

(M0 + M)′ (t) = F3 ((C0 + c, M0 + m, N0 + n)

or

c′(t) = F1(C0 + c, M0 + m, , N0 + n)

m′(t) = F2((C0 + c, M0 + m, N0 + n)

n′(t) = F3((C0 + c, M0 + m, N0 + n)

Next, we do a standard tangent plane approximation on
the nonlinear dynamics functions F1, F2 and F3 to derive
approximation dynamics. The mathematics behind this
approximation come from multivariate calculus and can
easily be reviewed if required. We find the approximate
dynamics are

⎡
⎣

c′
m′
n′

⎤
⎦ ≈

⎡
⎢⎢⎣

Fo
1c Fo

1m Fo
1n

Fo
2c Fo

2m Fo
2n

Fo
3c Fo

3m Fo
3n

⎤
⎥⎥⎦

⎡
⎣

c
m
n

⎤
⎦

where we now use a standard subscript scheme to indicate
the partials. Now let’s add the signals IFN-γ (I), J and K
to the mix.

The CDN IJK model
We can think each variable C, M and N as depending on
I, J and K . Thus, we have

F1(C(I, J , K), M(I, J , K), N(I, J , K)) = H1(I, J , K)

F2(C(I, J , K), M(I, J , K), N(I, J , K)) = H2(I, J , K)

F3(C(I, J , K), M(I, J , K), N(I, J , K)) = H3(I, J , K)

We assume the dynamics here are then

C′ = H1(I, J , K)

M′ = H2(I, J , K)

N ′ = H3(I, J , K)

As before assume C, M and C have achieved the same
optimal values C0 = 0, M0 = 0 and N0 = 0 prior to
the moment of infection with trigger dose V0. These cor-
respond to the starting values prior to exposure to the
trigger of I0, J0 and K0. Initially, we don’t expect IFN-γ
signals so I0 = 0. Eventually, we do expect some level
of change in J and K due to this initial dose and we will
assume this change to be proportional to the level of the
dose V0 applied; that is, we will assume this is a simple
scaling factor, i.e. J0 = q1 V0 for some suitable parameter
q1. Also, once the trigger has been applied dose, we would
expect some fraction of it to remain free which will be
modeled as K0 = (1 − p0)V0. But now, we think of all the
initial values as zero; i.e. I0 = 0, J0 = 0 and K0 = 0. We
still don’t expect to have any contribution to C′(0), M′(0)

and N ′(0); i.e. H1(I0, J0, K0) = 0, H2(I0, J0, K0) = 0 and
H3(I0, J0, K0) = 0. We are interested in the deviation of C,
M and N from their optimal values C0, M0 and N0 due to
the changes i, j and k from the base I, J and K values. So
as usual, let c = C−C0, m = M−M0 and n = N −N0. We
can then write C = C0 + c, M = M0 + m and N = N0 + n
The model can then be rewritten as

(C0 + c)′ (t) = H1
(
I0 + i, J0 + j, K0 + k

)

(M0 + m)′ (t) = H2
(
I0 + i, J0 + j, K0 + k

)

(N0 + n)′ (t) = H3
(
I0 + i, J0 + j, K0 + k

)

which, as usual, implies

c′(t) = H1
(
I0 + i, J0 + j, K0 + k

)

m′(t) = H2
(
I0 + i, J0 + j, K0 + k

)

n′(t) = H3
(
I0 + i, J0 + j, K0 + k

)

Next, we again perform a tangent plane approxima-
tion on the nonlinear dynamics functions H1, H2 and H3
the details of which are not shown. We find the nonlinear
dynamics approximation is then

⎡
⎣

c′
m′
n′

⎤
⎦ ≈

⎡
⎢⎢⎣

Ho
1i Ho

1j Ho
1k

Ho
2i Ho

2j Ho
2k

Ho
3i Ho

3j Ho
3k

⎤
⎥⎥⎦

⎡
⎣

i
J
K

⎤
⎦
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where we now use a standard subscript scheme to indicate
the partials. If we hold everything constant except i which
we increase to i + δi, what happens? Increasing the IFN-γ
level should increase collateral damage. Hence, Ho

1i = +.
What about the other two cell populations, M and N?

Assumption 2 We assume this increase in i has no effect.
Hence, Ho

2i = Ho
3i = 0.

This assumption is similar to the one we made in [3]
and we think it is important to the eventual auto immune
response. Thus, the coefficient matrix above which we call
� so far looks like

� =

⎡
⎢⎢⎣

+ Ho
1j Ho

1k

0 Ho
2j Ho

2k

0 Ho
3j Ho

3k

⎤
⎥⎥⎦

Now hold everything constant except j and increase j to
j + δj. What happens?

Assumption 3 What happens will depend on what the
signals J and K are. We can’t argue much yet. However, we
suspect the critical assumption to make is the increase in j
causes M and N to decrease. Hence, we assume Ho

2j = −
and Ho

3j = − for each type of infected cell population.

Thus, the coefficient matrix looks like

� =

⎡
⎢⎢⎣

+ + Ho
1i

0 − Ho
2K

0 − Ho
3K

⎤
⎥⎥⎦

Next hold everything constant except the signal level k
and increase k to k + δk. What happens?

Assumption 4 We assume our choice of signals gives
Ho

2k = + and Ho
3k = −.

Thus, the coefficient matrix now looks like

� =
⎡
⎣

+ + +
0 − +
0 − −

⎤
⎦

Or letting Ho
2j = −a, Ho

3j = −b, Ho
2k = c, Ho

3k = d, we
have the coefficient matrix now looks like

� =
⎡
⎣

+ + +
0 −a c
0 −b −d

⎤
⎦

Thus, we have the changes

c′ = Ho
1i i + Ho

1j j + Ho
1k k

m′ = Ho
2j j + Ho

2k k
n′ = Ho

3j J + Ho
3k k

Now we need to estimate i, j and k.

The IJK model
The amount of I, J and K depend on the initial amount
of trigger applied when in the equilibrium state; i.e. this is
the amount that causes the initial infection. This is Vo. We
assume the dynamics here are

I ′ = G1(I, J , K)

J ′ = G2(I, J , K)

K ′ = G3(I, J , K)

In the model of “The CDN IJK model” section, we
assumed C, M and N depended on the perturbations of
I, J and K from a zero state. Now, we want to model the
I, J and K deviations from a base state I0, J0 and K0 which
is not zero. As previously discussed, we expect K0 =
(1 − p0) V0, the initial IFN-γ level I0 = 0 and the ini-
tial upregulation level J0 = q1V0. Let the deviations from
these equilibrium values be given by i = I − I0, J = J − J0
and k = K − K0. The model can then be rewritten as

(I0 + i)′ (t) = G1
(
i + I0, j + J0, k + K0

)
(
J0 + j

)′
(t) = G2

(
i + I0, j + J0, k + K0

)

(K0 + k)′ (t) = G3
(
i + I0, j + J0, k + K0

)

or

i′(t) = G1
(
i + I0, j + J0, k + K0

)

j′(t) = G2
(
i + I0, j + J0, k + K0

)

k′(t) = G3
(
i + I0, j + J0, k + K0

)

The usual tangent plane approximation on the nonlin-
ear dynamics functions G1, G2 and G3 then gives the
dynamics approximation

⎡
⎣

i′
j′
k′

⎤
⎦ ≈

⎡
⎢⎢⎣

GV0
1i GV0

1j GV0
1k

GV0
2i GV0

2j GV0
2k

GV0
3i GV0

3j GV0
3k

⎤
⎥⎥⎦

⎡
⎣

i
j
k

⎤
⎦

The analysis of the signs of these partials is next. This is
similar to what we did for the previous model. If we hold
everything constant except i which we increase to i + δi,
what happens? Increasing the IFN-γ level should increase
IFN-γ .

Assumption 5 For the signals j and k, we assume GV0
1i =

+, GV0
2i = 0. and GV0

3i = 0 as well.

Thus, the coefficient matrix above which we call � so
far looks like

� =

⎡
⎢⎢⎣

+ GV0
1j GV0

1k

0 GV0
2j GV0

2k

0 GV0
3j GV0

3k

⎤
⎥⎥⎦
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Now hold everything constant except j and increase j to
j + δj. What happens?

Assumption 6 We assume GV0
1j = +, GV0

2j = + and
GV0

3j = +.

Thus, the coefficient matrix looks like

� =

⎡
⎢⎢⎣

+ + GV0
1k

0 + GV0
2k

0 + GV0
3k

⎤
⎥⎥⎦

Now hold everything constant except k and increase k
to k + δk. What happens?

Assumption 7 We assume an increase in k will not effect
IFN-γ levels, i, and hence GV0

1k = 0. An increase in k
must imply GV0

3k = +. We then assume the signals j and k
interact so that GV0

2k = −.

Thus, the coefficient matrix now looks like

� =
⎡
⎣

+ + 0
0 + −
0 + +

⎤
⎦

Or letting GV0
2j = a, GV0

3j = b, GV0
2k = −c, GV0

3k = d, we
have the coefficient matrix now looks like

� =
⎡
⎣

+ + 0
0 a −c
0 b d

⎤
⎦

Oscillations in J and K
The eigenvalues of this linearized system are found by set-
ting det(λI − �) = 0. Thus, the coefficient matrix above
which we call � so far looks like

det(λI − �) = det

⎡
⎢⎣

λ − GV0
1i −GV0

1j −GV0
1k

0 λ − GV0
2j −GV0

2k
0 −GV0

3j λ − GV0
3k

⎤
⎥⎦

This gives

0 =
(
λ − GV0

1i

)
det
[

λ − GV0
2j −GV0

2k
−GV0

3j λ − GV0
3k

]

and so

det (λI − �) =
(
λ − GV0

1i

) ((
λ − GV0

2j

) (
λ − GV0

3k

)
− GV0

2j GV0
3k

)

The eigenvalues of the two by two submatrix are the
most interesting. We can get complex roots if

⎡
⎣GV0

2j GV0
2k

GV0
3j GV0

3k

⎤
⎦ =

[
α −β

β α

]

or GV0
2j = GV0

3k and GV0
3j = −GV0

2k . The eigenvalues are then
λ1 = Go

1i and the complex conjugate pair α±β
√−1 where

α = GV0
2j = GV0

3k and β = GV0
3j = −GV0

2k . The eigenvectors
here are

V + √−1W =
[

1
0

]
+ √−1

[
0
1

]
,

V − √−1W =
[

1
0

]
− √−1

[
0
1

]

We can solve for j and k to find
[

j(t)
k(t)

]
= eαt(a (V cos(βt) − W sin(βt))

+ b (V sin(βt) + W cos(βt)))
= eαt ((aV + bW ) cos(βt)

+ (−aW + bV ) sin(βt))

We then have
[

j(t)
k(t)

]
= eαt

[
(aV1 + bW1) cos(βt) + (−aW1 + bV1) sin(βt)
(aV2 + bW2) cos(βt) + (−aW2 + bV2) sin(βt)

]

Hence,
[

j(t)
k(t)

]
= eαt

[
(a cos(βt) + b sin(βt)
(b cos(βt) − a sin(βt)

]

Letting R = √
a2 + b2, we find

[
j(t)
k(t)

]
= Reαt

[
cos(βt − δ)

− sin(βt − δ)

]

where δ is defined as tan−1(b/a). The full solution is then
⎡
⎣

i(t)
j(t)
k(t)

⎤
⎦ =

⎡
⎣

Ae−Go
1it

Reαt cos(βt − δ)

−Re−αt sin(βt − δ)

⎤
⎦

where A, R, Go
1i, β and δ determine a given model.

Here, we have J0 = q1V0 and K0 = (1 − p0)V0. Hence,
we roughly know at the time of the initial disturbance
(infective agent or environmental toxin etc.)

q1V0 = (
Reαt cos(βt − δ)

∣∣
t=0 = R cos(δ)

(1 − p0)V0 = − (Re−αt sin(βt − δ)
)∣∣

t=0 = R sin(δ)

Taking a ratio, we find

tan(δ) = K0
J0

= (1 − p0)V0
q1V0

= (1 − p0)

q1
.

Hence, δ = tan−1
(

(1−p0)
q1

)
and

R = J0 sec(δ) =
√

K0
2 + J0

2 = V0

√
q2

1 + (1 − p0)2.



The Author(s) BMC Immunology 2017, 18(Suppl 1):24 Page 51 of 65

Finally, recall we have α = GV0
2j and β = GV0

3j ; thus, the
oscillatory solutions for j and k are

[
j(t)
k(t)

]
= V0

√
q2

1 + (1 − p0)2 eGV0
2j t

⎡
⎣ cos

(
GV0

3j t − tan−1
(

(1−p0)
q1

))

− sin
(

GV0
3j t − tan−1

(
(1−p0)

q1

))
⎤
⎦

We do not think the phase shift δ should be a constant;
i.e. independent of V0. and therefore, we assume that the
critical parameters here are proportional to V0. Our rough
calculation showed us R = V0

√
q2

1 + (1 − p0)2, and thus,
R should be proportional to V0 in general. Therefore, we
assume

RV0 ∝ V0 =⇒ RV0 = r1V0, GV0
2j ∝ V0 =⇒ GV0

2j = r2V0

GV0
3j ∝ V0 =⇒ GV0

3j = r3V0, δV0 ∝ V0 =⇒ δV0 = r4V0

for a new parameters r1, r2, r3 and r4. This leads to our
estimate of the dependencies

[
j(t)
k(t)

]
= r1V0 er2V0t

[
cos (r3V0t − r4V0)

− sin (r3V0t − r4V0)

]

A health model
Roughly speaking, if the total number of cells is T , the
number of healthy cells can be approximated by

H = T − (C0 + c(t)) − (M0 + m(t)) − (N0 + n(t))

We know

c′ = Ho
1i i + Ho

1j j + Ho
1k k

M′ = Ho
2j j + Ho

2k k
n′ = Ho

3j j + Ho
3k k

and so we are looking at deviations from the base values
I0 = 0, J0 = q1V0 and K0 = (1−p0)V0. It follows we have

C(t) = C0 + Ho
1i

(∫ t

0
i(s)ds

)
+ Ho

1j

(
q1V0 +

∫ t

0
j(s)ds

)

+Ho
1k

(
(1 − p0)V0 +

∫ t

0
k(s)ds

)

M(t) = M0 + Ho
2j

(
q1V0 +

∫ t

0
j(s)ds

)

+Ho
2k

(
(1 − p0)V0 +

∫ t

0
k(s)ds

)

N(t) = N0 + Ho
3j

(
q1V0 +

∫ t

0
j(s)ds

)

+Ho
3k

(
(1 − p0)V0 +

∫ t

0
k(s)ds

)

As discussed earlier, we have initially, C0 = 0, M0 =
p2 p0 V0 and N0 = p2 p0 V0. So we have

C(t) = Ho
1i

(∫ t

0
i(s)ds

)
+ Ho

1j

(
q1V0 +

∫ t

0
j(s)ds

)

+Ho
1k

(
(1 − p0)V0 +

∫ t

0
k(s)ds

)

M(t) = p2 p0 V0 + Ho
2j

(
q1V0 +

∫ t

0
j(s)ds

)

+Ho
2k

(
(1 − p0)V0 +

∫ t

0
k(s)ds

)

N(t) = p2 p0 V0 + Ho
3j

(
q1V0 +

∫ t

0
j(s)ds

)

+Ho
3k

(
(1 − p0)V0 +

∫ t

0
j(s)ds

)

Thus, we have

H(t) = T − (p1 p0 V0 + p2 p0 V0) −
(

Ho
1j + Ho

2j + Ho
3j

)
q1V0

− (Ho
1k + Ho

2k + Ho
3k
)

(1 − p0)V0 − Ho
1i

∫ t

0
i(s)ds

−
(

Ho
1j + Ho

2j + Ho
3j

) ∫ t

0
j(s)ds

− (Ho
1k + Ho

2k + Ho
3k
) (∫ t

0
k(s)ds

)

Now collect all the terms involving V0 and set that coef-
ficient to � for convenience. Making this replacement, we
have

� = (p1 + p2)p0 +
(

Ho
1j + Ho

2j + Ho
3j

)

q1 + (Ho
1k + Ho

2k + Ho
3k
)

(1 − p0)

This leads to the simplification

H(t) = T − � V0 − Ho
1i

∫ t

0
i(s)ds

−
(

Ho
1j + Ho

2j + Ho
3j

) ∫ t

0
j(s)ds

− (Ho
1k + Ho

2k + Ho
3k
) (∫ t

0
k(s)ds

)

Now we have to compute these integrated transient
values. We label them as IT for the transient i integration;
JT for the transient J integration; and KT for the transient
K integration. We then have

IT(t) =
∫ t

0
i(s)ds =

∫ t

0
Ae−Go

1is ds

JT(t) =
∫ t

0
j(s)ds =

∫ t

0
Reαt cos(βs − δ) ds

KT(t) =
∫ t

0
k(s)ds = −

∫ t

0
Re−αt sin(βs − δ)
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Integration details
The i integration is easy.

∫ t

0
i(s)ds =

∫ t

0
Ae−GV0

1i s ds = A
GV0

1i

(
1 − e−GV0

1i t
)

The JT is a standard integration by parts.
To evaluate this term, we use integration by parts. We

find

JT(t) =
∫ t

0
j(s)ds =

∫ t

0
Reαt cos(βs − δ) ds

= R
(α2 + β2)

eαt (β sin(βt − δ) + α cos(βt − δ))

+ R
α2 + β2 (β sin(δ) − α cos(δ))

We can rewrite this is a much better form using our
assumptions. First, rewrite as

JT(t) = R√
α2 + β2

eαt
(

β√
α2 + β2

sin(βt − δ)

+ α√
α2 + β2

cos(βt − δ)

)

+ R√
α2 + β2

(
β√

α2 + β2
sin(δ)

− α√
α2 + β2

cos(δ)
)

Now we know α, β , δ and R are really dependent of V0.
For convenience of exposition, let’s drop the superscript
V0 in our calculations below

R√
α2 + β2

= r1V0√
r2

2 + r2
3V0

= r1√
r2

2 + r2
3

,
α√

α2 + β2

= r2V0√
r2

2 + r2
3V0

= r2√
r2

2 + r2
3

β√
α2 + β2

= r3V0√
r2

2 + r2
3V0

= r3√
r2

2 + r2
3

, δ = r4V0.

Finally, let’s define two new parameters, θ1 and θ2 as
θ1 = r1√

r2
2+r2

3

and θ2 = tan−1
(

r3
r2

)
. Using the above, we

can rewrite JT(t) as

JT(t) = θ1 er2V0 t

⎛
⎜⎝ r3√

r2
2 + r2

3

sin(r3V0t − r4V0)

+ r2√
r2

2 + r2
3

cos(r3V0t − r4V0)

⎞
⎟⎠

+θ1

⎛
⎜⎝ r3√

r2
2 + r2

3

sin(r4V0) − r2√
r2

2 + r2
3

cos(r4V0)

⎞
⎟⎠

Using a standard reference triangle for the phase angle
θ2, we see cos(θ2) = r2√

r2
2+r2

3

and sin(θ2) = r3√
r2

2+r2
3

. We can

then rewrite JT(t) again as

JT(t) = θ1 er2V0 t (sin(θ2) sin(r3V0t − r4V0)

+ cos(θ2) cos (r3V0t − r4V0))

+θ1 (sin(θ2) sin(r4V0) − cos(θ2) cos(r4V0))

and using standard trigonometric identities, we then have

JT(t) = θ1 er2V0 t cos (r3V0t − r4V0 − θ2)

− θ1 cos (r4V0 + θ2)

Next, another standard integration by parts shows

KT(t) =
∫ t

0
k(s)ds = −

∫ t

0
Re−αt sin(βs − δ)

− R
(α2 + β2)

eαt (−β cos(βt − δ) + α sin(βt − δ))

− R
α2 + β2 (β cos(δ) + α sin(δ))

We note the same comment on the dependence of R,
α, β and δ on V0 holds still. Now using these values and
the terms Q1 and Q2, we we can rewrite KT(t) as follows:

KT(t) = − R
(α2 + β2)

eαt (−β cos(βt − δ)+ α sin(βt − δ))

− R
α2 + β2 (β cos(δ) + α sin(δ))

Now using the simplifications we obtained for α and
β in terms of r2 and r3, we can rewrite this complicated
expression as

KT(t) = − θ1er2V0t

⎛
⎜⎝− r3√

r2
2 + r2

3

cos(r3V0t − r4V0)

+ r2√
r2

2 + r2
3

sin(r3V0t − r4V0)

⎞
⎟⎠

− θ1

⎛
⎜⎝ r3√

r2
2 + r2

3

cos(r4V0) + r2√
r2

2 + r2
3

sin(r4V0)

⎞
⎟⎠
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Next, using the phase shift θ2, we have

KT(t) = − θ1 er2V0t (− sin(θ2) cos(r3V0t − r4V0)

+ cos(θ2) sin(r3V0t − r4V0))

− θ1 (sin(θ2) cos(r4V0) + cos(θ2) sin(r4V0))

This then leads to our final form

KT(t) = − θ1 er2V0t sin(r3V0t − r4V0 − θ2)

− θ1 sin(r4V0 + θ2)

Building the health model
Recall the health model is

H(t) = T − � V0 − Ho
1i

∫ t

0
i(s)ds

− (Ho
1J + Ho

2J + Ho
3J
)

JT(t)
− (Ho

1K + Ho
2K + Ho

3K
)

KT(t)

Let cj = Ho
1J + Ho

2J + Ho
3J and ck = Ho

1K + Ho
2K + Ho

3K .
Then we have

H(t) = T − � V0 − Ho
1i

∫ t

0
i(s)ds − cj JT(t) − ck KT(t)

Now plug what we have found for our integrations. We
have

H(t) = T − �V0 − Ho
1i

A
Go

1i

(
1 − e−Go

1it
)

− cj
{
θ1 er2V0 t cos(r3V0t − r4V0 − θ2)

− θ1 cos(θ2) cos (r4V0 + θ2)
}

− ck
{
−θ1 er2V0t sin(r3V0t − r4V0 − θ2)

− θ1 sin (r4V0 + θ2)
}

Then we can rewrite as

H(t) = T − �V0 − Ho
1i

A
Go

1i

(
1 − e−Go

1it
)

− θ1 cj
{

er2V0 t cos (r3V0t − r4V0 − θ2)

− cos(r4V0 + θ2)
}

+ θ1 ck
{

er2V0t sin (r3V0t − r4V0 − θ2)

+ sin(r4V0 + θ2)
}

Now put the er2V0t together. We find

H(t) = T − �V0 − Ho
1i

A
Go

1i

(
1 − e−Go

1it
)

+ θ1
(
cj cos (r4V0 + θ2) + ck sin (r4V0 − θ2)

)

− θ1 er2V0t (cj cos (r3V0t − r4V0 − θ2)

− ck sin (r3V0t − r4V0 − θ2))

Let’s simplify some more using another phase shift.
Define the phase angle θ3 = tan−1

(
cj
ck

)
; then, we can

rewrite the health like this.

H(t) = T − �V0 − Ho
1i

A
Go

1i

(
1 − e−Go

1it
)

− θ1 er2V0t
√

c2
j + c2

k

⎛
⎜⎝ cj√

c2
j + c2

k

cos (r3V0t − r4V0 − θ2)

− ck

√
c2

j + c2
k sin (r3V0t − r4V0 − θ2)

⎞
⎟⎠

+ θ1
√

c2
j + c2

k

⎛
⎜⎝ cj√

c2
j + c2

k

cos (r4V0 + θ2)

+ ck√
c2

j + c2
k

sin(r4V0 − θ2)

⎞
⎟⎠

This can be recast as

H(t) = T − �V0 − Ho
1i

A
Go

1i

(
1 − e−Go

1it
)

− θ1 er2V0t
√

c2
j + c2

k (cos(θ3) cos (r3V0t − r4V0 − θ2)

− sin(θ3) sin (r3V0t − r4V0 − θ2))

+ θ1
√

c2
j + c2

k (cos(θ3) cos (r4V0 + θ2)

+ sin(θ3) sin (r4V0 − θ2))

= T − �V0 − Ho
1i

A
Go

1i

(
1 − e−Go

1it
)

− θ1 er2V0t
√

c2
j + c2

k cos(r3V0t

− r4V0 − θ2 + θ3) + θ1
√

c2
j + c2

k cos (r4V0 − θ2 − θ3)

Next, we can combine the ratio Ho
1i

A
GV0

1i
into the new

parameter ζ
V0
1 and rewrite GV0

1i as ζ
V0
2 to give

H(t) = T − �V0 − ζ
V0
1

(
1 − e−ζ

V0
2 t
)

− θ1 er2V0t
√

c2
j + c2

k cos(r3V0t − r4V0 − θ2 + θ3)

+ θ1
√

c2
j + c2

k cos(r4V0 − θ2 − θ3)

Finally, let s1 = θ1
√

c2
j + c2

k . Then, we have the last form
of the health estimate:

H(t) = T − �V0 − ζ
V0
1

(
1 − e−ζ

V0
2 t
)

− s1er2V0t cos(r3V0t − r4V0 − θ2 + θ3)

+ s1 cos (r4V0 − θ2 − θ3) (1)
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We could also assume the terms ζ
V0
1 and ζ

V0
2 are propor-

tional to V0. We would model this by implying ζ
V0
1 = r5V0

and ζ
V0
2 = r6V0. We then find

H(t) = T − �V0 − r5 V0
(

1 − e−r6V0t
)

− s1er2V0t cos (r3V0t − r4V0 − θ2 + θ3)

+ s1 cos (r4V0 − θ2 − θ3) (2)

These parameters depend in complex ways on the ini-
tial trigger dose V0 and it is very difficult to tease out the
details.

Collateral damage
We can also work out the functional dependence on col-
lateral damage on initial trigger dose over time. Recall the
collateral damage population is given by

C(t) = C0 + Ho
1i

(∫ t

0
i(s)ds

)
+ Ho

1J

(
q1V0 +

∫ t

0
j(s)ds

)

+ Ho
1K

(
(1 − p0)V0 +

∫ t

0
k(s)ds

)

= C0 + Ho
1i IT(t) + Ho

1j (q1V0 + JT(t))
+ Ho

1k ((1 − p0)V0 + KT(t))

We can then substitute for IT(t), JT(t) and KT(t) and
obtain

C(t) = C0 + r5V0
(

1 − e−r6V0t
)

+Ho
1j

(
q1V0 + θ1 er2V0 t cos (r3V0t − r4V0 − θ2)

− θ1 cos(r4V0 + θ2)
)

+Ho
1k

(
(1 − p0)V0 − θ1 er2V0t sin (r3V0t − r4V0 − θ2)

− θ1 sin (r4V0 + θ2)
)

Now, collect terms as we did in our earlier simplifica-
tions. We rewrite as

C(t) = C0 + r5V0
(
1 − e−r6V0t

)
+
(

Ho
1k (1 − p0) + Ho

1j q1
)

V0

+ θ1 er2V0t
(

Ho
1j cos (r3V0t − r4V0 − θ2)

− Ho
1k sin (r3V0t − r4V0 − θ2)

)

− θ1
(

Ho
1j cos (r4V0 + θ2) + Ho

1k sin (r4V0 + θ2)
)

We can also introduce an additional phase shift, phi, as
follows. It will be different from the phase shift

θ3 = tan−1
( cj

ck

)
= tan−1

(
Ho

1j + Ho
2j + Ho

3j

Ho
1k + Ho

2k + Ho
3k

)

as here we only use the H1 partials: φ = tan−1
(

Ho
1k

Ho
1j

)
. We

rewrite as

C(t) = C0 + r5V0
(

1 − e−r6V0t
)

+
(

Ho
1k (1 − p0) + Ho

1j q1
)

V0

+ θ1

√(
Ho

1j

)2 + (Ho
1k
)2 er2V0t (cos(φ) cos (r3V0t − r4V0 − θ2)

− sin(φ) sin (r3V0t − r4V0 − θ2))

− θ1

√(
Ho

1j

)2 + (Ho
1k
)2

(cos(φ) cos (r4V0 + θ2)

+ sin(φ) sin (r4V0 + θ2))

We can then use the the usual cos laws of addition and
subtraction of angles to repackage this as

C(t) = C0 + r5V0
(

1 − e−r6V0t
)

+
(

Ho
1k (1 − p0) + Ho

1j q1
)

V0

+θ1

√(
Ho

1j

)2+(Ho
1k
)2 er2V0t cos (r3V0t − r4V0 − θ2 + φ)

−θ1

√(
Ho

1j

)2 + (Ho
1k
)2 cos (r4V0 + θ2 − φ)

Now define s2 = θ1
√

(Ho
1j)

2 + (Ho
1k)2 and rewrite as

C(t) = C0 + r5V0
(

1 − e−r6V0t
)

+
(

Ho
1k (1 − p0) + Ho

1j q1
)

V0

+ s2 er2V0t cos (r3V0t − r4V0 − θ2 + φ)

− s2 cos (r4V0 + θ2 − φ)

Since collateral damage is initially zero, we have as our
final form

C(t) = r5V0
(

1 − e−r6V0t
)

+
(

Ho
1k (1 − p0) + Ho

1j q1
)

V0

+ s2 er2V0t cos (r3V0t − r4V0 − θ2 + φ)

− s2 cos (r4V0 + θ2 − φ)

Previously, we used the simplification

� = (p1 + p2)p0z +
(

Ho
1j + Ho

2j + Ho
3j

)
q1

+ (Ho
1k + Ho

2k + Ho
3k
)

(1 − p0)

This needs to be modified to

�1 = Ho
1j q1 + Ho

1k (1 − p0).

Our final collateral damage function is then

C(t) = �1V0 + r5V0
(

1 − e−r6V0t
)

+ s2er2V0t cos (r3V0t − r4V0 − θ2 + φ)

− s2 cos (r4V0 + θ2 − φ)

Of course, since S2, �1 and φ are different from the
corresponding values in the health function, it is a bit dif-
ficult to compare simulation results, but it is easy to see
the qualitative ideas of oscillation in health and collat-
eral. We have done similar experiments in [3] and indeed
the graphs we now show were generated using the same
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MatLab code. The point is that the existence of the oscil-
lation in health, collateral damage and so forth is due to
the assumptions we made on the nonlinear interactions
between the two populations M and N mediated by the
signals J and K . As long as those sorts of interactions
are occurring, this kind of interaction behavior is assured;
and that is very interesting we feel. We can easily run a
quick simulation to see if our predictions of oscillations in
the health and collateral damage function are verified. We
use the same parameter settings and MatLab code as we
used in [3]. The interested reader can look those details
up as necessary. We ran the simulation with the chosen
parameter values from [3] and plotted both the maximum
and minimum collateral values versus the trigger dose
in Fig. 1.

Note that there is variation in the collateral damage due
to the nonlinear interactions between the J , and K . This
is due to the assumptions we have made on the kinds of
nonlinear interactions that occur. The remainder of this
paper will necessarily discuss why we think these kind of
nonlinearities are possible in a variety of auto immune
situations.

As noted in [3], it is clear what is happening. The model

H(t) = T − �V0 − r5 V0
(

1 − e−r6V0t
)

− s1er2V0t cos (r3V0t − r4V0 − θ2 + θ3)

+ s1 cos (r4V0 − θ2 − θ3)

can be written in terms of decay and push - pull terms as
follows:

−�V0 = decay

−r5 V0
(

1 − e−r6V0t
)

= decay

−s1er2V0t cos (r3V0t − r4V0 − θ2 + θ3)

+s1 cos (r4V0 − θ2 − θ3) = push - pull

Thus, we have H(t) always decreases unless the push -
pull terms counteract that decay. Hence, what is impor-
tant is the term

�(t) = − s1er2V0t cos (r3V0t − r4V0 − θ2 + θ3)

+ s1 cos (r4V0 − θ2 − θ3)

can oscillate as trigger load increases. To do this, it is
important for the two terms in �(t) to be out of phase.
Hence, roughly speaking cos (r3V0t − r4V0 − θ2 + θ3)
must be sometimes negative when cos (r4V0 − θ2 − θ3) is
positive. This allows for an increase in health of approx-
imately ξ s1 where ξ is the difference between the two
terms. This is possible when the two cos arguments are
out of phase by about π radians. Note it is also impor-
tant that the exponential term er2V0t allows growth. The
interaction dynamics are determined by

[
GV0

2j GV0
2k

GV0
3j GV0

3k

]
=
[

α −β

β α

]

and we have argued that the appropriate algebraic signs
for this coefficient matrix M are

M =
[+ −

+ +
]

Fig. 1 Collateral damage versus trigger dose
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We can have complex eigenvalues and hence oscillating
behavior if the signs were

M =
[− +

− −
]

but then the real part of the eigenvalues would be nega-
tive and we would have to model the exponential term as
e−r2V0t . The induced oscillations would then be damped
it would not be possible to see oscillatory grown in the
collateral damage function.

Note we can also plot the minimum health obtained
over the simulation time for each trigger dose as we did in
[3]. We find the percentage minimal values are shown in
Fig. 2.

Let’s take a moment to reflect on what we are seeing
here. If we assume a trigger has an effect on the host’s
cell population that leads to two distinct cell popula-
tions M and N that interact in nonlinear ways following
Assumption 1 - Assumption 7 due to the mediating influ-
ences of two signals J and K , we inevitably see the host
healthy cell population over time have up and down vari-
ations due to the size of initial trigger Vo. Consider the
health plots for four levels of Vo shown in Fig. 3.

Note that the minimal values of health do indeed
decline for increasing initial trigger dose (although we see
up and down variation if we look at all the minimal values
versus initial trigger dose as we show in Fig. 1. What we
want to focus on here is that the health at many initial

trigger doses oscillates over the time of the simulation.
For example, the health plot corresponding to Vo = 25
has a very low minimum value. These plots are generated
by abstractions of health and collateral damage and so it
is not clear at all how to relate them to the health of a real
host, but it does suggest that the host health can rebound
from a low value. Hence, collateral damage can diminish
for a given initial trigger which shows a kind of relapse
effect.

Also note, the theoretical model we have built so far
generates what we call collateral damage and relates it
to general health with no discussion of T Cell recogni-
tion of infected cells. For us collateral damage is related
to IFN-γ signalling which is generated by the lysis of
cells in the host. In the West Nile Virus infection stud-
ied in [1], the splitting into two separate cell populations
due to the WNV antigen causes explicitly changes in the
avidity computation of the T Cells that recognize MHC-
1 complexes on infected cells. These changes lead to an
enhanced probability that T Cells will target healthy cells
because self proteins become more visible to the adaptive
immune system. In [3], we derive the heath and collateral
damage model we also develop in this paper by focusing
very explicitly on the splitting phenomena. The possibility
of self damage is now redirected much more strongly to
the splitting into two cell populations which allows for a
much more general treatment of self damage. However, it
is now time to think more deeply about what the signals J
and K would be in specific cases of auto immune response
to a trigger.

Fig. 2 Minimal heath percentage versus trigger dose
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Fig. 3 Four health versus time plots for different initial trigger doses

General trigger models
We now want to think carefully about the signals J and K
and the trigger V . Hence, we consider the transcriptional
control of a regulatory molecule which can be co-opted
by an external trigger. A good example is the regulatory
molecule NFκB whose normal action is changed by the
WNV antigen. It always plays a role in immune system
response but the virus alters what it does in many ways.
We have discussed this sort of modeling in [4] for the pur-
pose of approximating computation in excitable neurons
and in that paper, we follow the spirit of the semi-abstract
approach in [5]. We are now going to re-task it for our pur-
poses of an auto immune discussion, however, this same
way of looking at signalling for the context of altering
computation in a cognitive model provides another way of
looking at the same idea and we think it is always useful to
examine a complicated mechanism from multiple points
of view.

Consider a trigger T0 which activates a cell surface
receptor. Inside the cell, there are always protein kinases
that can be activated in a variety of ways. Here we denote
a protein kinase by the symbol PK. A common mechanism
for such an activation is to add to PK another protein sub-
unit U to form the complex PK/U . This chain of events
looks like this: T0 → CSR → PK/U where CSR denotes
a cell surface receptor. PK/U then acts to phosphorylate
another protein. The cell is filled with large amounts of a
transcription factor we will denote by T1 and an inhibitory
protein for T1 we label as T∼

1 . This symbol, T∼
1 , denotes

the complement or anti version of T1. In the cell, T1 and

T∼
1 are generally joined together in a complex denoted by

T1/T∼
1 . The addition of T∼

1 to T1 prevents T1 from being
able to access the genome in the nucleus to transcribe its
target protein. Using methods similar to those discussed
in [4], we find the effects of the trigger T0 on the change
in protein production T1, δT1 , can be modeled by

δT1 = (
2β + β2) K [PK/U ]2

e >> [PK/U ]e

for β >> 1. From this quick analysis, we can clearly see
the potentially explosive effect changes in T0 can have on
PK/U .

We can use these results for our general immune
interaction discussion. We have assumed there are two
different cell populations M and N which are effected
differently by the trigger. Hence, let’s assume there is a
pathway involving potentially many steps that leads to an
alteration of the fragility of these two cell populations. In
a West Nile Virus infection, this fragility is related to the
upregulation of MHC-1 complexes but it could be another
type of alteration of the overall health of the cell. Let the
pathway leading to a change in fragility for M be PM
and the one leading to the fragility alteration in N be PN .
Then associated such a change in fragility with the alter-
ation of a protein or protein complex we call TM or TN
depending on the cell population type. Then we have

δTM = μM
(
2εM + ε2

M
)

and δTN = μN
(
2εN + ε2

N
)

for parameters μM, μN , εM and εN . Hence, we can esti-
mate a strength level for the trigger effect on each popula-
tion that leads to increases in fragility.
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Computational abstractions
A close look extracellular triggers abstractly helps us
understand how to approximate their effects. Let T0
denote a second messenger trigger which moves though a
port P to create a new trigger T1 some of which binds to
B1. A schematic of this is shown in Fig. 4. In the figure, r is
a number between 0 and 1 which represents the fraction
of the trigger T1 which is free in the cytosol. Hence, 100r%
of T1 is free and 100(1 − r) is bound to B1 creating a stor-
age complex B1/T1. For our simple model, we assume rT1
is transported to the nuclear membrane where some of it
binds to the enzyme E1. Let s in (0, 1) denote the fraction
of rT1 that binds to E1. We illustrate this in Fig. 5.

We denote the complex formed by the binding of E1 and
T1 by E1/T1. From Fig. 5, we see that the proportion of
T1 that binds to the genome (DNA) and initiates protein
creation P(T1) is thus srT1.

The protein created, P(T1), could be many things. Here,
let us assume that P(T1) is a protein that binds to the pro-
moter for one of the many proteins that effect MHC-1
creation, peptide binding etc. For our purposes, we will
call it Q. Thus, our high level model is sE1/rT1 + DNA →
Q. We therefore increase the concentration of MHC-I
complexes on the surface of the call, thereby making the
cell more visible to the adaptive immune system.

We can model increases in Q as increases in T Cell
binding efficiency, where e is a number between 0 and 1.
We will not assume all of the sE1/rT1+DNA to M reaction
is completed. It follows that e is similar to a Michaelson -
Mentin kinetics constant. Our full schematic is then given
in Fig. 6.

We can model the choice process, rT1 or (1 − r)B1/T1
via a simple sigmoid, f (x) = 0.5(1 + tanh( x−x0

g )) where
the transition rate at x0 is f ′(x0) = 1

2g . Hence, the “gain” of
the transition can be adjusted by changing the value of g.
We assume g is positive. This function can be interpreted
as switching from of “low” state 0 to a high state 1 at speed
1

2g . Now the function h = rf provides an output in (r, ∞).
If x is larger than the threshold x0, h rapidly transitions to
a high state r. On the other hand, if x is below threshold,
the output remains near the low state 0.

We assume the trigger T0 does not activate the port
P unless its concentrations is past some threshold [ T0]b
where [ T0]b denotes the base concentration. Hence, we

Fig. 4 A second messenger trigger

Fig. 5 Some T1 binds to the genome

can model the port activity by hp([ T0] ) = r
2

(
1 + tanh(

[T0]−[T0]b
gp

))
where the two shaping parameters gp (tran-

sition rate) and [T0]b (threshold) must be chosen. We can
thus model the schematic of Fig. 4 as hp([T0]) [T1]n where
[T1]n is the nominal concentration of the induced trigger
T1. In a similar way, we let he(x) = s

2 (1 + tanh( x−x0
ge

))

Thus, for x = hp([T0]) [T1]n, we have he is a switch
from 0 to s. Note that 0 ≤ x ≤ r [T1]n and so if
hp([T0]) [T1]n is close to r [T1]n , he is approximately s.
Further, if hp([T0]) [T1]n is small, we will have he is close
to 0. This suggests a threshold value for he of r[T1]n

2 . We
conclude

he
(
hp([ T0] ) [ T1]n

) = s
2

(
1 + tanh

(
hp([ T0] )[ T1]n − r[T1]n

2
ge

))

which lies in [ 0, s). This is the amount of activated
T1 which reaches the genome to create the target pro-
tein P(T1). It follows then that [P(T1)] = he

(
hp([T0])

[T1]n) [T1]n. The protein is created with efficiency e and
so we model the conversion of [P(T1)] into a change in Q
as follows. Let

hQ(x) = e
2

(
1 + tanh

(
x − x0

gQ

) )

which has output in [ 0, e). Here, we want to limit how
large a change we can achieve in Q. Hence, we assume
there is an upper limit which is given by �Q = δQQmax.
Thus, we limit the change in the the expression of Q to
some percentage of a baseline value. It follows that hQ(x)

is about δQ if x is sufficiently large and small otherwise.
This suggests that x should be [P(T1)] and since transla-
tion to P(T1) occurs no matter how low [T1] is, we can use
a switch point value of x0 = 0. We conclude

hQ([P(T1)]) = e
2

δQ Qmax
(

1 + tanh
(

[P(T1)]
gQ

))
(3)

Our model of the change in Q expression is therefore
� Qmax = hQ([P(T1)]).

We can use these results for our general immune inter-
action discussion as well. From earlier comments, we



The Author(s) BMC Immunology 2017, 18(Suppl 1):24 Page 59 of 65

Fig. 6 MHC-1 complex pathway

know that associated with a change in fragility in the two
cell populations M and N is the alteration of a protein or
protein complex called P(TM) or P(TN ) depending on the
cell population type. Then we have

hM([P(TM)]) = eP(TM)

2
δP(TM) P(TM)max

(
1 + tanh

(
[P(TM)]
gP(TM)

))

Our model of the change in maximum P(TM) expres-
sion is therefore �P(TM)max = hP(TM)([P(TM)]). We can
do this for the N cells as well and obtain

hN ([P(TN )]) = eP(TN )

2
δP(TN ) P(TN )max

(
1 + tanh

(
[P(TN )]
gP(TN )

))

Our model of the change in maximum P(TN ) expression
is therefore � P(TN )max = hP(TN )([ P(TN )] ).

Diffusion trigger models
We will now look at the trigger from a diffusion perspec-
tive. This is different as in the earlier models, we focus
on how cell populations change in time and derive health
and collateral functions that show their dependence on
the initial viral dose. We did not consider any spatial
relationships between the cellular populations. Now we
will do so and the discussion will give us another way to
look at the nonlinear interactions between M and N . It is
well known that second messenger systems often involve

Ca++ ion movement in and out of the cell. The amount
of free Ca++ ion in the cell is controlled by complicated
mechanisms, but some is stored in buffer complexes. The
release of calcium ion from these buffers plays a big
role in cellular regulatory processes and which protein
P(T1) is actually created from a trigger T0. The diffusion
model is very powerful. Consider some substance u which
satisfies

∂u
∂t

= D
∂2u
∂x2

−D
∂u
∂x

|0,L = J0,L

where D is called the diffusion constant for this substance.
For simplicity this is a one dimensional model where the
spatial variable x comes from the line segment [ 0, L]. For
example, instead of a three dimensional cell modeled as
a sphere, the cell is modeled as a string of finite length.
Hence, stuff can only enter the cell from either the right
or the left. The condition −D ∂u

∂x |0,L= J0,L states that there
are conditions on the flux of u through the boundary at
x = −0 or x = L that must be satisfied. The term J0,L can
be thought of as an injection of current into the cell. In this
model, we think of the substance u as being in equilibrium
in the cell and the current injection J0,L alters that equilib-
rium and the diffusion model, when solved, tells us what
happens to u due to the sudden current injection at the
boundary. The critical review on the control of free cal-
cium in cellular processing in [6] notes the concentration
of Ca++ in the cell is controlled by the reversible binding
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of calcium ion to the buffer complexes, B1, B2 and so forth.
There in general are quite a few different buffer complexes
which all behave differently. These buffer molecules act as
calcium ion sensors that, in a sense, decode the informa-
tion contained in the calcium ion current injection and
then pass on a decision to a target. Many of these targets
can be proteins transcribed by accessing the genome.
Hence, the P(T1) could be a buffer molecule Bj and so
the trigger that causes the calcium current injection into
the cell could influence the concentration of a buffer Bj
and therefore influence how it itself is decoded. In this
situation, the boundary condition J0,L plays the role of
the entry calcium current. Such a calcium ion input cur-
rent through the membrane could be due to membrane
depolarization causing an influx of calcium ions through
the port or via ligand binding to a receptor which in
turn indirectly increases free calcium ion in the cytosol.
Such mechanisms involve the interplay between the way
the endoplasmic reticulum handles release and uptake
and also the storage buffers. This boundary current in
general therefore determines the u(t, x) solution through
the diffusion equation. The exact nature of this solution
is determined by the receptor types, buffers and storage
sites in the ER. Differences in the period and magnitude
of the calcium current u(t, x) resulting from the input
J0,L trigger different second messenger pathways. Hence,
there are many possible outcomes due to a given input
current J0,L.

We will now modify discussions in [7, 8] and [9] that
show us how to model calcium ion movement in the cell
to develop a model of trigger movement in and out of the
cell populations M and N .

We assume the trigger enters the host and can be
sequestered in some form in both M and N cell popu-
lations. We also assume the trigger has associated with
some sort of diffusion process; letting u(t, x) be the con-
centration of the trigger in the host at time t and spatial
position x, we posit ut = D0 uxx. Also, note we present our
arguments as if the host was one dimensional; i.e., the two
cell populations lies along a one dimensional axis mea-
sured by the location variable x. This is, of course, very
simplistic, but we only want to suggest some functional
dependencies here, so it will suffice for our purposes. Let’s
assume these two populations use or bind the trigger with
binding rate constants k+

M and k+
N and disassociation rate

constants k−
M and k−

N . Let the total number of cells in the
host be P. Then the fraction of cells in the M popula-
tion is M

P which we call CM and the fraction in the N
population is M

P which is denoted by CN . Hence, the num-
ber of cells that have not been exposed to the trigger is
P − M(t, x) − N(t, x) = F(t, x).

Now, let u(t, x) be the concentration of free trigger in
the host at (t, x). Some of the trigger has been used to
create cells in the populations M and N , but the rest is

unused. Hence, if C is a cell which has not been altered by
the trigger, we have the reactions

T + C →k+
M

M, M →k−
M

T + C
T + C →k+

N
N , N →k−

N
T + C

where T is the trigger. Of course, the equations above
depend on time and space, but we have not written in that
dependence to avoid clutter. Note also, in this context,
the backward reaction in which trigger is freed from the
cellular populations M(t, x) and N(t, x) is typically that of
lysis and so the backward rates are part of our nonlinear
interaction model. We are just adding low level detail.
The corresponding dynamics are

d [T]
dt

= − k+
M [T] [C] + k−

M [M] ,

d [M]
dt

= k+
M [T] [C] − k−

M [M]

d [T]
dt

= − k+
N [T] [C] + k−

N [N ] ,

d [N ]
dt

= k+
N [T] [N ] − k−

N [N ]

and we also know [C] = P−M−N
P . The amount of trigger

being freed from the M population is k−
M

M
P = k−

MCM
and the amount being added to the M population is the
amount of trigger not in the M state minus the amount of
trigger already in the M state. This can be calculated at

k+
M u(t, x)

P − N
P

− k+
M

M
P

u(t, x) = k+
M

(
P − N

P
− M

P

)
u(t, x)

To make the manipulations easier, let BM = 1 − N
P and

BN = 1 − M
P . We can rewrite the equation above as

k+
M

(
P − N

P
− M

P

)
u(t, x) = k+

M (BM − CM) u(t, x)

A similar analysis gives the amount of trigger being
added to the N population as

k+
N

(
P − M

P
− N

P

)
u(t, x) = k+

N (BN − CN ) u(t, x)

Thus, the diffusion dynamics are

∂u
∂t

= k−
MCM − k+

M (BM − CM) u(t, x)

+ k−
N CN − k+

N (BN − CN ) u(t, x) + D0
∂2u
∂x2

where D0 is diffusion coefficient for free trigger. We now
assume the spread of cells we collect into the populations
M and N satisfy some sort of diffusion law. Certainly,
cells are added to these populations as the trigger diffuses
throughout the host’s body. Hence, this assumption is a
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good start. We therefore assume the diffusion dynamics
for CM and CN are given by

∂CM
∂t

= −k−
MCM + k+

M (BM − CM) u(t, x) + DM
∂2CM
∂x2

∂CN
∂t

= −k−
N CN + k+

N (BN − CN ) u(t, x) + DN
∂2CN
∂x2

Now consider the free trigger plus a correction due to
the population fractions CM and CN . We denote this by
w(t, x) and note that w = u + CM + CN and

wxx = uxx + (CM)xx + (CN )xx =⇒ uxx

= wxx − (CM)xx − (CN )xx.
Thus,

∂w
∂t

= ut + (CM)t + (CN )t = k−
MCM

−k+
M(BM − CM)(w − CM − CN )

+k−
N CN − k+

N (BN − CN )(w − CM − CN ) + D0 uxx

−k−
MCM + k+

M(BM − CM)(w − CM − CN ) + DM(CM)xx

−k−
N CN + k+

N (BN − CN )(w − CM − CN ) + DN (CM)xx

This simplifies to
∂w
∂t

= D0 uxx + DM(CM)xx + DN (CN )xx

= D0 (wxx − (CM)xx − (CN )xx) + DM(CM)xx

+ DN (CN )xx

= D0 wxx + (D0 − DM)(CM)xx + (D0 − DN )(CN )xx

Thus, w satisfies

wt = D0wxx + (DM − D0)(CM)xx

+ (DN − D0)(CN )xx, −D0wx
∣∣0,L = J0,L (4)

where we have not shown the derivation of the bound-
ary terms here as they are less germane to our interests. It
seems reasonable to assume that the interaction with the
cell populations, determined by k−

M and k+
Mu is fast and

reaches equilibrium quickly. Hence, we will assume that
(CM)t = (CM)xx = 0 and (CN )t = (CN )xx = 0 giving
−k−

MCM = k+
M (BM − CM) u, −k−

N CN = k+
N (BN − CN ) u

Solving, we find

CM = k+
MBMu

k−
M + k+

Mu

CN = k+
N BN u

k−
N + k+

N u
Now define KM = and KN = . We can then rewrite our
equations as

CM = BMu
KM + u

=⇒ CM(KM + u) = BMu (5)

CN = BN u
KN + u

=⇒ CN (KN + u) = BN u (6)

Plugging in for u, we have

CMKM + (CM − BM)(w − CM − CN ),
CN KN + (CN − BN )(w − CM − CN )

Then, another rewrite gives

BMw = CM(KM + BM + w) − C2
M + BMCN

BN w = CN (KN + BN + w) − C2
N + BN CM

Note this tells us that CM and CN are functions of the w
Let CM(w) and CN (w)denote this functional dependence.
From the chain rule, we have ∂CM

∂x = ∂CM
∂w

∂w
∂x and ∂CN

∂x =
∂CN
∂w

∂w
∂x . Then, the dynamics become

wt = ∂2w
∂x2 + ∂

∂x

(
(DM − D0)

∂CM
∂w

∂w
∂x

+ (DN − D0)
∂CN
∂w

∂w
∂x

)

= ∂

∂x

((
D0 + (DM − D0)

∂CM
∂w

+ (DN − D0)
∂CN
∂w

)
∂w
∂x

)

Notice that if we define a new diffusion coefficient, D
for the diffusion process that governs w by

D = D0 + (DM − D0)
∂CM
∂w

+ +(DN − D0)
∂CN
∂w

(7)

we obtain

∂w
∂t

= ∂

∂x

(
D

∂w
∂x

)
, −D

∣∣∣∣0,L
∂w
∂x

∣∣∣∣
0,L

= J0,L (8)

Further approximations
What would it mean if u � KM and u � KN ? Let’s
take the first case: u � KM implies k+

Mu � k−
M. Now k−

M
represents the rate that the M cells lose the trigger. This
occurs only when the cells are destroyed. These cells are
destroyed either because they have exceeded their nor-
mal lifespans or because the trigger has made them more
fragile. This fragility could mean the cells have caught the
attention of the immune system and are being destroyed
or the fragility of the cells is such that standard apoptosis
strategies are employed to remove the damaged cell. Note
losing trigger from the M cells therefore corresponds to
increasing trigger concentration. Since k+

M is the rate at
which M cells are formed, k+

Mu giving the amount of trig-
ger lost from the formation of the M cells per M cell. We
generally assume that in a trigger situation, the trigger is
growing inside the M and N cell populations. If the trig-
ger is a virus, replication only occurs after infection and
once inside these cells, the virus grows. This additional
trigger is then released into the host upon lysis of a M or N
cell. It seems reasonable to assume the amount of released
trigger is usually quite a bit bigger than the amount of
trigger that initiates the formation of these cells. Thus,
the inequality k+

Mu � k−
M seems reasonable. A similar

argument shows that k+
N u � k−

N . Thus, it is reasonable
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to assume u � Km and u � KN which leads to the
approximations

CM = BM
KM

u, CN = BN
KN

u (9)

Thus, w has become

w =
(

1 + BM
KM

+ BN
KN

)
u =⇒ u = w

1 + BM
KM

+ BN
KN

We can then rewrite CM and CN as

CM = BM
KM

w
1 + BM

KM
+ BN

KN

, CN = BN
KN

w
1 + BM

KM
+ BN

KN

or

CM =
BM
KM

1 + BM
KM

+ BN
KN

w, CN =
BN
KN

1 + BM
KM

+ BN
KN

w

We can find the partials with respect to w:

(CM)w =
BM
KM

1 + BM
KM

+ BN
KN

, (CN )w =
BN
KN

1 + BM
KM

+ BN
KN

Then, letting γM = BM
KM

and γN = BN
KN

, we have

(CM)w = γM
1 + γM + γN

, (CN )w = γN
1 + γM + γN

We can then redo our calculations for wt .

wt = ∂

∂x

{(
D0 + (DM − D0)

(
γM

1 + γM + γN

)

+ (DN − D0)

(
γN

1 + γM + γN

))
∂w
∂x

}

Letting � denote the term 1 + γM + γN , then w = �u
and so we have

wt = �ut , wx = �ux, wxx = �uxx.

We also have

wt = D0 + DMγM + DNγN
�

wxx

= (D0 + DMγM + DNγN )uxx

Thus,

�ut = (D0 + DMγM + DNγN ) uxx =⇒ ut

= � D0 + DMγM + DNγN
�

uxx

Define the new diffusion constant D̂ by D̂ =
D0+DMγM+DN γN

�
. The free trigger dynamics are thus

∂u
∂t = D̂uxx.

Approximations to trigger modification
Let’s examine what might happen if a trigger event T0
initiated an increase in M. This trigger event initiates a
complex pathway culminating in a protein transcription
(see Section “General trigger models” for the general trig-
ger discussion). Recall, we let the pathway leading to a

change in fragility for M be PM. We associate such a
change in fragility with the alteration of a subsidiary signal
TM and we derived

δTM = μM
(
2εM + ε2

M
)

for parameters μM and εM. In Section “Computational
abstractions”, a computational approach using sigmoid
activation function hM further found if the change in
fragility in M due to the signal TM is the alteration of a
protein or protein complex called P(TM), then

hM([P(TM)]) = eP(TM)

2
δP(TM) P(TM)max

(
1 + tanh

(
[P(TM)]
gP(TM)

))

where eP(TM) is a scaling factor and δP(TM) is the change
in P(TM) expression. Our model of the change in max-
imum P(TM) expression is therefore � P(TM)max =
hP(TM)([ P(TM)] ).

Let’s assume CM is increased to CM + ε. It is reasonable
to assume that both k+

M and k−
M are independent of the

amount of CM that is present. The same comment holds
for k+

N and k−
N . We have BM = 1 − N

P stays the same, but
BN = 1 − M

P = 1 − CM → 1 − CM − ε = BN − ε. Thus,

� = 1 + BM
KM

+ BN
KM

→ 1 + BM
KM

+ BN
KN

− ε

KN
.

Thus, the new value is �̂ = � − ε
KN

. This implies

D̂ = D0 + DM
BM
KM

+ DN
BN
KN

�
→ D0 + DM

BM
KM

+ DN
BN
KN

− DN
ε

KN

� − ε
KN

D̃ = � D̂−ε
DN
KN

�−ε 1
KN

. Now let ξM denote 1
KN

and use that in the

equation above. We find D̃ = � D̂−εξMDN
�−εξM

. The change in
the diffusion constant is then

�D̂ = D̂ − � D̂ − εξMDN
� − εξM

= εDN
� − εξM

(
1 − D̂

DN

)

To first order, we know ε
�−εξM

≈ ε
�

and so �D̂ ≈ εDN
�(

1 − D̂
DN

)
. We conclude the new diffusion dynamics are

on the order of

ut =
(
D̂ + �D̂

)
uxx ≈

(
D̂ + ε

DN
�

(
1 − D̂

DN

)
uxx

This change in the solution u(t, x) then can then initiate
further changes in the distribution of the M and N cells. A
similar argument can be used for a change in the N popu-
lation and it is clear if the signal generates changes in both
M and N , to first order we generate an altered diffusion
model whose solution gives us clues as to new behavior.



The Author(s) BMC Immunology 2017, 18(Suppl 1):24 Page 63 of 65

Without boundary conditions, the general solution to a
diffusion model with diffusion constant D is given by

φ(t, x) = 1√
4πD t

e− x2
4Dt

Hence, our usual trigger solution is u(t, x) =
1√

4πD̂ t
e− x2

4D̂t which is altered to û(t, x) = 1√
4πD̃ t

e− x2
4D̃t .

Results and discussion
We have been studying auto immune reactions from a the-
oretical point of view in this work. We begin by building a
model of an auto immune response which is due to non-
linear interactions in two populations of cells M and N
which are mediated by the two signals J and K . We do not
specify at this time what these two signals are and instead
we argue from first principles. There is a third signal also,
the IFN-γ level, which is denoted by I. We let the devia-
tions of these signals from base levels be given by i, j and k.
Then the presence of a form of self damage in this model
appears to be a consequence of the nonlinear interactions
in the i, j and k model:

⎡
⎣

i′
j′
k′

⎤
⎦ ≈

⎡
⎢⎢⎣

GV0
1i GV0

1j GV0
1k

GV0
2i GV0

2j GV0
2k

GV0
3i GV0

3j GV0
3k

⎤
⎥⎥⎦

⎡
⎣

i
j
k

⎤
⎦

where Note, if the two populations M and N coincide, this
model reduces to a two dimensional model, we drop one
signal, say k, and we have

[
i′
k′
]

≈
[

GV0
1i GV0

1k

GV0
3i GV0

3k

][
i
k

]

and the chance of oscillation between the cellular pop-
ulation groups is lost. Hence, we can note some conse-
quences and predictions due to our model.

• The crucial assumption here is that the triggering
event has an effect on the host that divides into two
parts. For a WNV infection, these two cell
populations are the dividing and nondividing infected
cells, D and N , respectively. But here, we have posited
that these two cell populations are given by M and N
instead. Hence, any infectious agents or trigger that
gives rise to such a split response engenders a similar
collateral damage response which we interpret as an
autoimmune reaction. We note this give us a
significant insight into general autoimmune
responses. Note that Fig. 1 shows there is collateral
damage that oscillates due to the trigger and we could
interpret a downswing in collateral damage as a
relapse event.

• We have assumed GV0
2j = +, GV0

3j = +, GV0
2k = −,

GV0
3k = +, which then says the coefficient matrix of

the linearized upregulation and free antigen model
has the form

[
GV0

2j −GV0
2k

GV0
3j GV0

3k

]
=
[+ −

+ +
]

This algebraic sign pattern itself can give rise to
complex eigenvalues for the linearized nonlinear
interaction model and we have not explored this
more general problem. Here, we have posited
specific relations that give rise to clearcut
oscillations. We have assumed GV0

2j = GV0
3k = αV0

and GV0
3j = −GV0

2k = βV0 which gives rise to the
characteristic coefficient matrix

[
GV0

2j −GV0
3j

GV0
3j GV0

2J

]
=
[

αV0 −βV0

βV0 αV0

]

The remaining questions are then to try to understand
the algebraic sign patterns from a low level analysis of
the trigger signal that initiates the potential auto immune
reaction. We have provided in this paper, three different
ways to look at the trigger response.

• We analyze a general trigger in Section “General
trigger models” and show that we can understand
how the signal generates protein transcription
changes via equations such as

δTM = μM
(
2εM + ε2

M
)

which shows how changes in the trigger generate
changes in another signal via a cascade of protein
transcriptions culminating in a change in fragility
for M.

• Then, in Section “Computational abstractions”, a
computational approach using sigmoid activation
function hM further found that if we associate the
change in fragility in M due to TM to be the
alteration of a protein complex P(TM), then the
maximum P(TM) expression is on the order of
� P(TM)max = hP(TM)([ P(TM)] ) where h is a
traditional sigmoid response function which switches
the protein from a low to a high level.

• We can also model the trigger signal in terms of a
diffusion process as we did in
Section “Approximations to trigger modification”.
The trigger effects M and N is complicated ways and
in this section, we study what happens if the
pathways the trigger operates on generate a change in
M itself. We show this in turn alters the diffusion
coefficient that controls the trigger dynamics thereby
potentially altering all of the trigger pathways.
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Let’s use these ideas to develop an understanding of what
the oscillation conditions means at the micro level. To
make the analysis accessible, let’s assume the proteins TM
and the protein P(TM) are the same and the same is true
for TN and P(TN ). Then, we can write at equilibrium

δTM = μM (2εM + ε2
M)

� TM
max = 1

2
μ̂M δTM Tmax

M

(
1 + tanh(

[TM]
gM

)

≤ μ̂M δTM Tmax
M = μ̂M μM

(
2εM + ε2

M
)

Tmax
M

Let θM = μ̂M μM Tmax
M . Note θM can be positive or

negative. A similar argument can be made for TN . We
conclude

� TM
max ≈ θM

(
2εM + ε2

M
)

,
� TN

max ≈ θN
(
2εN + ε2

N
)

Now J ′ = G2(i, j, k) which we approximate by δj
δt ≈

GV0
2j j + GV0

2k k. Hence over one time unit, we have δj ≈
GV0

2j j+GV0
2k k. A similar argument shows δk ≈ GV0

3j j+GV0
3k k.

If the protein TM and P(TM) are actually j and the proteins
TN and P(TN ) are k, we have

GV0
2j ≈ δj

j
for fixed k, GV0

2k ≈ δj
k

for fixed j

GV0
3j ≈ δk

j
for fixed k, GV0

3k ≈ δk
k

for fixed j

We assume

GV0
2j ≈ δj

j
= θ2j

(
2ε2j + ε2

2j

)
, GV0

2k ≈ δj
k

= θ2k
(
2ε2k + ε2

2k
)

GV0
3j ≈ δk

j
= θ3j

(
2ε3j + ε2

3j

)
, GV0

3k ≈ δk
k

= θ3k
(
2ε3k + ε2

3k
)

The oscillation conditions then imply

θ2j
(

2ε2j + ε2
2j

)
= θ3k

(
2ε3k + ε2

3k
)

, and

θ3j
(

2ε3j + ε2
3j

)
= −θ2k

(
2ε2k + ε2

2k
)

from which can conclude we probably have oscillations if
the algebraic sign of θ3j is opposite to θ2k and if the alge-
braic signs of θ2j and θ3k match. We also want θ2j positive
so we get undamped oscillations. The more exact equality
conditions are probably not actually needed although the
analysis was easier when we made them.

How do we use this information? Once we identify sig-
nals j and k useful for the dynamical model of interest, we
need to experimentally estimate δj

j , δj
k , δk

j and δk
k . This will

give us estimates for the algebraic signs. We believe there
will be an autoimmune interaction is the sign patterns we
have discussed hold.

Conclusion
In conclusion, we have shown that we can build a reason-
able model of how a trigger agent such as a virus, a bacteria
or an environmental toxin can infect a host’s cell and cause
an autoimmune reaction. Part of our model is a macro one
and we believe it provides clues as to how general auto
immune reactions behave. We have posited that for an
infectious agent or trigger to cause oscillations in health it
is required that the trigger causes alterations in two dis-
tinct cell populations. Then, if the nonlinear interactions
between these two populations satisfies the conditions for
damped oscillatory response we have mentioned here, we
should see oscillations in the host health and collateral
damage. Another part of our model is a detailed micro
level one which looks at the triggering pathway and exam-
ines how the events in that pathway can contribute to
the nonlinear interaction assumptions we make. We also
discuss in detail how a sudden trigger increase can be
modeled in terms of a diffusion based response and how
that also can influence the nonlinear interactions we need
for an auto immune response.

We will finish with a few speculations about how to
decide if there is an auto immune response. If one is
suspected, we could run the following experiment. Let’s
assume there are N possible signals ω1, . . . , ωN that we
think could be important in the analysis of the chosen
potential auto immune response. There are many possible
cytokines, chemokines and other molecular agents that
could be of interest. We then setup a standard M ×M well
type genomic assay experiment. Each well is designed by
growing a three dimensional organoid which will play the
role of a host. This is quite possible and the paper [10]
provides clear guidelines as to how to do this for mini
human brains grown from stem cells. We would first mea-
sure cytokine and chemokine etc. levels in all of the wells
as well as other expressed proteins for a given trigger level.
At this stage, we are trying to find to the populations M
and N which handle the trigger level differently as this is
part of our assumptions that are needed to cause an auto
immune response. If two such populations are discovered,
then we need to identify the agents J and K to use in the
model. Assume N = 5 for convenience. Then, for each

Fig. 7 Identifying agents for the auto immune model
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pair p �= q, we must measure the equivalents of δj
j , δj

k , δk
j

and δk
k . For a given p and q pair, let these measured values

be A1
pq, A2

pq, A3
pq and A4

pq. We then have the possibilities
shown in Fig. 7.

We sift through Fig. 7 looking for the following: we
want A1

pq > 0 for undamped oscillations and we want
the oscillation conditions: the sign of A3

pq is the oppo-
site of A2

pq and the signs of A1
pq and A4

pq match. If we can
find such a pair (p, q) then we have identified two signals
for the two populations of M and N type cells that could
imply an auto immune response is possible for this trig-
ger. We think this is quite interesting and could help us
decide if a medical event should be classified as an auto
immune event.

Methods
We consider this work essentially a theoretical model and
we hope that we can generate some insights into the many
troubling auto immune problems we face.
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