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Abstract 

The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to under-
stand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed 
throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use 
of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the gen-
eration of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging 
and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain 
(HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropri-
ate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruc-
tion without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically 
evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures 
such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were 
compared to each other and to a method that groups sequences based on identical junction sequences and another 
method that only determines subclones. We found that after accounting for data set variability, in particular sequenc-
ing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, includ-
ing the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes 
for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different 
approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. 
The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance 
of choosing an appropriate method.
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Introduction
B cells are a type of lymphocytes that play an important 
role in the adaptive immune system. These cells express 
B-cell receptors (BCR) comprising two identical heavy 
chains (HC) and two identical light chains (LC) that 
allow the B cell to bind to an antigen. An individual’s 
repertoire of B cells is formed throughout life partly as 
a result of immune responses to pathogenic antigens. 
A huge diversity of BCRs can theoretically be achieved, 
and is estimated to be  1018 receptors based on theoretical 
combinatorial calculations and several factors limit the 
actual size to about  1015 for the naive repertoire [1]. Ini-
tial BCR variability occurs due to somatic recombination 
during which the HC is formed by a random combina-
tion of V, D and J genes, while the LC is formed by V and 
J genes [2]. Further variability is imposed by the recom-
bination process due to additional nucleotide insertions 
and deletions at the junctions of genes (junctional diver-
sity). A second level of diversity is the result of the ran-
dom pairing of HCs and LCs resulting in a naive, antigen 
inexperienced, B cell. During an affinity maturation addi-
tional variability is introduced by somatic hypermutation 
(SHM) in the germinal center (GC) [3]. The GC reaction 
facilitates affinity maturation of the BCR through itera-
tive cycles of proliferation and somatic mutation. This 
leads to expanded clones with high affinity BCRs. Using 
Adaptive Immune Receptor Repertoire sequencing 
(AIRR-seq), it has become possible to determine the BCR 
repertoire of a sample. This high-throughput sequenc-
ing approach leads to one or more sequences for each 
unique BCR in the sample. One critical step is to deter-
mine which (somatically mutated) sequences belong to 
the same clonal family (CF), which represent all B cells 
(and thus BCRs) originating from the same unmutated 
common ancestor (germline sequence) [4]. Each CF 
comprises identical or similar V(D)J sequences that dif-
fer only as the result of SHM or, in rare cases, by V gene 
replacement [5]. The size of each CF is determined by its 
number of sequences and can be used to identify domi-
nant (highly expanded) CFs that are hypothesized to be 
the main participants in an immune response. Each CF 
may include multiple subclones, which are defined as all 
cells with identical BCRs. The reconstruction of CFs and 
determination of their frequencies from AIRR-seq data is 
a crucial step to facilitate further analyses and interpre-
tation of the measured BCR repertoires. First common 
steps in the analyses involve, for example, the establish-
ment of the number and size of CFs within a sample, 
the number of dominant clones, and repertoire diversity 
[6]. Subsequently, dedicated analyses are performed to 
address specific biological questions. For example, AIRR-
seq sequencing has been used for the identification of 
shared CFs among individuals [7–9], the characterization 

of abnormal immune repertoires in primary immunode-
ficiencies [10], the identification of stereotyped BCRs in 
chronic lymphocytic leukemia patients [11], or the analy-
sis of anti-drug antibodies development in multiple scle-
rosis patients [12].

However, the reconstruction of CFs is not with-
out challenges and a fully correct reconstruction is an 
unsolved problem. Consequently, analysis and interpre-
tation of BCR repertoires may depend on the choice of 
a specific reconstruction approach but this has never 
been extensively investigated. A range of approaches 
to infer CFs from AIRR-seq data are available [13–17]. 
One problem is the difficulty in accurately reconstruct-
ing the germline sequence, which would facilitate the 
reconstruction process. This is mainly caused by the high 
variability in the CDR3 region that contains the D gene, 
and the high similarity between several V and J genes. 
Most current methods only use the HC because it is the 
most variable chain [2] and because pairing with the LC 
proved difficult. It was recently shown that HC-based 
CFs are accurate for over 80% if the LC is not incorpo-
rated in the reconstruction process [18], while [19] claims 
that this accuracy might be lower for larger samples. In 
any case, leaving out the LC is a potential source of error 
that may experimentally be addressed by single cell RNA 
sequencing [20]. Other challenges involve the definition 
of appropriate similarity measures to decide if sequences 
originate from the same germline sequence, the exploita-
tion of full-length sequence variability instead of focusing 
on the CDR3 region, the use of both shared and unique 
mutations among sequences, and approaching recon-
struction without a preliminary clustering step, based on 
V- and J-gene annotation. The methods referred to above 
approach these challenges in different ways.

Evaluation of methodology for CF reconstruction is 
important because it helps to identify potential biases, 
errors, or limitations related to study design (e.g., patient 
diversity, sequencing depth), which could affect the valid-
ity and reliability of the findings. For example, phyloge-
netic analyses to reconstruct B-cell lineages critically rely 
on the quality of the CFs [21–23].

We aimed to systematically evaluate different 
approaches for CF reconstruction and selected eight 
methods to determine the effect on several outcome 
measures such as the number of CFs derived with each 
of these methods. We complemented these methods with 
a method that just groups sequences based on identical 
junction sequences, and with a method that only deter-
mines the subclones (identical V and J gene, and identi-
cal junction sequence). In addition, we aimed to show 
how differences stemming from these methods affect the 
identification of shared CFs, as one example of a more 
downstream analysis. In addition, we determined the 
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LC concordance for each of these methods based on two 
single cell repertoire datasets. Since the performance of 
different methods may be dependent on dataset char-
acteristics such as sequencing depth and mutation load, 
we applied each method to eight different datasets. Since 
for none of the datasets we know the true CF structure, 
a comparison only reveals differences between the meth-
ods but cannot identify the best performing method [24]. 
Therefore, we also applied each method to simulated 
datasets for which the CFs are known by definition.

We showed that most approaches for CF reconstruc-
tion perform similarly, although Change-O [13] best 
reproduces the true CF structure but does not produce 
CFs with a higher LC concordance. SCOPer [15, 16] 
and the alignment free method [17] seem to perform 
less well. We also show that clustering unique junction 
sequences or subclones cannot be used as surrogates for 
real CFs, although the outcome measures for these two 
approaches deviate much less than expected from other 
reconstruction approaches. In general, more sophisti-
cated methods do not outperform more straightforward 
approaches to cluster sequences into CFs. We also show 
that sequencing depth and mutation load both affect the 

reconstruction process. Finally, we show that the num-
ber of shared (dominant) CFs identified varies between 
the approaches but given the limited amount of data we 
cannot establish if differences between the approaches 
are statistically or biologically significant. In general, our 
results show that there is room to further improve meth-
ods for CF reconstruction.

Materials and methods
Clonal family inference approaches evaluation
We evaluated eight approaches (A3 – A10) for the 
reconstruction of CFs (Fig.  1; Table  1). None of these 
methods aims to reconstruct the D genes, since they are 
too short and variable. Instead, we consider the V and 
J genes in combination with the junction, which com-
prises the CDR3 sequence including its two anchors 
CYS104 and PHE/TRP118 [25]. The CDR3 is the most 
variable Ig region and directly involved in antigen bind-
ing [2, 26]. For comparison we also determined the num-
ber of unique junction sequences (A1) and number of 
subclones (A2; identical V and J gene and identical junc-
tion). These 10 approaches were applied to three selected 
samples from eight different AIRR-seq datasets (Table 2). 

Fig. 1 Study design. Eight CF reconstruction approaches (A3 – A10) were applied to eight AIRR-seq datasets, one mixed dataset, and three 
simulated datasets. In addition, we determined the number of unique junctions (A1) and subclones (A2) from each dataset. The mixed sample 
was generated from the experimental data. Our simulation approach used the experimental data as input to derive CFs. Results from all 10 
approaches were analyzed. For the mixed and simulated samples, we also determined the number of shared clones and accuracy respectively
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Since the true number of CFs is unknown for the experi-
mental data, we also simulated three datasets to deter-
mine the accuracy of each method. The CFs derived by 
each method were further analyzed to determine the 
number of CFs, the CF size, the number of dominant 
CFs, D50, and the diversity. BCR clones with a frequency 
above 0.5% were defined as dominant clones [27]. D50 
was defined as the number of CFs that account for 50% 
of sequences in the sample. Singletons are CFs that con-
sist of one sequence. Several diversity measures are used 
in repertoire sequencing studies [6, 28]. We selected the 
Shannon index, which does not bias rare or common 
CFs, and the Gini-Simpson index that emphasizes the 
common CFs [29]. The Shannon and Simpson diversity 
indices were derived from the Hill-based diversity αD(A) 
index, which is defined as

where f is the clonal frequency distribution with fi being 
the frequency of each CF defined by the number of BCR 
sequences it includes, and n being the total number of 
CFs. From this we obtain the Shannon index and Simp-
son reciprocal diversity indices [29]:

αD(f ) =

n

i=1

f i
α

1

1−α

Table 1 Clonal family reconstruction approaches. NT: nucleotide; AA: amino acid

Approach VJ Partioning Region Sequence 
Type

Identical 
Junction 
Length

Similarity Measure Sequence Clustering

A1 Unique junction (AA) No Junction AA Yes Exact match Dissimilarity = 0%

A2 Subclone (AA) Yes Junction AA Yes Exact match Dissimilarity = 0%

A3 Absolute threshold 
(AA)

Yes Junction AA Yes Hamming Distance 
between junction 
regions

Dissimilarity <= 1 AA 
(absolute threshold)

A4 Relative threshold (AA) Yes Junction AA Yes Length normalized 
Hamming Distance 
between junction 
regions

Dissimilarity <=15% 
(relative threshold)

A5 Relative threshold (NT) Yes Junction NT Yes Length normalized 
Hamming Distance 
between junction 
regions

Dissimilarity <=15% 
(relative threshold)

A6 Change-O Yes Junction NT Yes Length normalized 
Hamming Distance 
between junction 
regions

Sample-based dissimi-
larity threshold based 
on bimodal distance-to-
nearest distribution

A7 SCOPer (junction) Yes Junction NT Yes Kernel matrix (distance 
based on junction)

Unsupervised spectral 
clustering

A8 SCOPer (shared) Yes Junction + VJ 
sequence

NT Yes Kernel matrix (distance 
based on junction + 
shared mutations in VJ)

Unsupervised spectral 
clustering

A9 Partis Yes Full sequence NT No Likelihood ratio 
to decide if two 
sequence (sets) were 
derived from same 
ancestor, and Ham-
ming distance 
between recon-
structed germline 
sequences.

Hamming Dissimilar-
ity <=1.5% OR Likeli-
hood ratio < = variable 
threshold

A10 Alignment free No Full sequence NT No Cosine distance cal-
culated from the tf-idf 
statistic.

Automatic clonal dis-
tance threshold deter-
mination by negation, 
fraction of the distances 
to negation sequences 
threshold = 10%

Shannon  index(f) =  ln1D(f)
Simpson reciprocal index(f ) = 1

2D(f )

We report the Gini-Simpson = (1 – Simpson recip-
rocal index) [30], which ranges between 0 (low diver-
sity) and 1 (high diversity), and can be interpreted as 
the probability that two randomly selected sequences 
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belong to different CFs. The Shannon index reflects the 
uncertainty about the identification of sequences in the 
repertoire (measured in bits [31];) and ranges between 
its maximum value of ln (CF) (high diversity) and 0 (low 
diversity) [32].

Clonal family inference approaches
Figure 2 and Table 1 show the eight selected CF recon-
struction approaches that we evaluated in our study. The 
connected approaches in the figure indicate specific com-
parisons of interest, such as using a fixed (A5) versus a 
sample-based (A6) similarity threshold. We classified 
the approaches according to (i) V/J partitioning of the 
sequences to ensure all sequences of a CF use the same 
V/J gene, (ii) sequence type (nucleotides or amino acids) 
and (iii) use of the full versus the junction sequence. Note 
that for consistency, we consider junction sequences 
instead of the CDR3 sequence, although in [15] it was 
suggested that SCOPer (A7, A8) produces slightly better 
results when using the CDR3 sequence.

Approach A1 and A2 do not reconstruct CFs but were 
included as a reference. Approach A1 clusters identical 

junction amino acid sequences, while Approach A2 
identifies subclones defined as sequences with identical 
V- and J-gene names, and an identical junction amino 
acid sequence. A1 is commonly used in papers for BCR 
repertoire analysis [6, 33, 34]. Approaches A3, A4, and 
A5 reconstruct CF by grouping sequences with identi-
cal V- and J-gene names and similar junction sequences 
of equal length. For these methods, junction similarity is 
based on the Hamming distance between the nucleotide 
(A5) or amino acid (A3, A4) sequence, and sequences 
with a similarity above the fixed absolute (A3) or rela-
tive (A4, A5) thresholds are grouped together. The rela-
tive threshold ensures 85% sequence similarity within 
each CF, while the absolute threshold allowed a maxi-
mum of one amino acid between the sequences. Com-
parison of A4 and A5 allows to establish an effect of the 
sequence representation. To group sequences into CFs 
with approach A3, A4, or A5 we first construct a fully 
connected graph of sequences with each edge repre-
senting the similarity between a pair of sequences. Sub-
sequently, we remove all edges representing similarities 
less than the defined threshold. Variations on approaches 

Table 2 Selected AIRR-seq datasets. For each of eight datasets we used three samples. Ig: immunoglobulin. GC: germinal center; PB: 
peripheral blood; SF: synovial fluid; ST: synovial tissue; HC: heavy chain; LC: light chain; sc: single cell

Dataset Source Number of 
patients, samples

Tissue Source Ig chain Mutation 
load (%)

Sequencing depth

D1 Chronic sialadenitis [40] 1, 3 single GC DNA HC 3.1 144,626

2.5 157,020

3.3 125,092

D2 Rheumatoid arthritis [41] 3,3 PB RNA HC 2.7 88,492

1.4 52,876

1.3 54,075

D3 Rheumatoid arthritis [41] 1,3 ST/SF RNA HC 5.5 88,075

1.7 81,566

1.6 109,298

D4 Healthy donor [42] 3,3 PB scRNA Paired HC/LC 1.3 962

0.2 1118

0.4 1236

D5 Healthy donor [43] 3,3 PB scRNA Paired HC/LC 3.6 452,627

4.0 540,914

4.1 115,728

D6 HIV infected [44] 3,3 PB RNA HC 3.7 201,048

4.5 188,309

5.7 239,189

D7 HIV uninfected [44] 3,3 PB RNA HC 3.6 147,340

5.0 155,456

3.2 146,121

D8 Crohn’s disease [36] 3,3 PB RNA HC 5.2 85,841

4.0 92,112

4.5 131,725
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with a fixed threshold have been presented previously in 
other studies. For example, an approach similar to A3 but 
using an absolute threshold of one nucleotide was used 
in [35, 36]. Approach A4 has been used by Soto and co-
workers but using a 20% similarity threshold [34], while 
an approach similar to A5 but without V/J partitioning is 
presented in [37].

A main drawback of approaches A3, A4, A5 is the use 
of an arbitrary similarity threshold that is not based on 
the data itself and, therefore, may not result in the best 
possible reconstruction of the CFs. Therefore, other 
approaches (A6 – A10) have been developed that aim to 
determine this threshold from the data. Change-O (A6; 
Nouri, 2018) aims to determine the optimal threshold on 
a per-sample basis by fitting a smoothed density to the 
normalized Hamming distances between all sequences 
for the sample.

Approaches A2 to A9 suffer from possible sequence 
alignment errors made during the V/J gene assignment 
during which the repertoire sequences are matched 
against a reference database using, for example, IgBlast 
[38] and the IMGT germline V, D, J gene databases [25]. 
In addition, approaches A1-A6 do not consider the full 
VDJ sequence of the receptor, but only consider junc-
tion similarity. Consequently, these approaches neglect 
somatic mutations in the V and J genes and this poten-
tially leads to the merging of CFs because the sequence 
similarity is estimated too high. Recently, a new method 

(A7, A8; SCOPer) was developed that comprises two 
models to reconstruct CFs [15, 16]. Both models start 
with a VJ-partitioning. The recombination-based model 
(A7) only considers the Hamming distance between pairs 
of junction sequences, while the second integrated model 
(A8) combines the recombination-based model with an 
SHM-based distance that is based on total and shared 
number of mutations in pairs of V/J sequences while 
accounting for hot/cold spots based on the S5F targeting 
model [39]. For both models the final similarity between 
all sequence pairs is calculated from a Gaussian kernel to 
allow the local level of similarity to vary in a fully con-
nected graph of all sequences. Subsequently, a spectral 
decomposition procedure is used to determine the num-
ber of CFs, followed by k-means clustering to reconstruct 
the CFs. Comparison of SCOPer to other approaches 
allows us to establish the added value of considering 
(shared) mutations in the V and J sequence.

Another method that utilizes the full sequence is par-
tis (A9), which is based on a multi-hidden Markov model 
(HMM) framework [19]. The HMM framework is used to 
define a likelihood ratio to determine if two sequences (or 
sequence sets) come from a single rearrangement event 
and, therefore, should be merged into a single CF. Con-
sequently, Partis considers all substitution mutations in 
the V-Junction-J sequence. The likelihood ratio is used as 
the distance measure for agglomerative clustering using 
a variable likelihood ratio threshold, based on the cluster 

Fig. 2 CF inference approaches. Grey lines connecting boxes represent specific comparisons of interest. Red lines and text indicate the significant 
comparisons of interest. Dashed grey lines denote comparisons that we could not carry out. A1 and A2 don’t represent CFs but unique junction 
sequences and subclones respectively. Green boxes: nucleotide sequences; Blue boxes: amino acid sequences; Grey text: significant comparisons 
between non-connected approaches for CFs, singletons (S), mean CF size (Size), and Gini-Simpson (GS)
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size, to decide if clusters/sequences should be merged. 
To accelerate computations, the normalized Hamming 
distance between inferred germline sequences from both 
clusters/sequences is used to decide if clusters/sequences 
should be merged (<=0.015) or should not be merged 
(> = 0.08) without calculating the likelihood ratio.

Finally, an approach based on natural language pro-
cessing (A10) was introduced and uses the full sequence 
and doesn’t require VJ-partitioning [17]. The approach 
uses the term frequency inverse document frequency 
(tf-idf ) weighted k-mer representation to utilize the full 
receptor sequence. Automatic clonal distance threshold 
determination is accomplished by negation, i.e., using 
sequences from a different sample, which are supposed to 
be at greater distances than sequences within a sample. 
The tf-idf emphasizes the rare and meaningful sequence 
motifs and reduces the influence of common motifs. A 
cosine distance calculated from the tf-idf is then used to 
determine the sequences belonging to a CF. This method 
doesn’t require a sequence alignment to assign the V and 
J genes and doesn’t require junction sequences to be of 
the same length.

Experimental AIRR‑seq data
We reasoned that the performance of CF reconstruction 
methods might depend on characteristics of the dataset 
to which it is applied such as sequencing depth, muta-
tional load, DNA or RNA sequencing, and sequencing of 
HC or paired HC/LC. Therefore, for the comparison of 
the different approaches, we selected three samples from 
eight different AIRR-seq datasets (Table  2). The muta-
tion load was presented as the percentage of mutated 
nucleotides, and calculated by averaging over all BCR 
sequences the number of differences between in the V 
and J gene sequences and the corresponding IMGT ger-
mline sequences [25] divided by the length of the V or J 
gene sequence, i.e., (number of mutations in V aligned 
segment + number of mutations in V aligned segment) 
/ (length of V aligned germline segment + length of J 
aligned germline segment). This excludes the mutations 
in the most variable CDR3 region of the sequence since it 
is virtually impossible to reliably reconstruct the germline 
D gene and non-templated nucleotides and, therefore, 
our percentage underestimates the number of acquired 
mutations. Moreover, we assume that each difference 
observed in the V and J genes is a somatic mutation and 
not a PCR or sequencing error. We also disregarded ger-
mline gene polymorphisms at the V/J partitioning stage 
used in approaches A2-A8, since their identification is 
difficult and the alleles listed by IMGT are incomplete. 
This might lead to sequences being misclassified due to 
incorrect annotation of the V and J and affect the CF 
reconstruction.

Dataset D1 comprises a DNA-based repertoire from 
single GCs isolated from a human lymph node from a 
tonsil from a patient with chronic sialadenitis [40]. We 
included these samples because we expected that rep-
ertoire data from GCs is more homogeneous (fewer 
and more similar clones) compared to tissue or blood 
samples. In addition, we included D1 (and D3) because 
we required samples derived from a single patient for 
the shared CF analysis (see below). Dataset D2 and D3 
comprises bulk RNA-seq based repertoires measured 
from peripheral blood, synovial tissue and synovial fluid 
samples obtained from three rheumatoid arthritis (RA) 
patients [41]. Datasets D4 [42] and D5 [43] represent 
single cell (sc)RNA-seq based repertoires from healthy 
donors. We included these repertoires to investigate 
the consistency of clonal inference results based on HC 
only versus using the paired HC and LC. Note that D4 
has a very low sequencing depth, while D5 has the high-
est sequencing depth. Datasets D6 and D7 represent bulk 
RNA-seq based repertoire obtained from HIV infected 
and non-infected patients [44]. We selected three samples 
with the highest mutation load from the HIV infected 
patients and randomly selected three samples from the 
non-infected individuals. We expected the mutation load 
of the HIV infected patients to be higher in comparison 
with the other samples we included in our study, but 
Table 2 shows that the mutation load in the V/J genes is 
comparable (or even less) compared to several other sam-
ples. The differences between the HIV infected patients 
and the other samples might be more pronounced if the 
CDR3 mutations could have been included. Dataset D8 
is a selection of three RNA-seq based repertoires from 
Crohn’s disease patients. These samples were taken from 
a larger study that investigated pathological mechanisms 
in autoimmune-mediated disease [36].

We pre-processed the raw sequencing data (FASTQ/
FASTA files) of each of the experimental AIRR-seq data-
sets used in our study. In short, we removed the primer 
sequences and, subsequently, data we identified the V and 
J genes and junction region for each sequence using IgBlast 
[38] version 1.17.1 using the most similar IgBlast hit.

Simulated data
For simulations we used samples from D1, D2 and D3 
datasets. We simulated three repertoire datasets (D10 – 
D12) to determine which reconstruction approach clos-
est resembles the true number of CFs (Supplementary 
Fig.  1). This allows us to calculate the accuracy of each 
of the approaches. To simulate data, we use subclones 
and CFs from all approaches because we need fair com-
parison (thus, each of approaches represented equally in 
simulations) of their accuracy, similar to how we compare 
the results of approaches applied to experimental data.
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Our goal is to simulate data that accurately reflects 
the characteristics of actual experimental repertoires. 
Therefore, each individual simulated sample was based 
on a single sample selected from dataset D1, D2 or D3 
(Table  2). We generated six simulated datasets (S28 
– S33 in Supplementary Table  1 (S3)) by using two 
samples from each of these datasets. The input for 
the simulation was provided by the unique junction 
sequences, subclones, and CFs resulting from appli-
cation of approaches A1, A2 and A3-A10 respectively 
to the selected dataset. Our simulation approach is an 
integration of ImmuneSim [45], Alakazam [13] and 
SHazaM [39] packages. We used the default (except 
where specified below) parameters for these methods 
which can be found in the documentation of com-
mands immuneSIM, buildPhylipLineage and shmulate-
Tree of ImmuneSim, Alakazam and SHazaM packages 
respectively. The simulation proceeded along the fol-
lowing steps:

• Step 1. For the chosen sample we randomly selected 
10% of the unique junctions/subclones/CFs obtained 
from the application of each of the 10 approaches 
applied to the selected sample;

• Step 2. We assigned the V/J-gene names to each 
sequence using IgBlast. For sequences that were 
assigned to multiple V/J-gene names we used the 
most frequent V/J gene;

• Step 3. We simulated VDJ recombination by using 
the V/J usage frequencies observed in the set of 
selected sequences (step 2), and the frequency usage 
for the D genes provided by ImmuneSim [45];

• Step 4. For each CF that was selected in Step 1, we 
reconstructed the B-cell lineage tree using the maxi-
mum parsimony method from Alakazam [13]. To 
facilitate this, we used only sequences of identical 
length, i.e., we removed the sequences that were dif-
ferent from the most common sequence length of a 
CF. The resulting lineage reflected all sequences that 
make up a CF and the SHM’s imposed on the B-cell 
receptors during clonal expansion. Each node in this 
tree corresponded to a subclone;

• Step 5. We randomly selected a germline sequence 
obtained from ImmuneSim (Step 3) to serve as the 
unmutated root of the B-cell lineage obtained in 
Step 4. Subsequently, using this germline sequence 
and the B-cell lineage topology, we use SHazaM [39] 
to create a new B-cell lineage that leaves the topol-
ogy intact but imposes a new set of mutations. This 
provided us with a set of simulated sequences. The 
imposed mutations were based on the HH_S5F 
(Human heavy chain, silent, 5-mer, functional target-
ing model) described in [39].

Evaluation of the approach accuracy from simulated data
To obtain a measure of the accuracy of each reconstruc-
tion approach we compare the simulated CFs (ground 
truth) to the CFs obtained from each individual approach 
(A1 – A10). To facilitate this comparison, we represent 
each simulated and reconstructed CF as a graph of con-
nected sequences (edges). For each individual inferred 
CF, we compare all edges to the edges of the simulated 
CFs to determine the true/false positive/negative edge 
assignments (Supplementary Fig.  2). True positive (TP) 
edges are edges in a single inferred CF that are also pre-
sent in a single simulated CF. Thus, in both the inferred 
and simulated CFs these sequences were grouped 
together. Similarly, false positive (FP) edges are edges 
in a single inferred CF that are not found in any of the 
simulated CFs. True negative (TN) edges are potential 
connections between sequences that were neither found 
in the inferred nor simulated CFs. Finally, false negative 
(FN) edges are edges in an individual simulated CF that 
are not found in any inferred CF. Since we have many 
more TN compared to TP cases, the accuracy ((TP + TN) 
/ (TP + TN + FP + FN)) and specificity (TN / (TN + FP)) 
will always be high and not discriminative between the 
approaches. Therefore, we report the sensitivity (propor-
tion of TP edges correctly identified by the methods (TP/
(TP + FN)), the precision (proportion of TP edges that 
are actually present in the simulated CFs (TP/(TP + FP)), 
the F1 score defined as the harmonic mean of precision 
and sensitivity (2TP/(2TP + FP + FN), and the Jaccard 
Index, which can be interpreted as a measure of overlap 
between the ground truth and inferred CFs with a focus 
on the TP and ignoring the TN (TP / (TP + FN + FP)).

Effect of approach, sequencing depth and mutation load 
on outcome measures
The results from CF reconstruction may depend not only 
on the used approach, but also on dataset characteris-
tics such as mutational load and sequencing depth. To 
account for the effect of these covariates, we used linear 
mixed effect regression using the following random inter-
cept model:

where yij is the outcome measure (e.g., number of clonal 
families), β0 is the overall fixed intercept, β1, β2 are the 

yij = β0 +

A−1
∑

k=1

γ kDik + β1x1ij + β2x2ij + uj + eij

eij ∼ N
(

0, σ 2

e

)

uj ∼ N
(

0, σ 2

u

)
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regression coefficients for the explanatory variables 
xij (sequencing depth and mutation load). Approach 
is a nominal categorical variable represented with A-1 
dummy variables Dik, with A representing the number 
of approaches we evaluate.  Dik = 1 if observation i was 
obtained with approach k or 0 otherwise. The model A-1 
regression coefficients γk were estimated using approach 
A3 (absolute threshold (AA)) as the reference (i.e., inter-
cept). β0 + uj is the random intercept for the dataset, and 
eij are the residuals. Index j denotes the dataset (D1 – D8) 
and index i = 1, … .,ni, with  nj the number of observations 
in dataset j. Using lmer and lmerTest [46, 47] R package, 
we represented this model as

Thus, the effect of the dataset was modelled as a ran-
dom intercept. The approach was modelled as a fixed 

y ∼ 1+ Approach+Mutation load + Sequencing depth+ (1 | Dataset)

categorical variable. Mutation load and sequencing depth 
were included as fixed continuous variables. We omit-
ted other terms (e.g., interactions and random slopes) 
because these could not be fitted due to the limited 
amount of data. We excluded SCOPer (approach A7 
and A8) from all models, since this method deviated too 
much from the other approaches (see Results section).

We checked the influence of dataset D4 (single cell) on 
the model results since its sequencing depth and, there-
fore, the number of CFs was very low (Table  2). This 
dataset hardly affected the results of the regression and 
was only removed in one of the models (Table 3). For the 
regression model of the Gini-Simpson index we removed 
dataset D3 (RA), which was considered an outlier based 

on the diagnostic plots we made. We checked the influ-
ence of individual outlier observations, which we defined 

Table 3 Results of seven regression models. For each model (outcome measure) we indicate if (i) outliers and/or dataset D3/D4 were 
removed, (ii) covariates were standardized to zero mean and unit standard deviation, and (iii) outcome measures were log-scaled. 
For each model the overall significance of the model (ANOVA) and the significant model coefficients are shown. The +/− indicate a 
positive/negative effect in relative to the model intercept (approach A3). Note that the pairwise comparison for A5-A9 is just above 
our threshold of 0.05. The four pairwise comparisons shown in bold correspond to the pre-defined comparisons shown in Fig. 2. 
The asterisk denotes comparisons between CF reconstruction methods (A3-A10).  Padj is the Holm–Bonferroni adjusted p-value. 
A = approach, SD = sequence depth; ML = mutation load

Outcome variable Removal outliers
and/or D3/D4

Covariate 
standar‑
dization

Log10 scaling Overall 
significance
(ANOVA)

Significant model 
coefficients 
(p‑value)

Significant 
pairwise
comparisons  (padj)

Number of Clonal Families (CF) Outliers Yes Yes A (p < 0.001)
SD (p < 0.001)
ML (p < 0.001)

-A6 (< 0.05)
-A9 (< 0.05)
+SD (< 0.001)
-ML (< 0.001)

A2-A6 (0.0024)
A2-A9 (0.0011)
A10-A6 (0.0229)*
A10‑A9 (0.0120)*

Singletons D4 No Yes A (p < 0.001)
SD (p < 0.001)
ML (p < 0.001)

+A2 (< 0.05)
-A6 (< 0.05)
-A9 (< 0.001)
-A10 (< 0.05)
+SD (< 0.001)
-ML (< 0.001)

A1-A9 (0.0104)
A2‑A4 (0.0414)
A2‑A5 (0.0191)
A2-A6 (<.0001)
A2-A9 (<.0001)
A3-A6 (0.0371)*
A3-A9 (0.0037)*
A4-A9 (0.0246)*
A5-A9 (0.0521)*
A10-A2 (0.0002)

Mean CF size None No Yes A (p < 0.0001)
SD (p < 0.05)
ML (p < 0.001)

+A6 (< 0.05)
+A9 (< 0.05)
-SD (< 0.05)
+ML (< 0.001)

A2-A6 (0.0019)
A2-A9 (0.0008)
A10-A6 (0.0183)*
A10‑A9 (0.0094)*

Number of Dominant Clones (0.5%) None Yes Yes ML (p < 0.001) +ML (< 0.001) None

D50 Outliers No Yes A (p < 0.05)
SD (p < 0.001)
ML (p < 0.001)

+SD (< 0.001)
-ML (< 0.001)

None

Gini-Simpson index Outliers
D3

Yes Yes A (p < 0.05)
SD (p < 0.001)
ML (p < 0.001)

+SD (< 0.001)
-ML (< 0.01)

A2-A6 (0.0463)

Shannon index Outliers No No SD (p < 0.001)
ML (p < 0.001)

+SD (< 0.001)
-ML (< 0.001)

None
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as any data point exceeding q75 + 1.5*IRQ where q75 
represents the 75th percentile and IQR the interquartile 
range (IRQ = q75 – q25). These outliers correspond to 
the outliers shown in the boxplots. We tested the effect 
of scaling (mean centering and unit variance) the muta-
tion load and sequencing depth since their scales are very 
different, and we tested the effect of log-scaling the out-
come measures. For all regression models (i.e., with and 
without outlier removal, scaling, log transformation) we 
visually checked the model for various assumptions (nor-
mality of residuals, normality of random effects, linear 
relationship, homogeneity of variance, multicollinearity), 
and the outcome versus the predicted outcome values 
and, subsequently, selected the most appropriate model. 
Following model fitting we calculated all pairwise con-
trasts, using the R package emmeans [48], between the 
approaches using the Holm–Bonferroni [49] method to 
control the family-wise error rate in the 28 comparisons.

Comparison of the ground truth to the results of different 
approaches
We compared the ground truth from the simulated data 
to the results obtained with different approaches for CF 
reconstruction. We excluded A1 (unique junctions), A2 
(subclones), and SCOPer (A7, A8) from these compari-
sons. We used a repeated-measures linear mixed-effect 
model to determine the significant differences with 
the ground truth using the following random intercept 
model:

where yij is the outcome measure, β0 is the overall fixed 
intercept and approached modeled by dummy variables 
(Dik). The model A-1 regression coefficients γk were esti-
mated using approach A0 (ground truth) as the reference 
(i.e., intercept). β0 + vj is the random intercept for the 
sample, and eij are the residuals. Index j denotes the sim-
ulated sample (S28 – S33; Supplementary Table  1 (S3)) 
and index i = 1,….,ni, with  nj the number of observations 
in sample j. Using lmer and lmerTest we represented this 
model as

yij = β0 +

A−1
∑

k=1

γ kDik + vj + eij

eij ∼ N
(

0, σ 2

e

)

uj ∼ N
(

0, σ 2

u

)

y ∼ 1+ Approach+ (1|Sample)

Light chain and heavy chain concordance analysis
Recently, it was shown that incorporation of the LC does 
not significantly improve the CF reconstruction process 
(Zhou and Kleinstein, 2019b). To confirm this finding, we 
performed a concordance analysis to establish the poten-
tial contribution of the LC. Using the two single cell data-
sets (D4, D5) from healthy donors for the paired chains 
we evaluated the concordance of the reconstructed HC-
based CFs with the CFs obtained when further partition-
ing these CFs according to V/J gene name(s) of the paired 
LCs. A CF is considered concordant if all HC within a 
CFs are paired to the same LCs (i.e., identical V/J gene 
name). The proportion of concordant CFs is calculated 
for each approach.

Identification of shared clonal families
In addition to the outcome measures that we included in 
the regression analyses we also aimed to determine how 
these outcomes affect the identification of shared CFs, as 
an example of a more downstream analysis. For this, we 
considered the 3 GC samples from dataset D1 that were 
derived from the same chronic sialadenitis patient and 
were expected to share a reasonable number of CFs. We 
also used the peripheral blood samples (D2) from three 
different RA patients that were expected to share only few 
CFs. Finally, we used the samples from D3 that comprises 
a single synovial tissue sample and two synovial fluid 
samples from the same patient but different joints, which 
are also expected to share CFs. Consequently, for each 
dataset we make three pairwise comparisons between 
the samples within each dataset. To identify shared CFs, 
we followed the approach of Setliff and co-workers [50], 
i.e., we merged the three repertoires (samples) from each 
dataset while keeping the sample annotation of each indi-
vidual sequence. Subsequently, we reconstructed the CFs 
from the merged repertoires and counted the number of 
CFs that include sequences from multiple samples as a 
measure for the number of shared CFs.

Software and code availability
We used the lme4 (version 1.1–31 [46];) and the lmerT-
est (version 3.1–3 [47];) R packages to fit the linear mixed 
effect models. The package emmeans (version 1.8.2 
[48];) was used to calculate pairwise contrasts between 
the approaches. The performance package (version 
0.10.0 [51];) was used for visual diagnostics of the lin-
ear mixed effect models. We used dplyr (version 1.0.10 
[52];) for data transformations and ggplot2 (version 3.4.0 
[53];), ggpubr (0.5.0), grid, and RColorBrewer (version 
1.1.3 [54];) for visualization. Python 3.9.7 (https:// www. 
python. org) was used for CF inference and further analy-
sis. NCBI IgBlast-1.17.1 [38] was used for V and J genes 

https://www.python.org/%20
https://www.python.org/%20
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assignment. Change-O (version 1.2.0 [13]), SCOPer [15], 
alignment-free method [17], and partis [14] were used 
for CF inference. Data processing, CF inference pipelines 
including the code of Change-O, SCOPer and the align-
ment free CF inference approaches and approach evalu-
ation code is available on GitHub https:// github. com/ 
EDS- Bioin forma tics- Labor atory/ BCRCF.

Results
Overall results
We applied each of the 10 approaches to all three samples 
in our datasets (Table 1). However, A10 (alignment-free 
method) was not applied to dataset D1 (chronic sialad-
enitis) due to the absence of multiple individuals in this 
dataset. Additionally, there were no multiple individu-
als in the original study, preventing the use of additional 
data from the original experiment. For the application 
of approach A10 to D3 for which we also used samples 
from a single patient, we used an additional sample from 
another RA patient from the same study as the reference. 
Fig. 3 shows the overall results of the CF reconstruction 
for eight outcome measures, i.e., the number of CFs, the 
number of dominant CFs, D50, the number of single-
tons, the Shannon and Gini-Simpson diversity indices, 
and the mean and max CF size. As expected, the differ-
ences between the datasets are larger than the differences 
between the three samples within each dataset.

We observe that approach A1 (unique junction 
sequences) and A2 (subclones) do not seem to largely 
deviate from the other approaches despite that A1/A2 
do not represent real CFs. SCOPer (A7 and A8) largely 
deviates from the other approaches and results in far 
fewer CFs while the number of dominant CFs is inflated 
resulting in a lower D50. Consequently, also the diversity 
is much smaller compared to the other approaches. The 
difference in the other outcome measures is less pro-
nounced for A7/A8. We assumed that the reconstructed 
CFs by SCOPer are mostly incorrect and, therefore, left 
out from most of the analyses presented below. This 
assumption is confirmed by our simulations (see below). 
The reason for this large deviation is not entirely clear 
but is likely related to the ‘eigen-gap’ procedure that 
determines the number of CFs. For dataset D4 (single 
cell) we find a very low number of CFs and singletons 
and relatively large number of dominant clones due to 
the very low sequencing depth. The CFs are also of small 
size compared to the other datasets. The alignment-free 
method (A10) results in a very large number of clones for 
single-cell dataset D5 in contrast to the other approaches. 
The reason for this is unclear but could be related to the 
increased number of unique sequences due to its high 
sequencing depth and, hence, an increased number of 
k-mers found in these sequences leading to more CFs. 

More generally, we observe that the mean and maximum 
CF sizes obtained for D5 are relatively large and mainly 
a result of the much larger sequencing depth. Also, D3 
shows some very large CFs that, however, do no inflate 
the number of dominant clones compared to other data-
sets. The Gini-Simpson index, which is dominated by the 
more frequent CFs, shows similar values (i.e., between 
0.8 and 1.0) across all datasets and approaches, but part 
of the datasets show a relatively low diversity (i.e., D1: 
single GC; D3: RA ST/SF; D5: single cell; D7: HIV unin-
fected). A similar observation is made for the Shannon 
index except for dataset D7, which is now more closely 
to the median value, indicating that D7 diversity is mainly 
associated with larger CFs.

In summary, Fig.  3 shows that, overall, all approaches 
seem to give similar results except for SCOPer (A7, 
A8). However, the variation in the datasets may, to 
some extent, obscure the true differences between the 
approaches. Moreover, without controlling for data-
set variability, also approaches A1 (unique junction 
sequences) and A2 (subclones) do not deviate largely 
from CFs reconstructed by any of the other methods.

Sequencing depth and mutation load affect outcome 
measures
To determine if the 10 approaches lead to differences 
in the outcome measures, we established if such differ-
ences are due to intrinsic differences of the used method-
ologies or, alternatively, are (partially) caused by dataset 
characteristics (e.g., sequencing depth, mutational load). 
Therefore, we fitted a linear random intercept model to 
account for these covariate contributions. We did not 
include SCOPer (A7 and A8) in this regression analysis. 
Table  3 shows the results from the regression analyses. 
The regression models (ANOVA) show that the chosen 
approach has an effect on the number of CFs, the number 
of singletons, the mean CF size, D50, and the Gini-Simp-
son index but not on the number of dominant clones nor 
the Shannon index. The sequence depth and/or muta-
tion load have an effect on all outcome measures. From 
the sign of the significant model coefficients, we see that 
the number of CFs and singletons increases, as expected, 
with the sequence depth and decreases with the mutation 
load relative to the model intercept (Supplementary Fig. 3 
and 4). The decrease in the number of CFs and singletons 
with mutation load can be explained by the assumption 
that CFs that carry more mutations are more mature (i.e., 
have gone through more GC cycles) and, consequently, 
the corresponding samples have fewer but larger CFs, 
which is confirmed by the positive mutation load sign for 
the mean CF size and the number of dominant clones. As 
a result of the increased size of the CFs, the repertoires 
will also contain fewer singletons since the larger CFs 

https://github.com/EDS-Bioinformatics-Laboratory/BCRCF
https://github.com/EDS-Bioinformatics-Laboratory/BCRCF
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Fig. 3 Overall results of the CF reconstruction approaches applied to eight datasets. (A) Number of CFs. (B) Dominant CFs. (C) D50. (D) 
Number of singletons. (E) Shannon index. (F) Gini-Simpson index. (G) Mean CF size. (H) Maximum CF size. Numbers in the boxplots correspond 
to the datasets. The lower and upper hinges correspond to the 25th and 27th percentiles. Black lines show the median. Whiskers denote 5th 
and 95th percentiles. Each dot represents a sample. Dots beyond the Whiskers represent outliers
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have more chance of being sequenced at a certain depth 
at the expense of these singletons. As a consequence, 
we also see that the mutation load has a negative effect 
on D50 and both diversity indices. In summary, we find 
that after accounting for the variability in the datasets, in 
particular the sequencing depth and mutation load, the 
reconstruction approach has an effect on part of the out-
come measures including the number of CFs.

The approach for CF reconstruction has a limited effect 
on the outcome measures
The regression model established that the approach has 
an effect on part of the outcome measures and, therefore, 
we subsequently inspected the regression coefficients (γ) 
for the approaches to identify the specific approaches 
responsible for this. From Table  3 and Supplementary 
Fig. 5 we see that only a few approaches (A2, A6, A9, and 
A10) positively or negatively affect the number of CFs, 
singletons, mean CF size, D50, and the Gini-Simpson 
index, compared to A3 (absolute threshold (AA)) that was 
used as the reference in the linear model. For example, 
approach A6 (Change-O) gives fewer CFs and singletons 
compared to approach A3. Note that for D50 the ANOVA 
results in a significant overall effect for approach, while 
none of the individual model coefficients were significant, 
which indicates a correlation between the approaches. 
Based on the model we additionally determined all signifi-
cant pairwise comparisons between the approaches. Since 
in these comparisons we control for the family-wise error 
rate using the Holm-Bonferroni method, we do not find a 
significant difference for A3-A6 and A3-A9 whose initial 
uncorrected p-values (p = 0.0168 and p = 0.0284 respec-
tively) now fall below our threshold of  padj = 0.05. Only 
four of the predefined comparisons shown in Fig. 2 turned 
out to be significant. These are the differential number 
of singletons between A2 (subclones) and A4 (relative 
threshold (AA)), and A2 and A5 (relative threshold (NT)), 
and the differential number of CFs and mean CF size 
between A9 (partis) and A10 (alignment free).

We find a mean number of singletons of 28,028, 21,275, 
and 20,407 for A2, A4 and A5 respectively. Thus, as 
expected, clustering subclones (A2) into CFs (A4, A5) 
results in fewer singletons. Although the comparison 
between A2 and A3 (absolute threshold (AA)) is not sta-
tistically significant, A3 results in a similar number of 
singletons (22,347) compared to A4/A5. Interestingly, 
there is no significant difference in the number of CFs 
between A2 and A3/A4/A5 (36,756, 30,409, 29,336, and 
28,513 respectively). Note that for these comparisons 
the uncorrected p-values for A2-A3, A2-A4, and A2-A5 
are p = 0.0734, p = 0.0372, and p = 0.0257 respectively. 
For the A9 to A10 comparison we determine that these 
result in an average of 23,893 and 43,217 CFs respectively 

with mean sizes of 40,593 and 5612 sequences. Thus, A10 
results in many more CFs but of much smaller size (Sup-
plementary Table  1 (S3)). These differences likely stem 
from the fact that these methods utilize the full sequence 
differently, and because partis (A9) performs a VJ-parti-
tioning in contrast to the alignment free approach (A10). 
Based on these regression results we cannot conclude 
that there is a difference between using a nucleotide or 
amino acid representation (A4 vs A5), nor that there is 
a difference between using a relative, absolute, or sample 
based threshold (A3 vs A4 and A5 vs A6).

Apart from these, a priori defined comparisons of 
interest (Fig.  2) there are several other significant pair-
wise comparisons resulting in differences for the num-
ber of CFs, singletons, mean CF size or Gini-Simpson 
index. In contrast, the number of dominant clones, D50 
and the Shannon index are not affected by the approach. 
The significant difference in the number of CFs and mean 
CF size when comparing A6 (Change-O) and A10 (align-
ment free) can be due to the VJ-partitioning in A6, the 
use of the full sequence in A10, or the use of different 
thresholds. However, this could also be caused by the 
inflated number of CFs produced by A10 which seems to 
be incorrect (see simulations below). There doesn’t seem 
to be any difference between approaches (A3, A4, A5, A6) 
that use VJ-partitioning and junction similarity for any of 
the outcome measures except for A3 (absolute threshold 
(AA)-A6 (sample-based threshold (NT)). There are sev-
eral approaches resulting in differences for the number 
of singletons but these will be generally of less interest 
and also don’t seem to affect the diversity of the reper-
toires. We also note that there is no difference between 
A1 (unique junctions) and A2 (subclones), showing that 
VJ-partitioning is not required per se to get an indication 
about the number of subclones. In addition, A2 (sub-
clones) gives a different number of CFs compared to all 
other methods except A10 (alignment free) that seems to 
produce a too large number of CFs. It also seems fair to 
conclude that using the full sequence (A9, A10) in con-
trast to only using the junction sequence does not have 
a large effect on the number of CFs. We could not make 
any conclusion about the advantage of using shared 
mutations (A7/A8, SCOPer) since this approach was not 
included in the regression model.

In summary, comparing the approaches that recon-
struct CFs (A3-A10), we observe that only eight compar-
isons are significant for three of the outcome measures 
(number of CFs, singletons, and mean CF size). Four of 
these comparisons affect the number of singletons. More-
over, four of these comparisons involve A10 (alignment 
free) that seems to produce a too large number of CFs. 
For this reason, we conclude that the specific approach 
for CF reconstruction only has a limited effect on the 
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outcome measures that we tested. A simple method for 
CF reconstruction like A4 (setting a relative similarity 
threshold for the amino acid junction sequence) does 
perform equally well as more sophisticated methods like 
A9 (partis).

Deviation from ground truth varies 
between the approaches
The results from our regression model and the pairwise 
comparisons reveal differences between the approaches 
but does not inform us which approach is best since 
the ground truth for any of the included datasets is 
unknown. Therefore, we also simulated CFs and applied 
the approaches to the simulated data to establish the 
performance of the approaches (Supplementary Table  1 
(S4)). For this evaluation we included A7/A8 (SCOPer). 
As expected, the number of TNs, representing pairs 
of sequences that are absent in both the simulated and 
inferred CFs, is two orders of magnitudes larger com-
pared to the other number of cases (TP, FP, FN; Supple-
mentary Fig. 6). The differences between the samples are 
only partially caused by the differences in the number 
of sequences in each simulated sample. Normalizing the 
total number of cases with respect to the largest number 
of cases (dataset D11, sample 1) still shows differences 
between the samples (Supplementary Fig.  7). In addi-
tion, we see that a larger number of sequences does not 
automatically lead to more TP cases given that dataset 
D11/sample 1 has more sequences compared to the other 
samples but has the fewest number of TP cases. The rea-
son for this may lie in the different structure of the simu-
lated dataset D11, which contains a larger number of CFs 
but on average they are smaller in size compared to CFs 
from datasets D10 and D12.

Approaches A1 (unique junctions) and A2 (V-junction-
J) represent unique sequences and, therefore, the num-
ber of cases (i.e., TPs, TNs, FPs, FNs) cannot directly be 
compared to the number of cases observed for the other 
eight approaches because there is no relation between 
the number of CFs and the number of unique junctions/
subclones they may include. We observe a low number 
of FP cases for A1 and A2 corresponding to identical 
sequences that were part of different simulated CFs but 
grouped together after CF inference. The probability that 
identical junction sequences occur in different simulated 
CFs is very low but may also occur in real CFs. Similarly, 
the probability for identical subclones to occur in differ-
ent simulated/real CFs is low. Therefore, we did not aim 
to account for this in our simulation approach. More 
interestingly is the comparison between approaches A3 
to A10. The number of TP and TN cases are similar for 
all approaches including SCOPer (A8 and A9) although 
the number of TP for A10 (alignment free) is somewhat 

lower and shows more variability. However, the number 
of FPs and FNs produced by SCOPer is very different 
from the other approaches. It seems that SCOPer erro-
neously groups sequences into single CFs (resulting in 
far fewer CFs (Fig.  3(A)) and, at the same time but less 
commonly compared to the other approaches, separates 
sequences from a single CF into different CFs. In gen-
eral, we observe that differences between the approaches 
are mainly caused by the number of FPs they produce. 
The approaches A4-A6, A9, and A10 result in a differ-
ent number of TP cases (p = 0.002 and p = 0.001 for the 
unformalized and normalized number of cases; Kruskal-
Wallis rank sum test) and also the subset A3, A4, A5, 
and A6, which use VJ-partitioning but different junc-
tion-based similarity thresholds affect the number of FP 
cases (p = 0.004 and p = 0.0004). No significant differ-
ences occur in the number of TNs/TPs/FNs for these two 
groups.

In Fig.  4 we report the sensitivity, precision, F1, and 
Jaccard index as overall performance measures for the 
10 approaches we evaluated. As expected, approach A1 
(unique junction) and A2 (subclones) show a very poor 
performance since these do not represent CFs. Neverthe-
less, A1/A2 produced a similar number of CFs compared 
to the other approaches (Fig. 3, Table 3) but with fewer 
FP and more FN cases. The precision for all approaches 
except SCOPer (A7, A8) is very high and, therefore, also 
not discriminative between the methods. In general, 
the number of FPs is very low compared to the number 
of TPs, resulting in a high precision indicating that the 
sequences that are grouped together indeed make part of 
the same clone. The sensitivity shows larger differences 
between the approaches indicating that these methods 
perform differently with respect to correctly clustering 
pairs of sequences into CFs. A6 (Change-O) performs 
the best in this regard, while A3, A9 and A10 only show 
a sensitivity of about 0.5 showing that the probability of 
correctly grouping pairs of sequences, given that this pair 
is truly part of the same CF, is only about 50%. That is, 
about 50% of these pairs are not grouped together (FNs). 
In addition, more complex approaches like partis (A9) 
and the alignment free method (A10) do not result in 
an increased sensitivity. The precision of all approaches 
is very high (except for SCOPer; A7, A8) and a result 
of the low number of FP occurrence of sequence pairs 
within reconstructed CFs. The F1 score, which can be 
interpreted as a balance between sensitivity and preci-
sion ability to both capture positive cases (recall) and be 
accurate with the cases it does capture (precision). The 
F1 score will be low if the sensitivity and precision are 
very different, or if one of these performance measures 
has a low value. Fig. 4 shows that most approaches have 
a similar F1 score although A6 (Change-O) seems to do 
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better in identifying the TP cases correctly (high sensi-
tivity and precision). Note, however, that the precision 
of all approaches is very high and, therefore, the F1 score 
has a similar trend as the sensitivity. Finally, the Jaccard 
index shows the overlap between the ground truth and 
the number of inferred sequence co-occurrences in the 
inferred CFs with a focus on the TP and ignoring the TN. 
The trend is similar to the sensitivity and F1 score.

Figure  5 shows the outcome measures for all 
approaches applied to the simulated data in compari-
son to the ground truth (A0). Again, approaches A1, A2 
and SCOPer (A7, A8) deviate largely from A0 although 
the maximum CF size produced by SCOPer very close 
to the ground truth, but a direct result of too large num-
ber of FPs. Approach A10 significantly (p < 0.05) deviates 
from the ground truth for all outcome measures, while 
approach A3 (Rel. Threshold (AA)) significantly deviates 
(p < 0.05) from the ground truth for all outcome meas-
ures except D50. Approach A6 (Change-O) is the only 
approach that always agrees with the ground truth.

In summary, our simulations show the A1 (unique 
junctions) and A2 (subclones) should not be used as sur-
rogates for CFs. In addition, more sophisticated meth-
ods like partis and the alignment free method do not 
outperform more simplistic methods. Finally, Change-O 

(A6) does seem to perform a little better compared to 
the other methods and is always in agreement with the 
ground truth. At the same time, we see there is room for 
improvement and that performance may differ for differ-
ent datasets.

Approaches differ in their ability to reconstruct CFs 
when not considering the LC
To investigate the potential influence of LCs on the 
CF reconstruction we performed a concordance anal-
ysis to determine the potential of the LC to split CFs 
if it is incorporated in the reconstruction process 
(Fig.  6; Supplementary Table  1 (S5)). For D4 (healthy 
donor; low sequencing depth) we observe a very high 
concordance (approximately 1) for all approaches, 
indicating that the LC has virtually no effect on the 
reconstruction. For dataset D5 (healthy donor, high 
sequencing depth) we observe a larger range of con-
cordance (0.5–0.95) indicating that the LC may affect 
the reconstruction of CFs. In particular, we observe 
that for A6 (Change-O), which came closest to the 
ground truth (Fig.  5) and A9 (partis) the effect of 
the LC might not be neglected. The concordance we 
find for A6 is lower compared to previous research in 
which a concordance of over 80% was established for 

Fig. 4 Performance as measured by the sensitivity, Precision, F1 and Jaccard index for all approaches applied to two samples from 3 datasets. The 
lower and upper hinges correspond to the 25th and 27th percentiles. Black lines show the median. Whiskers denote 5th and 95th percentiles. Each 
dot represents a sample. Dots beyond the Whiskers represent outliers
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Fig. 5 Comparison of outcome measures to ground truth. Approach A0 represents the known ground truth of the simulated data. The red dashed 
lines show the mean ground truth. Red dots represent mean values. Asterisks on the x-axis represent significant differences with the ground 
truth based on the repeated-measures model (p < 0.05). A1, A2, A7, A8 were excluded from the model. The lower and upper hinges correspond 
to the 25th and 27th percentiles. Black lines show the median. Whiskers denote 5th and 95th percentiles. Each dot represents a sample. Dots 
beyond the Whiskers represent outliers
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HC-based CFs when reconstructed with SCOPer or 
Change-O [18]. In another study that used partis, it 
was claimed that for larger samples the concordance 
could even become much lower [19]. Approach A10 
(alignment free) results in a high concordance for D5, 
which is a result of the many smaller but incorrect CFs 
produced by this method (Figs. 3 and 4). The high con-
cordance of D4 is a result of its low sequencing depth 
and because the D4 repertoires were generated from 
sorted SARS-CoV-2 spike-reactive B cells from unex-
posed and unvaccinated healthy donors resulting in an 
enrichment of specific HCs and LCs [42] (Supplemen-
tary Table 1 (S5)).

In summary, we conclude that different approaches dif-
fer in their ability to correctly reconstruct CFs when not 
considering the LC. Moreover, Change-O (A6) does not 
outperform the other approaches despite our simulations 
showing that A6 closely resembled the ground truth for 
all outcome measures.

Identification of shared clonal families
In addition to the outcome measures we included for the 
regression analysis, we also asked if different approaches 
result in different numbers of identified shared CFs 
between samples of three selected datasets. We excluded 
SCOPer (A7, A8) from this analysis. Overall, the num-
ber of shared CFs ranges between 0.3 and 12% (Fig.  7; 
Supplementary Table 1 (S6)). For D2 with samples from 
three patients we find 0.02–2.2% shared CFs. This is 
lower than found in a previous study with about 0.02% 
shared CFs among 10 subjects sequenced at a much 
higher depth [8]. As expected, the number of shared CFs 

between patients (D9.2) is lower compared to the shared 
CFs found in a single patient (D9.1 and D9.2). Within 
each dataset, the number of shared unique junction 
sequences (A1) and number of shared subclones (A2) 
is smaller compared to the number of shared CFs (A3 
– A10) except for A1 for dataset D9.1. For dataset 9.2 
(single RA patient) we compared the number of shared 
dominant CFs of the three samples that were obtained 
from the synovial tissue (ST), synovial fluid (SF) of the 
left knee, and synovial fluid of the right knee. Two shared 
dominant CFs were identified by all approaches between 
the two SF samples. In addition, two and five shared 
dominant CFs were identified by approach A6 (Change-
O) between the ST and SF samples. These numbers of 
shared dominant clones are in agreement with the num-
bers reported in an earlier study [27].

In summary, the number of shared (dominant) CFs 
identified varies between the approaches but is in line 
with previous research. However, from the limited data 
we used and without knowing the ground truth, we can-
not establish if differences between the approaches are 
statistically or biologically significant.

Discussion
In this work, we compared eight different approaches 
for the reconstruction of CFs in addition to a method 
that only considers unique junction sequences and a 
method that only considers subclones. We applied these 
approaches to different bulk and single cell datasets and 
simulated data to establish the effect on different out-
come measures, the identification of shared clones, and 
LC concordance.

Fig. 6 Heavy and light chain concordance. Concordance was calculated for all approaches except SCOPer (A7, A8) using the three samples 
from the single cell datasets D4 (low sequencing depth) and D5 (high sequencing depth). Concordance was defined as the fraction of CFs that are 
split in two or more CFs if the LC would be incorporated in the reconstruction process
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We showed that most approaches for CF reconstruc-
tion perform similarly except for SCOPer (A7, A8) that 
produces fewer and larger CFs compared to the other 
approaches, which is likely caused by the similarity meas-
ure (eigen-gap) of this method, which was only tested on 
simulated data (personal communication) [15, 16]. More-
over, the outcomes from approaches A1 (unique junction 
sequences) and A2 (subclones) deviate much less than 
expected from other reconstruction approaches, even 
after controlling for the differences in sequencing depth 
and mutation load of the various datasets. The alignment 
free method (A10) seems to incorrectly inflate the num-
ber of CFs and resulted in a very large number of CFs for 
single cell dataset D5. Therefore, based on the experimen-
tal data it seems fair to conclude that simple approaches 
such as only setting a relative similarity threshold for the 
amino acid junction sequence (A4) perform equally well 
as more sophisticated methods like A9 (partis).

Our regression analyses did show that sequencing 
depth and mutation load can have a significant effect 
on the outcome measures. Increased sequencing depth 
increases the number of (dominant) CFs and repertoire 
diversity but decreases the average CF size. Increased 
mutation load tends to correlate with an increased num-
ber of CFs and a decreased CF size, which might be 
related to the observation that more mature repertoires 
generally harbors more somatic mutation. Including 
results from our simulations, it is clear that A1 (unique 
junctions) and A2 (subclones) should not be used as 
surrogates for CFs despite their seemingly similarity to 
other approaches when applied to experimental data. 

Moreover, the simulations show that more sophisticated 
methods like partis (A9) and the alignment free method 
(A1) do not outperform more simplistic methods. Finally, 
Change-O (A6) seems to perform little better compared 
to the other methods and is always in agreement with the 
ground truth. However, Change-O does not outperform 
the other approaches in the LC concordance analysis. 
In general, our LC concordance analysis shows that the 
extent to which the LC will improve the reconstruction of 
CFs depends on the dataset and the approach. Finally, we 
showed that the number of shared (dominant) CFs iden-
tified varies between the approaches.

We define shared CFs as groups of BCRs from different 
individuals or different tissues that have BCRs with highly 
similar or identical sequences. Their existence can be 
explained by the possibility of Ag-driven CF convergence 
[55]. Shared CFs are generally identified based on their 
similarity (which can be defined in several ways). Alterna-
tively, one can attempt to experimentally identify shared 
CFs using a binding assay if the Ag is known. Since meth-
ods for CF reconstruction are applied to single samples, 
they can never group ‘shared’ CFs together since, by defi-
nition, these exist in separate samples. Therefore, in our 
approach, we first merged different samples together prior 
to the identification of shared clones. We did not change 
the similarity thresholds for the identification of shared 
CFs. However, it is conceivable that for the identification 
of shared CFs these should be less stringent compared 
to the thresholds used for CF reconstruction. This would 
require to have a set of shared CFs that have been veri-
fied to bind to the same Ag. Another complication in the 

Fig. 7 A Percentage and (B) absolute number of shared CFs. We identified the number of shared clones among three samples identified 
by different approaches (except SCOPer). D9.1: three single GC samples from a single chronic sialadenitis patient. D9.2: three samples 
from peripheral blood from three RA patients. D9.3: three Synovial tissue/fluid samples from a single RA patient but different joints. Note that A10 
(alignment free) could not be applied to dataset D9.1
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identification of shared CFs is the fact that these clones 
may use different V and J genes. Consequently, any CF 
reconstruction method that first partitions the sequences 
based on gene usage will miss large part of the shared CFs. 
In our approach we also neglected this complication and 
applied the reconstruction methods as designed. Given 
the limited amount of data we cannot establish if differ-
ences between the approaches are statistically or biologi-
cally significant. In general, our results show that there is 
room to further improve methods for CF reconstruction.

We note that there are limitations to our study. Firstly, 
we included a limited set of eight datasets (24 samples) 
which may not be fully representative. Moreover, addi-
tional datasets and/or samples would give more power 
to detect differences between the approaches and/or 
to include additional terms in our regression model to 
improve the fit and interpretation. In addition, additional 
datasets would be required to, for example, determine 
differences between DNA and RNA-based repertoires, 
or to determine specific differences for more homogene-
ous repertoires (like our single GC data) and more het-
erogeneous repertoires obtained from blood. But also, 
the inclusion of additional single cell datasets that are less 
biased in terms of sequencing depth. Secondly, the six 
simulations we performed restricts the power to detect 
differences but, nevertheless, give a first indication of the 
true performance of the different approaches. However, 
it would be interesting to more systematically simulate 
data at different sequencing depth, mutation loads, rep-
ertoire diversity, distribution of (shared) mutations, etc. 
Simulations would also enable the identification of effect 
of sequencing errors (or allelic variants) on CF inference. 
They affect the similarity between sequences. Because 
we know CF ground truth in simulations, we can evalu-
ate CF inference errors caused by sequencing errors. 
Thirdly, in our evaluation we used default settings for 
approaches A6 – A10, and only one similarity thresh-
old choice for approaches A3-A5. Ideally, all approaches 
should have been tried at various settings of their param-
eters to reveal further variability in the results. In addi-
tion, we could have included other approaches such as 
reconstruction that based on all CDR regions, or to use 
dedicated approaches for reconstruction based on sin-
gle cell data and that incorporate both the HC and LC 
[56]. However, since this would significantly increase 
the amount of computation, we decided not to do this. 
Moreover, in practice it would also be difficult to decide 
on the best parameterization without having knowledge 
about the ground truth or other information to guide 
the settings. The inclusion of the D gene might further 
improve CF reconstruction. Several approaches have 
been proposed for the identification of the D-gene recon-
struction [57, 58]. IgBLAST [38] and IMGT/V-QUEST 

[59] also provide information about sequence D-gene 
assignments. However, since the D genes are small and 
variable, the assignment is not always reliable and can 
provide a source of error. Fourthly, we defined the muta-
tion load based on the V and J genes only since it is cur-
rently impossible to reliably determine the mutations in 
the junction region. Hence, our mutation load underes-
timates the true number of mutations and, consequently, 
the effect of mutations may even be larger than currently 
established by our regression model. Finally, our analyses 
mainly focused on several basis outcome measures such 
as number of (dominant) CFs, size, and D50. However, 
the real interest is to determine if different approaches, 
and hence differences in these outcome measures, would 
lead to a different interpretation of the data and a differ-
ent biological conclusion given the research question.

Currently, a range of approaches to infer CFs from 
AIRR-seq data have been developed and were published 
only after we did evaluation [19, 60–62]. In [62] authors 
proposed to combine probabilistic models that capture 
the receptor generation and selection statistics with 
adapted clustering methods to achieve consistently high 
inference accuracy, their approach automatically lever-
ages the phylogenetic signal of shared mutations in dif-
ficult repertoire subsets. In [60] authors proposed an 
approach based on multi-objective clustering. Their CF 
inference approach requires V(D)J annotations. Note, 
that this method uses normalized Levenshtein distance 
for sequence distance calculation, thus, it is useful for 
reconstruction of CFs with possible indels due to somatic 
hypermutation. The essential direction for develop-
ment of the methodology for CF inference is creation of 
approaches that use paired HC/LC chain data [19, 61]. 
This became possible as a result of the development of 
single cell sequencing technologies (e.g., 10X Genomics, 
[63]). As a consequence, future BCR CF inference evalu-
ation studies may be performed on larger data with BCR 
HC/LC paired information.
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FP, and FN cases produced by the ten approaches when applied to six 
samples from three simulated datasets (D10, D11, D12). Supplementary 
Figure 7. Normalized number of TP, TN, FP, and FN cases produced by 
the ten approaches when applied to six samples from three simulated 
datasets (D10, D11, D12).
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