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Abstract

Background: Candida albicans resides on epithelial surfaces as part of the physiological microflora.
However, under certain conditions it may cause life-threatening infections like Candida sepsis.
Human B-defensins (hBDs) are critical components of host defense at mucosal surfaces and we
have recently shown that hBD-2 and hBD-3 are upregulated in Candida esophagitis. We therefore
studied the role of Candidate signalling pathways in order to understand the mechanisms involved
in regulation of hBD-expression by C. albicans. We used the esophageal cell line OE21 and analysed
the role of paracrine signals from polymorphonuclear leukocytes (PMN) in an in vitro model of
esophageal candidiasis.

Results: Supernatants of C. albicans or indirect coculture with C. albicans induces upregulation of
hBD-2 and hBD-3 expression. PMNs strongly amplifies C. albicans-mediated induction of hBDs. By
EMSA we demonstrate that C. albicans activates NF-kB and AP-1 in OE2I cells. Inhibition of these
pathways revealed that hBD-2 expression is synergistically regulated by both NF-kB and AP-I. In
contrast hBD-3 expression is independent of NF-kB and relies solely on an EGFR/MAPK/AP-1-
dependent pathway.

Conclusion: Our analysis of signal transduction events demonstrate a functional interaction of
epithelial cells with PMNs in response to Candida infection involving divergent signalling events that
differentially govern hBD-2 and hBD-3 expression.
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Background

Candida albicans colonize distinct microanatomical
regions such as the oro-gastointestinal tract as a commen-
sal, but also accounts for more than 50% of all fungal sys-
temic infections [1]. Candida esophagitis represents a
severe threat to an immunocompromised body and, espe-
cially in neutropenic patients, often is the first manifesta-
tion before Candida sepsis develops [2,3]. Host defense
mechanisms preventing mucosal (e.g. esophageal) candi-
diasis are poorly understood, but include both innate and
adaptive responses [4,5].

The gastrointestinal epithelial layer represents a barrier
that is usually adequate to restrain commensal microbes,
but is often insufficient to protect against microbial path-
ogens. Once this physical barrier is penetrated, recogni-
tion of invading microbiota is the first step in the
initiation of a fast immune response and involves the acti-
vation of pattern recognition receptors by microbial path-
ogens and their products [6-8]. C. albicans have been
shown to activate a subset of pattern recognition recep-
tors, the Toll-like receptors (TLRs). This family of trans-
membrane receptors recognizes a broad variety of
signature motifs on microbes and transduces signals lead-
ing to the activation of transcription factors [9], produc-
tion of cytokines and antimicrobial peptides [10,11].
However there is some controversy and inconclusive data
which TLR subtypes are activated by C. albicans. Some
reports indicated a critical role for TLR2 and TLR4 in acti-
vating the host defense response alone or in combination
with the ss-glucan receptor Dectin-1,[5,12,13] whereas
other studies showed that TLR-1 and TLR-6 are responsi-
ble for the recognition of C. albicans [14,15].

In addition the downstream effectors in the immune
response against C. albicans are largely unknown. There is
growing evidence that human B-defensins (hBDs) are crit-
ical components of both the innate and adaptive immune
responses to Candida infections with distinct antifungal
efficacies and mechanisms for hBD-2 and hBD-3 [16-19].
Expression of hBDs is regulated by a plethora of proin-
flammatory cytokines like IL-13, TNF-a and EGF-receptor
ligands activating downstream effectors like the transcrip-
tion factors NF-xB or AP-1 [20-22]. hBDs are secreted by
epithelial cells and protect the gastrointestinal mucosa by
antimicriobial activity as well as by chemotactic proper-
ties recruiting polymorphonuclear leukocytes (PMN) to
the site of infection [21,23]. Transepithelial migration of
PMN:s is observed during oral Candida infection and is
believed to play a crucial role in the clearance of infection
and in epithelial homeostasis [5,24]. This protective phe-
notype is associated with production of epithelial proin-
flammatory cytokines, including IL-8, IL-1 and TNF-a.
However, the mechanisms by which PMNs and epithelial
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cells interact to protect mucosal surfaces from C. albicans
invasion are mostly unknown.

We have recently shown that hBD-2 and hBD-3 are highly
expressed in Candida esophagitis and that the a-defensins
Human Neutrophil Peptides 1-3 were also upregulated
[25] indicating involvement of neutrophils in the
immune response to the C. albicans infection [26]. This is
in line with the observation that IL-8 is strongly expressed
in the mucosa of patients suffering by Candida infection
[25], since this cytokine is involved in recruitment of pol-
ymorphonuclear leukocytes (PMNs) to sites of microbial
infection [27].

In the present study we explored the mechanisms
involved in the induction of hBD expression in an in vitro
model of Candida esophagitis. Using this co-culture
model we analyzed the contribution of PMNs in the regu-
lation of epithelial hBD expression. We found that hBD-2
and hBD-3 are strongly upregulated through high concen-
trations of C. albicans alone. If lower concentrations of C.
albicans were used, only a moderate induction of these
hBDs were observed that was strongly enhanced by cocul-
ture of the epithelial cell line with PMNs, emphasizing the
important role of mesenchymal-epithelial interactions in
early host defense against fungal infection. Furthermore
we were able to show that the NF-xB and MAPK signalling
pathways contribute to the regulation of hBD-2 and that
hBD-3 is a downstream target of a distinct EGFR/MAPK/
AP-1 pathway in Candida esophagitis.

Results

Supernatants of C. albicans induce hBD expression in
OE2] cells

To establish an in vitro model for Candida esophagitis we
first treated several oesophageal cell lines (i.e. OE21,
KYSE70, KYSE7150, KYSE7180, KYSE410 and Colo680N)
with established inducers of hBD-expression. Only for the
OE21 cell line a reliable induction of the mRNA of hBD-
2 and hBD-3 could be detected (Figure 1A). We next chal-
lengend OE21 cells with supernatants of C. albicans cell
culture growing under various concentrations of C. albi-
cans. Supernatants of C. albicans induce upregulation of
hBDs in a concentration-dependent manner. For the
supernatants of the density of 0.5 x 104 C. albicans cells/
ml no significant induction of hBD-2 and hBD-3 was
detected (Figure 1B). In contrast the supernatants of 1 x
105 C. albicans cells/ml resulted in a significant upregula-
tion of hBD-3 and to a smaller extent of hBD-2 (Figure
1B). hBD1 expression was not altered by one of the induc-
ers or the supernatants (Figure 1).
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Supernatants of C. albicans induce hBD expression in OE21 cells. OE21 cells were stimulated with A) TNF-a (20 ng/
ml), IL-1B (20 ng/ml) or B) supernatants of 0.5 x 104 C. albican/ml or | x 105 C. albican/ml for 24 h. hBD-1, hBD-2 and hBD-3
gene expression was assessed by real time RT-PCR. Means £ s.d. of three independent experiments performed in triplicate are
shown, * indicates p-value <0,05.
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PMNs significantly enhances hBD-2 and hBD-3 expression
during C. albicans infection

To elucidate a potential functional interaction of PMNs
and epithelial cells in the immune response to C. albicans
infection we established a transwell coculture model. In
this two-compartment model we tested the effect of a coc-
ulture of OE21 cells, PMNs from healthy donors and C.
albicans in different settings: 1) direct contact of OF21
cells with PMNs and 2) direct contact of OE21 cells with
C. albicans. The corresponding third component of the
system (i.e. C. albicans or PMNs) was cocultured in the
transwell system allowing for the interaction of auto- and
paracrine factors (Figure 2). Since higher cell numbers
than 0.5 x 10* C. albicans cells/ml or 0.5 x 10° PMN/ml
repressed growth of OE21 cells in the direct setting (data
not shown), all experiments were conducted with these
concentrations of C. albicans and/or PMNs. The direct or
indirect coculture of OE21 with C. albicans had only small
effects on the expression of hBD-2 (Figure 3A) and hBD-3
(Figure 3B) comparable with effects observed with super-
natants of the low concentration of C. albicans (Figure
1B). The direct interaction of OE21 cells with PMNs led to
an increase of the expression of both hBDs (Figure 3A and
Figure 3B). The interaction of OE21 cells with PMNs lead
to a significant upregulation of C. albicans induced hBD-2
and hBD-3 expression compared to the induction with C.
albicans or PMN alone (Figure 3A and Figure 3B). Substi-
tution of the live C. albicans by supernatants of the density
of 0.5 x 104 C. albicans cells/ml also lead to the synergistic
effects. To keep the manuscript mor concise we only show
the data for the live C. albicans.

C. albicans activate NF-xB in OE21 cells

To further analyse the mechanisms involved in the regula-
tion of hBD expression during Candida esophagitis we
determined whether the observed induction of hBD-2 and
hBD-3 expression by C. albicans was associated with the
activation of NF-kB. This transcription factor has been
shown to be a central regulator of hBD-2 expression
[22,28,29] but there is some controversy if NF-«B is also
involved in the regulation of hBD-3 expression
[20,30,31]. By EMSA we could show that NF-xB is acti-
vated (Figure 4) in association with C. albicans mediated
induction of B-defensin expression. In parallel to the
observed dependency of defensin expression on the cell
number of C. albicans a concentration dependent activa-
tion of NF-kB was observed (Figure 4A). The coculture of
OE21 cells with PMNs or C. albicans also led to an
increased DNA-binding of NF-xB that was further
enhanced in the transwell setting (direct PMN and C. albi-
cans indirect; Figure 4B). Supershift assays revealed that
the NF-xB complex consisted of the p50 and p65 subunits
(Figure 4C).
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NF-«B is involved in the induction of hBD-2 but not hBD-3
expression

To evaluate the putative contribution of NF-xB in C. albi-
cans induced hBD expression we transiently transfected
cells with siRNA directed against RelA/p65 as the tran-
scriptional active subunit of the p65/p50 NF-«xB complex
[32]. Transfection of OFE21 cells led to a significant reduc-
tion of the expression of RelA/p65 (Figure 5A). Further-
more the induction of NF-kB by C. albicans was inhibited
by this strategy as shown by EMSA (Figure 5B). This reduc-
tion of NF-kB activation strongly reduced the C. albicans
mediated induction of hBD-2 expression but had no effect
on the hBD-3 expression (Figure 5C). In the coculture set-
tings the reduction of RelA/p65 expression also attenu-
ated hBD-2 induction (data not shown). These results
support a critical role of NF-xB in regulating hBD-2 but
not hBD-3 expression.

Role of AP-1 and the MAPK Pathway in C. albicans
mediated [-defensin induction

Our results indicated a critical role for NF-«xB in C. albicans
mediated induction of hBD-2 but not for the regulation of
hBD-3 expression. Since the hBD-3 promotor contains a
functional binding site for the AP-1 transcription factor
[33] we conducted EMSA with a probe containing an AP-
1 consensus sequence. C. albicans alone (Figure 6A) or in
the coculture setting (Figure 6B) activated AP-1 in OE21
cells and supershift experiments identified c-jun as one of
the central subunits involved (Figure 6C). Activation of
the c-jun/AP-1 complex by the MAPK pathway is well
established [34,35] and a recent report indicated a role of
this pathway in the response of macrophages to the infec-
tion with C. albicans [9]. To analyse the contribution of
the MAPK/AP-1 pathway in the induction of -defensin
induction by C. albicans pharmacological inhibitors selec-
tive for individual pathway were utilized.

As shown in Figure 7A and 7B inhibition of each of the
major MAPK pathways resulted in a reduction of hBD-2
and hBD-3 induction by C. albicans.

Activation of the EGFR is an upstream event in regulation
of hBD-3 expression

Upstream of the MAPK pathway several growth factor
receptors have been shown to be involved in the immune
response to microbiota [20,36,37]. To investigate the
upstream events leading to the activation of the MAPK
pathway in infection with C. albicans we used blocking
antibodies against several growth factor receptors. The
results revealed a clear involvement of the EGF-receptor in
the regulation of hBD-3 expression by C. albicans.
Whereas induction of hBD-2 expression was slightly
inhibited by a neutralizing antibody targeting EGFR trans-
activation, a significant reduction of C. albicans-induced
hBD-3 expression observed (Figure 8).
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PMNs enhances hBD-2 and hBD-3 expression during C. albicans infection. OE2| cells were stimulated with 0.5 x 104
C. albican/ml or 0.5 x 106 PMNs/ml alone or indicated combinations in a transwell setting for 24 h. A) hBD-2 and B) hBD-3
gene expression was assessed by real time RT-PCR. Means £ s.d. of three independent experiments performed in triplicate are
shown, * indicates p-value <0,05, ** indicates synergistic effects with a p-value <0,05.
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Figure 4

C. albicans activate NF-xB in OE21 cells. OE21 cells were stimulated with A) 0.5 x 104 C. albican/ml, | x 105 C. albican/
ml, or B) 0.5 x 106 PMNs/ml alone or with direct contact with 0.5 x 106 PMNs/ml and coincubation with 0.5 x 104 C. albican/
ml in a transwell setting for indicated time periods. Nuclear extracts of these cells were submitted to EMSA using a radiola-
belled probe for NF-kB. The arrow indicates the p50/p65 heterodimer. C) Supershift experiments with antibodies directed
against the p50 or p65 subunit of NF-kB on nuclear extracts of OE21 cells treated for | h with | x 105 C. albican/ml.
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Figure 5

NF-kB is involved in the induction of hBD-2 but not hBD-3 expression. OE2| cells were transfected with a control
siRNA or a siRNA directed against RelA/p65. A) Total protein extracts were submitted to Western Blotting for the analysis of
RelA/p65 using HSP90 for normalization and B) EMSA on nuclear extracts of siRNA transfected OE21 cells treated 9 with | x
105 C. albican/ml for | h. Representative results from three independent experiments are shown. C) SiRNA transfected OE2|
cells were incubated with | x 105 C. albican/ml for 24 h and hBD gene expression was assessed by real time RT-PCR. Means +
s.d. of three independent experiments performed in triplicate are shown, * indicates p-value <0,05.
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Figure 6

Role of AP-1 and the MAPK Pathway in C. albicans mediated hBD induction. OE2| cells were stimulated with A) 0.5
x 104 C. albican/ml, | x 105 C. albican/ml, or B) 0.5 x 106PMNs/ml alone or with direct contact with 0.5 x 106 PMNs/ml and
coincubation with 0.5 x 10 C. albican/ml in a transwell setting for indicated time periods. Nuclear extracts of these cells were
submitted to EMSA using a radiolabelled probe for AP-1. The arrow indicates the AP-1 complex. C) Supershift experiments
with an antibody directed against the c-Jun subunit of AP-1 on nuclear extracts of OE21 cells treated for | h with | x 105 C.

albican/ml.
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Figure 7

Role of AP-1 and the MAPK Pathway in C. albicans mediated hBD induction. OE2| cells were preincubated with
inhibitors for MEK (PD98059, 10 uM), p38 (SB203580 10 uM) and JNK (SP600125 20 uM) kinase pathways for | h and then
incubated with direct contact with 0.5 x 106 PMNs/ml and coincubation with 0.5 x 10# C. albican/ml in a transwell setting for
additional 24 h. A) hBD-2 and B) hBD-3 gene expression was assessed by real time RT-PCR. Means % s.d. of three independent
experiments performed in triplicate are shown, * indicates p-value <0,05.
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Figure 8

Activation of the EGFR is an upstream event in regu-
lation of hBD-3 expression. OE2| cells were preincu-
bated with a blocking EGFR antibody (10 pg/ml) for | h and
then incubated with direct contact with 0.5 x 106 PMNs/ml
and coincubation with 0.5 x 104 C. albican/ml in a transwell
setting for additional 24 h. hBD gene expression was
assessed by real time RT-PCR. Means  s.d. of three inde-
pendent experiments performed in triplicate are shown, *
indicates p-value <0,05.

TGF-c is involved in EGFR mediated hBD-3 induction
Finally we searched for the ligand activating the EGFR. By
using blocking antibodies for the established EGFR-lig-
ands EGF, HB-EGF, amphiregulin and TGF-a we were able
to show that TGF-a is involved in the EGFR mediated
upregulation of hBD-3 expression (Figure 9).

Discussion

Candida esophagitis represents a severe threat to an
immunocompromised body and the course of the infec-
tion is determined by both pathogen- and host-depend-
ent factors [15,24,38,39]. It is well established that
epithelial cells of the esophagus are the central target of an
oro-esophageal invasive Candida infection but there are
only very limited data on the host response preventing a
Candida esophagitis. In the present study we identified the
NF-kB and MAPK/AP-1 pathways as central regulators of
epithelial hBD-2 and hBD-3 expression during C. albicans
infection. Furthermore we were able to show a crucial role
of the interaction of PMNs with the epithelial cell com-
partment for the induction of hBD-2 and hBD-3 expres-
sion during Candida infection of esophageal epithelial
cells. Finally hBD-3 expression is dependent on transacti-
vation of EGFR by TGF-a. This is the first report delineat-
ing molecular mechanisms leading to upregulation of
hBD-2 and hBD-3 in esophageal Candida infection sug-
gesting differential regulation of these two central epithe-
lial antibiotic peptides in response to a C. albicans
infection. We were able to show a concentration depend-
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ency of hBD-2 and hBD-3 induction upon stimulation
with C. albicans supernatants (Figure 1B). This dose
dependent effect could be at least in part be mediated
through stronger induction of NF-«B (Figure 4) and AP-1
(Figure 6) through higher concentrations of C. albicans. A
comparable concentration-dependent effect of superna-
tants of environmental airborne fungi on cytokine release
of eosinophils [40] and of C. albicans on the activation of
NF-kB [9] was recently reported.

There is some controversy about the relevance of the NF-
kB and AP-1 binding sites in the promotor of hBD-2 for
full induction of hBD-2 expression after treatment with
IL-1B or infection with microbiota. Wehkamp and col-
legues showed that the parallel activation of NF-xB and
AP-1 is needed for full transcriptional activation of the
hBD-2-promotor after IL-1f stimulation, treatment of
keratinocytes with supernatants of Pseudomonas aeruginosa
[22], or E. coli mediated hBD-2 induction [41]. On the
other hand another study demonstrated induction of
hBD-2 expression through Fusobacterium nucleatum in
human gingival epithelial cells independent of NF-xB
activation [42] and there is also evidence for induction of
hBD-2 through Salmonella enteritidis [43] or H. pylori
[44] in the absence of functional AP-1. In the present work
we were able to show that both NF-«B and AP-1 activation
are required for full upregulation of the hBD-2 mRNA
after treatment with either supernatants of C. albicans or
the coculture of C. albicans with PMNs. Inhibiton of the
NF-xB or of the MAPK/AP-1 pathway significantly
reduced the induction of hBD-2 expression confirming
the central role of both transcription factors. These obser-
vations are in line with recent results for H. pylori infec-
tion [20] and the effects of lactobacilli and the VSL#3
bacterial mixture on enterocytes [45]. The role of NF-«B is
less clear in the regulation of hBD-3 expression. In con-
trast to a recently reported role of NF-«B in the regulation
of the hBD-3 gene in keratinocytes [31] the majority of
data failed to show a functional relevance for NF-«xB in
controlling hBD-3 expression [33,46]. By using siRNA tar-
geting the RelA/p65 subunit of NF-kB we could demon-
strate that C. albicans mediates hBD-3 upregulation
through a MAPK/AP-1 pathway independently of the
observed NF-kB acitvation. To investigate the proposed
role of PMNs in the immune response the C. albicans
infection [25,26] we established an in vitro model (Figure
2). PMNs alone induced NF-xB and AP-1 leading to hBD-
2 and hBD-3 expression. Coincubation of PMNs with C.
albicans lead to a significant upregulation of hBD-2 and
hBD-3 expression compared to effects of PMNs or C. albi-
cans alone. Inhibition of the MAPK/AP-1 pathway
reduced the expression of both hBDs under this condi-
tion. The fact that PMNs alone induced hBD expression
indicated that PMNs could contribute to the induction of
antimicrobial peptides in epithelia during inflammation.
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TGF-a is involved in EGFR mediated hBD-3 induction. OE21 cells were preincubated with the blocking EGFR antibody
(10 pg/ml) or neutralizing antibody against EGF (0,5 pg/ml), HB-EGF (10 pg/ml), amphiregulin (10 pg/ml) or TGF-au (I pg/ml)
for | h and then incubated with direct contact with 0.5 x 106 PMNs/ml and coincubation with 0.5 x 104 C. albican/ml in a tran-
swell setting for additional 24 h. hBD gene expression was assessed by real time RT-PCR. Means % s.d. of three independent
experiments performed in triplicate are shown, * indicates p-value <0,05.
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There is some evidence that a TLR-4 mediated interplay
between PMNs and epithelial cells is important for the
protective response against Candida infections [5] but the
exact mechanisms remained elusive. One the one hand
PMNs induced expression and release of IL-6 and IL-8 in
021 cells (Additional file 1) which might in turn activate
NF-xB and AP-1 leading to hBD-2 and hBD-3 expression.
On the other hand the induction of a TH1 response, i.e.
TNF-a and interferon-y might directly induce or enhance
the expression of hBDs as reported recently [47]. On the
other hand PMNs are able to establish an anti-fungal
response by upregulate the expression of TLR4 in epithe-
lial cells [5]. The observed more pronounced effect on
hBD-3 expression are in line with the theory that hBD-3
might be clinically more relevant than hBD-2 since hBD-
2 and hBD-3 have potent fungicidal activity against C.
albicans at micromolar concentrations, with hBD-3 being
about 10 times more fungicidal than hBD-2 [16,17,19].
Finally we demonstrated that hBD-3 expression was
induced by transactivation of the EGFR independent of
EGF (Figure 8 and 9). Many signals besides EGF converge
and result in EGFR-dependent signaling which is impor-
tant for various biological processes including normal
growth, development and as shown recently for inflam-
mation or innate immune response [48,49]. Using block-
ing antibodies for the EGFR-ligands EGF, HB-EGF,
amphiregulin and TGF-a we were able to show that most
likely TGF-a is involved in the EGFR mediated upregula-
tion of hBD-3 expression (Figure 9). Since we are also able
to inhibit the induction of hBD3 by the supernatants of 1
x 105 C. albicans cells/ml by EGFR and/or TGF-a blocking
antibodies we speculate that the EGFR-ligand is secreted
by OE21 cells. Ligands of the EGFR are expressed as trans-
membrane precursors. These are released from the cell
surface following shedding of the extracellular domain by
a family of metalloproteinases (a disintegrin and metallo-
protease (ADAM)). ADAM10, -12 and -17 are the shed-
dases of the EGFR ligands in response to various stimuli.
Since human cathelicidin cationic antimicrobial protein
(hCAP)-18 and its active peptide LL-37 have been shown
to be involved in the transactivation of the EGFR at the air-
way epithelial surfaces [50,51] it is tempting to speculate
that the activation of PMNs by C. albicans leads to secre-
tion of proinflammatory mediators including leukotriene
B4 (LTB4) and LL-37 [52,53] which in turn amplifies the
inflammatory response [54,55] and leads to the shedding
of EGFR-ligands.

In conclusion we were able to establish a complex in vitro
model for Candida infection of esophageal cells to investi-
gate the signalling events leading to upregulation of hBD-
2 and hBD-3 expression.

http://www.biomedcentral.com/1471-2172/10/36

Conclusion

This analysis of signal transduction events in esophageal
Candida infection demonstrated a potential functional
interaction of epithelial cells with PMNs and that EGFR,
NF-xB and MAPK/AP-1 are involved in divergent signal-
ling events governing hBD-2 and hBD-3 expression. Espe-
cially the observed effect of PMNs on hBD expression
might explain the high incidence of Candida esophagitis
and Candida related deaths in neutropenic patients.

Methods

Materials

Cell culture medium was purchased from PAA-Labs (Linz,
Austria), fetal bovine serum from Seromed (Berlin, Ger-
many), recombinant TNF-a from Sigma. Supershift and
Westernblot p65, p50 and c¢-Jun antibodies were from
Santa Cruz Biotechnology (Santa Cruz, CA).

Organism and Cell culture

OE21 cells, a moderately differentiated oesophageal squa-
mous carcinoma cell line were cultured in RPMI 1670
supplemented with 10% fetal calf serum and divided
every 3 days. Cells for experimental purposes were cul-
tured in 6 well cell culture plates with the same medium
and used at subconfluence. C. albicans (a clinical isolate
from oesophagitis [25]) was taken fom a frozen strain sus-
pension (BHI, glycerine). 10 ul was transferred into 10 ml
TSB-Bouillon and incubated overnight at 37°C. The cells
were then separated from the medium by centrifugation at
2800 x g for 5 min, washed two times with PBS, and
finally resuspended in RPMI for each experiment. The
final concentration of C. albicans was 1 x 104/ml.

Inhibitor studies

OE21 cells were pre-treated with specific inhibitors or
neutralizing antibodies for 30-60 min prior to and during
Candida or cytokine stimulation. The neutralzing antibod-
ies against the EGFR (Upstate, USA), TGF-a (R&D Sys-
tems), HB-EGF (R&D Systems), amphiregulin (R&D
Systems), and EGF (Pepro Tech, Germany) were used at
the indicated concentrations. Inhibitors utilized were:
PD98059 (Calbiochem) at 10 uM, SB203580 (Tocris,
Ellusville, USA) at 10 uM, SP600125 (Tocris, Ellusville,
USA) at 20 puM. Inhibitor were disolved in DMSO and
DMSO was used as a vehicel control.

Generation of Supernatants from C. albicans

To analyze the effects of secreted factors from C. albicans
on OE21 cells, C. albicans were cultured with respective
medium for 48 h in the indicated density (0.5 x 104to 1 x
105 cells/ml). Before use, these conditioned media were
precleared by centrifugation (10,000 rpm for 10 min) and
used for additional experiments.
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Isolation of polymorphonuclear leukocytes (PMN)

PMN were purified using LeucoSep tubes according to the
instructions of the manufacturer (Greiner Bio-One). In
brief, 3 ml of Ficoll-Paque was preloaded in a 14 ml Leu-
coSep tube by centrifugation for 30 s at 1,000 g. The
heparinized whole-blood samples of healthy volunters
were diluted with equal volumes of PBS, and 6 ml of the
diluted blood was added to a LeucoSep tube. The cell sep-
aration tubes were centrifuged for 15 min at 800 g without
braking at room temperature. The cell suspension was col-
lected, and the cells were washed twice in PBS (for 10 min
at 640 and 470 g, respectively, for the two successive wash
steps) and resuspended in complete RPMI medium before
counting.

Stimulation with Supernatants, direct cell contact and
transwell coculture model

2 x 105 OE21 cells were seeded into a six-well culture
plate. For stimulation experiments medium was replaced
after 24 h with the C. albicans supernatants and cultured
for indicated times. For direct cell contact suspension cul-
tures of C. albicans (final concentration 0.5 x 104 cells/ml)
or PMNs (final concentration 0.5 x 10° cells/ml) were
added to the OE21 cells after initial 24 h culture and incu-
bated for the indicated times. In the transwell setting (for
a schematic representation please refer to Figure 2) 2 x 105
OE21 cells were cultured into the bottom compartment of
a six-well culture plate. After 24 h PMNs or C. albicans
were added to the bottom compartment and the corre-
sponding cell type was seeded into the top transwell com-
partment (Costar GmbH, Bodenheim, Germany) and
cultured for additional 24 h.

RNA isolation and cDNA synthesis

Total RNA was isolated using the RNeasy Kit from Qiagen
(Hilden, Germany) and reverse-transcribed into single-
stranded cDNA, as described previously [56].

Primer
The oligonucleotide sequence and product size for each
primer pair used were as described previously [25].

Quantification of gene expression by real time PCR
Real-time PCR analyses were performed as previously
described [56]. Standard curves for each mRNA were con-
structed by cloning the purified PCR-products containing
the target sequence into pCR-Blunt II-TOPO vector (Invit-
rogen). Concentration of the reference plasmid was meas-
ured spectrophotometrically and transformed into
number of copies/ul by calculation. The absolute mRNA
transcript number in each sample was calculated by use of
calibration curves. Identical results were obtained in con-
trol experiments.

http://www.biomedcentral.com/1471-2172/10/36

Cytokine profilling

Culture supernatants were cleared by centrifugation
(6.000 rpm, 5 min, 4°C) and protein concentration was
determined by the BioRad assays. For a qualitative screen-
ing for the cytokine content, samples were adjusted to
equal protein concentration and submitted to cytokine
antibody arrays (Cytokine Profiler kit, R&D systems) fol-
lowing the manufacturer's instructions.

siRNA transfection

For knock down of RelA/p65, cells were seeded into 6 well
plates (2 x 10> cells/well) and grown overnight, then
transfection with 12 pl/well RNAiFect reagent (Invitro-
gen) and 2 pg/well of either Stealth negative control
siRNA (Invitrogen) or Stealth RelA/p65 siRNA (Invitro-
gen) was performed for 48 h.

Western Blotting
Cellular lysates were prepared and western blotting was
performend as described previously [57,58].

EMSA

Nuclear extracts were prepared as described previously
[58] and incubated with a y32P-labelled oligonucleotide
containing a consensus NF-kB-binding or consensus AP-1
site (Promega; Mannheim, FRG). After 30 min incubation
at room temperature, samples were separated by gel elec-
trophoresis at 100 V and 4°C. Gels were dried and
exposed to X-ray Hyperfilm (Amersham; Freiburg, FRG).

Statistics

Data are presented as mean + SD and analyzed by Stu-
dent's t-test. A p-value < 0.05 (indicated as * in the figures)
was considered as statistically significant.
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PMNis induce IL-6 and IL-8 in OE21 cells. Supernatants of OE21 cells
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106 PMNs/ml (lower panel) for 24 h were submitted to a peptide arrays
detecting a broad panel of chemo- and cytokines.
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