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Abstract

Background: Host genetics influence the outcome of HCV disease. HCV is also highly mutable and escapes host
immunity. HCV genotypes are geographically distributed and HCV subtypes have been shown to have distinct
repertoires of HLA-restricted viral epitopes which explains the lack of cross protection across genotypes observed in
some studies. Despite this, immune databases and putative epitope vaccines concentrate almost exclusively on HCV
genotype 1 class I-epitopes restricted by the HLA-A*02 allele. While both genotype and allele predominate in
developed countries, we hypothesise that HCV variation and population genetics will affect the efficacy of
proposed epitope vaccines in South Africa. This in silico study investigates HCV viral variability within well-studied
epitopes identified in genotype 1 and uses algorithms to predict the immunogenicity of their variants from other
less studied genotypes and thus rate the most promising vaccine candidates for the South African population. Six
class I- and seven class II- restricted epitope sequences within the core, NS3, NS4B and NS5B regions were
compared across the six HCV genotypes using local genotype 5a sequence data together with global data.
Common HLA alleles in the South African population are A30:01, A02:01, B58:02, B07:02; DRB1*13:01 and
DRB1*03:01. Epitope binding to 13 class I- and 8 class –II alleles were described using web-based prediction servers,
Immune Epitope Database, (IEDB) and Propred. Online population coverage tools were used to assess vaccine
efficacy.

Results: Despite the homogeneity of genotype 1 and genotype 5 over the epitopes, there was limited promiscuity
to local HLA-alleles.Host differences will make a putative vaccine less effective in South Africa. Of the 6
well-characterized class I- epitopes, only 2 class I- epitopes were promiscuous and 3 of the 7 class-II epitopes were
better conserved and promiscuous. By fine tuning the putative vaccine using an optimal cocktail of genotype 1 and
5a epitopes and local HLA data, the coverage was raised from 65.85% to 91.87% in South African Blacks.

Conclusion: While in vivo and in vitro studies are needed to confirm immunogenic epitopes, in silico HCV epitope
vaccine design which takes into account HCV variation and host allele frequency will maximize population
coverage in different ethnic groups.
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Background
As a relatively “new” virus, only identified in 1989 [1]
and first cultured successfully in 2005 [2], there is still
much that is unknown about the hepatitis C virus
(HCV) and this has hindered the development of an ef-
fective vaccine. The following are some of the challenges
to successful HCV vaccine design.

1) The virus is highly mutable and exists as a
quasispecies within the host and genotypes cluster
geographically.

2) Host cell responses to HCV infection are poorly
defined and inconsistent among infected individuals.
CD4+ and CD8+ T-cell responses are also not cross-
protective to heterologous genotypes [3] and, to date,
there is no immunodominant epitope that is
consistently found in HCV-positive individuals [4].

3) Humans are the only natural host of HCV, and
suitable laboratory models have only been developed
recently. The chimpanzee has been infected in the
laboratory [5], but studies using this model are
expensive and limited. The mouse model for viral
pathogenesis studies promises a more practical and
plausible alternative [6,7].

Epitope-based vaccines promote an immune response
by presenting immunogenic peptides (viral genotype-
specific) bound to major histocompatibility (MHC)
molecules (host specific) to the T cell receptor. Class II-
proteins are presented to T helper cells by antigen pre-
senting cells (APCs) with the aid of the CD4 co-receptor
whereas class I- proteins are presented by the infected
target cell to cytotoxic T cells with the aid of the CD8
co-receptor. The T helper response is important in
directing and activating the immune response, including
the effectiveness of CD8+ T cells [8].An effective vaccine
must be capable of inducing and maintaining powerful
CD4 and CD8 T-cell immunity in the greatest propor-
tion of its target population.
Both HCV genotype and HLA allele frequency are dis-

tributed geographically. Viral genotype, host genetic
background [9] and HLA class I- [10] and class II- alleles
[11] are associated with both HCV disease progression
and sustained response to therapy [12]. South Africa has
diverse ethnic groups, hence a high diversity of HLA
genetic background [13]. Black Africans, including the
well-studied Zulu ethnic group, constitute the majority
(79.4%) population in the country (Statistics South
Africa, [14], http://www.statssa.gov.za/PublicationsHTML/
P03022010/html/P03022010.html). Other major popula-
tion groups include Caucasians (Europeans and Indian/
Asian,11.8%) and those of mixed race (8.8%). The pre-
dominant HCV genotype in South Africa is genotype 5a.
This little studied genotype accounts for 57% of the
HCV infections in South Africa with the very well studied
genotype 1 accounting for 23% [15]. In comparison, geno-
type 1 accounts for 70% of HCV infections in USA [16].
Hence, most peptide-based vaccines studies concen-
trate mainly on HCV genotype 1 epitopes restricted by
HLA-A*02 which is the most common HLA allele in
populations of European/Caucasian descent (New allele
Frequency Database [17], http://www.allefrequencies.net).
The binding of the epitope to the HLA-molecule is a

highly selective process as only 1 in 40–200 peptides
would bind to the HLA class I- or II- allele with high
affinity to produce an efficient immune response [18].
Computer prediction servers have made it possible to
identify potentially strong peptide binders to HLA mole-
cules that can then be tested in vitro and in vivo as
putative epitopes for peptide-based vaccines. This is a
cost- and time-saving exercise as it is expensive and
laborious to synthesize and test several 9-mer or over-
lapping peptides over long target antigens. There are
various computational prediction servers available and
their sensitivity is constantly improving, including more
than 20 prediction servers to identify HLA-II binding
peptides [19].
We hypothesize that putative vaccines based on restric-

tion by the HLA-A*02 allele and genotype 1 sequences
will not perform optimally in South Africa. The aim of
the study was, therefore, to investigate the heterogeneity
of well studied HCV epitope sequences across HCV
genotypes (with particular reference to genotype 5a)
and assess their immunogenicity against prevalent local
HLA-types in order to assess vaccine efficacy and popu-
lation coverage in the ethnically diverse South African
population. This descriptive study used web-accessible
prediction servers to predict epitope binding of recently
published putative epitopes for HCV vaccines against the
South African HLA background. The main objectives of
the study were:

1) To characterise the variation of selected published
immunogenic epitopes within popular target
antigens, focusing on South African genotype 5a data.

2) To predict the immunogenicity of these epitopes and
their variants against the background of prevalent
alleles in the South African target population.

Results
Degree of conservation between epitopes
The Weblogo consensus was generated from individual
alignments of all available sequence data of HCV geno-
types (1a, 1b, 2, 3, 4, 5a and 6). Thus, seven web logos
were generated for each of the 13 chosen class I- (N=6)
and class II- (N=7) epitopes (Table 1). The epitopes
chosen for this study are well characterized and refer-
enced (Table 1). NS4B2422-2433 has only one reference

http://www.statssa.gov.za/PublicationsHTML/P03022010/html/P03022010.html
http://www.statssa.gov.za/PublicationsHTML/P03022010/html/P03022010.html
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Table 1 Six well studied HLA class I- and seven class II- restricted HCV immunodominant epitope sequences were
chosen from previous publications for this study

CLASS I EPITOPES SEQUENCE (Subtype) RESTRICTION REFERENCE NUMBER OF REFERENCES
LISTED AT IEDB

NS3 1073-1081 CINGVCWTV (1a) A02 [20,21] 78

NS3 1406-1415 KLVALGINAV (1a) A02 [22,23] 70

NS4 1807-1816 LLFNILGGWV (1a) A02 [24,25] 39

NS4 1851-1859 ILAGYGAGV (1) A02 [22] 29

NS5B 2422-2433 MSYSWTGALVTP (1) B15 [22] 1

NS5B 2727-2735 GLQDCTMLV (1) A02 [22] 22

CLASS II

Core 17-35^ RRPQDVKFPGGGQIVGGVY (1) Undetermined Class II allele [26] 1

Core 21-40^ DVKFPGGGQIVGGVYLLPRR (1) HLA-DRB1*1501 [21,26,27] 13

NS3 1248-1261 GYKVLVLNPSVAAT (1) HLA-DRB1*1201; 1101; 1301; 0401 [21,25,28] 5

NS4A 1781-1800 LPGNPAIASLMAFTAAVTSP (1a) Undetermined Class II allele [25] 3

NS4A 1801-1820 LTTSQTLLFNILGGWVAAQL (1a) Undetermined Class II allele [25,27,29] 4

NS5 2571-2590 KGGRKPARLIVFPDLGVRVC (1a) Undetermined Class II allele [4,25,27,29] 4

NS5 2661-2680 QCCDLDPQARVAIKSLTERL (1a) Undetermined Class II allele [27,29] 4

^Class II- restricted epitopes in the core region are overlapping sequences.
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(others have 22–78 references) but it is also the only one
that has a different restriction allele i.e. B15. The HCV
consensus was derived from the 7 generated weblogos
and the percentage conservation within each genotype
over the epitope region was calculated as described in
the Methods (Table 2 and Additional file 1: Figure S1).
The comparative variability of the epitope sequences

within and across the different genotypes is shown in
Table 2 The sequences of the chosen epitopes were compare
(as percentages) were calculated

CLASS I
EPITOPE

Consensus Epitope
sequence

HCV GENOT

1 2 3 4

NS31073-1081 CINGVMWTV 78 67 67 67

NS31406-1415 LTSLGLNAV 67 56 67 78

NS41807-1816 LLFNILGGW 100 78 78 10

NS41851-1859 ILAGYGAGV 89 67 89 78

NS5B2422-2433 MSYSWTGAL 89 89 89 10

NS5B2727-2735 GLRDCTMLV 78 56 44 78

Mean within genotypes 83.50 68.83 72.33 83

CLASS II
EPITOPE

Consensus Epitope
sequence

1 2 3 4

CORE17-40 RRPQDVKFPGGGQIVGGVYLLPRR 100 96 66 96

NS31248-1261 GYKVLVLNPSVAAT 100 93 93 10

NS31781-1800 LPGNPAVASLMATAAVTSP 85 80 95 85

NS41801-1820 LTTSQTLLFNILGGWVASQL 85 65 80 90

NS5B2571-2590 KGGRKPALIVYPDLGVRVC 80 80 90 95

NS5B2661-2680 QCCDLEPEARVAIKSLTERL 85 55 70 80

Mean within genotypes 89.17 78.17 82.33 91
Table 2. Genotypes 2 and 6 have the lowest mean intra-
genotype scores for both class I- and II- epitope
sequences, indicating a greater variation among subtypes
within these genotypes. There is only one subtype within
genotype 5 so not surprisingly the epitope sequences, in-
cluding our sequences, from subtype 5a are relatively
conserved. Because a large proportion of sequences on
the database belong to genotype 1a or 1b, the consensus
d to the consensus sequence and conservation scores

YPES Mean across
genotypes

MAX. MIN. SD p-value

5 6

78 67 70.67 67 78 5.680 0.3062

67 56 65.17 56 78 8.280 0.1645

0 100 78 89.00 78 100 12.049 0.6513

89 67 79.83 67 89 10.815 0.2231

0 89 67 87.17 67 100 10.815 0.406

78 33 61.17 33 78 19.823 0.4142

.50 83.50 61.33

5 6 Mean across
genotypes

MAX. MIN. SD p-value

96 96 91.67 67 78 5.680 0.3062

0 100 93 96.50 93 100 3.834 0.32

90 65 83.33 65 95 10.327 0.4142

85 70 79.17 65 90 9.703 0.962

95 80 86.67 80 95 7.527 0.2231

60 50 66.67 50 85 14.023 0.4159

.00 87.67 75.67
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sequences that were generated is mostly representative
of genotype 1 sequences. Mean conservation scores of
genotype 5 sequences are the same as that of genotype 1
for class I- (both had an average score of 83.5%) and
similar for class II- (87.67% versus 89.17%, for genotypes
5 and 1, respectively for the class II epitopes). The intra-
genotype variation was not statistically significant for
any of the epitopes selected. Two class I- epitopes
(NS4B1807-1816 and NS5B2422-2433) and four of the six
class II-epitopes had the highest average conservation
scores of more than 80% (Table 2). Published class II-
restricted epitopes were, in general, better conserved
than the class I- epitopes, both within and across the
genotypes (Table 2).Some epitopes were well con-
served (NS4B1807-1816 and NS5B2422-2433) while others
(NS5B2727-2735 and NS5B2661-2680) were highly variable
(Table 2).
Most epitopes were identified using genotype 1a

sequences, hence it follows that the epitope sequences
had greater identity with genotype 1. Genotype 4 epitope
sequences showed a consistently high degree of corres-
pondence with the consensus but since this genotype
was represented by the smallest data set, this may not be
a true reflection of variation within the genotype. Geno-
type 6 showed the most variability, with a mean conser-
vation score of 61.33% within this genotype, which is to
be expected since this genotype is known to be highly
variable (Table 2).
Major HLA alleles
The most common HLA-A, -B and –C alleles in the
South African Black population are classified into super-
types as described by [30]. For example, and as seen in
Table 3, the A02 supertype includes the A*02:01 and
A*68:02 alleles. The A*30:01 allele belongs to the super-
type A01A03. This study predicted binding to 13 HLA
class I- alleles in 8 supertypes and 8 class II- HLA-DR
alleles predominant in the South African population.
Epitope binding prediction
The predicted binding values of the published and
“newly predicted” epitopes to prevalent local class I-
alleles were generated using the IEDB, ANN prediction
server (Tables 3 and 4, respectively). Predicted binding
values of the published epitopes to local HLA class II-
alleles were generated using the prediction server
Propred, Quantitative matrix (Table 5).

HLA-A and –B class I- restricted binding
Binding predictions of epitopes and their variants for all
available HLA alleles prevalent in the South African
population are shown in Table 3.Five of the six HLA
class I-published epitopes (NS31073-1081, NS31406-1415,
NS4B1807-1816, NS4B1851-1859 and NS5B2727-2735) have
been reported to be HLA-A*02 restricted (Table 1).
Three of the five published HLA-A*02 restricted epi-
topes bound the A*02:01 allele as expected (Table 3).
Predictions for the different alleles were in agreement

regardless of the programme or algorithm used (IEDB
ANN, Propred I, SYFPEITHI) with two exceptions, bind-
ing of the 9 amino acid epitopes of NS4B1807-1816

LLFNILGGWV and the HLA-B*27:05 binding predictions.
The original 10 amino acid NS4B1807-1816genotype 1 epi-
tope LLFNILGGWV (which is conserved in genotype 1b,
4 and 5a) predicted to bind with high affinity (44.1
IC50nM) to HLA-A*02:01. Neither IEDB ANN nor
ProPred I predicted binding between this allele and the
two possible 9 mer epitopes, LLFNILGGW and
LFNILGGWV while SYFPEITHI predicted binding of
18% and 14%, respectively. One of the shortcomings of
IEDB ANN is that it can only predict binding peptides
that are of the same length as those in the training set.
For this reason, all peptides were re-analysed with all the
alleles of interest using the “any length” parameter for
epitope length. No other changes were observed to bind-
ing predictions listed in Table 3 using these parameters.
The second exception observed was the failure of IEDB

ANN to predict binding between any of the epitopes (or
their variants) and HLA-B*27:05 which SYFPEITHI and/
or ProPred I scored. There was no data supporting restric-
tion of these particular peptides by B*27:05 in the IEDB
epitopes database. Both SYFPEITHI and ProPred I use
peptide motifs and amino acid matrix based prediction.
The following scores using x-[R (K)]-x (6–9) could explain
the scoring of these two packages for NS31406-1415epitopes
KLVALGINA, KLSGLGINA (21%ProPredI 7%SYFPEITHI, re-
spectively) and variants KLQDCTMLV and KLRDCTLLV
(32%ProPredI 12%SYFPEITHI, respectively). SYFPEITHI uses
x-[R]-x (5–8)-[LFYRHK (MI)]. However, one would expect
lower predictions for NS5B2422-2433 epitopes MSYSWTGAL
and MSYTWTGAL (38%ProPredI 12%SYFPEITHI) since only
the carboxyl anchor is present but this was not the case.
NS31073-1081, NS4B1851-1859 and NS5B2727-2735 bound

with high affinity to A*02:01 allele, regardless of geno-
typic variation (Table 3). All variants tested for both
NS5B2727-2735and NS4B1851-1859 were predicted to bind
the A*02:01 allele with equal strength (<20 IC50nM,
Table 3). High and intermediate binding affinities over
all variants was also observed for NS31073-1081 and
NS4B1851-1859 with allele A*68:02 (Table 3), of the A02
supertype.
Two of the variants, SISGVLWTV (genotype 2a) and

TVGGVMWTV (genotype 3a) had changes from the
wild type N (Asparagine) in position 3 but none of the
variants had changes in positions 4, 5 and 7. Interest-
ingly, when all possible alanine exchange peptides were
placed into IEDB ANN, the output scores reflected the



Table 3 Binding affinity scores of published epitopes and their variants were determined by the IEDB prediction program to relevant supertypes in South
Africa

Gene Epitope
sequence

Genotype
of epitope

Class A- Alleles Class B- Alleles

Supertypes A01 A02 A24 A01A03 A01A24 B07 B58 B27

Allele type A*01:01 A*02:01 A*68:02 A*23:01 A*30:01 A*29:02 B*07:02 B*35:01 B*53:01 B*57:01 B*58:01 B*15:03 B*27:05

NS3 (A*02) CINGVCWTV 1a 17802 67 61 14908 15501 12611 23637 20927 25523 19827 13679 19257 23485

1073-1081 CVNGVCWTV 1b 16997 110 20 12228 13122 11766 21885 15696 13382 18288 12132 20367 23007

SISGVLWTV 2a variant 18961 11 16 21483 11417 11417 22455 22186 29702 18590 15055 15691 20667

TVGGVMWTV 3a 19940 64 8 12677 14750 9776 20729 21877 24623 16182 18054 26500 24303

AVNGVMWTV 4a variant 17734 23 14 24001 4015# 12036 10753 20258 20595 17093 12996 13641 18882

CINGVLWTV 5a 15172 26 39 17548 13613 13865 23524 21854 15854 18628 11203 17516 21090

CINGVMWTL 5a variant 17922 140 101 10449 14413 11435 18947 13165 11237 2239 13165 13572 19956

NS3 (A*02) KLVALGINA 1a 22719 273 15048 32261 1830 18800 24242 25216 37253 23529 20557 4839 19019

1406-1415 KLSGLGLNA 1b 19133 475 21824 33559 2557 13152 20740 27147 37083 23891 19220 8973 18099

QLTSLGLNA 4a 20013 7051 15292 33674 12859 12517 26454 24440 37244 22168 26218 7165 19904

KLVALGINAV 1a 37929 52 8564 39134 NO VALUE 31977 19547 42247 34339 NO VALUE NO VALUE NO VALUE 26021

LTGLGINAV 5a 12100 5692 304 32426 10980 20519 21309 20981 33652 25012 21599 12577 26332

QLTGLGINA 5a variant 22408 6972 7419 34672 13389 17488 26117 23541 36968 25569 22283 15466 20054

NS4B (A*02) LLFNILGGW 1a, 1b, 4, 5a 22942 14359 17095 18086 17906 9175 24903 19854 17154 956# 962# 5918 23118

1807-1816 MFFNILGGWV 3a 24613 23482 19706 343 15640 1707# 21757 11817 8151 10769 1251 13832 26621

LLFNILGGWV 1a, 1b, 4, 5a 32231 44 1159# 38969 NO VALUE 19453 32445 40287 25767 NO VALUE NO VALUE NO VALUE 25868

NS4B (A*02) ILAGYGAGV 1a, 1b, 5a 20500 15 530# 30882 15492 10120 11883 21134 37213 22934 20702 3735 20143

1851-1859 ILAGYGTGV 5a variant 20351 18 193 32028 17493 12563 11272 21994 36657 23555 20603 2196 19849

NS5B (B*15) MSYSWTGAL 1a, 1b, 4 12612 1522 24 2924 2372 5457 1530# 50 8456 10166 523# 80 16876

2422-2433 MSYTWTGAL 5a 12133 2640 22 8602 2141# 7606 2515# 58 9150 10680 787# 144 17267

YTWTGALIT 5a variant 15779 3000 13286 33166 13737 1561 18979 3920 27619 22480 17360 6553 18765

NS5B (A*02) GLQDCTMLV 1a 18371 8 5733 11972 13187 6275 20996 27015 35681 25282 22002 10687 17601

2727-2735 KLQDCTMLV 1b 17735 7 3878 6160 2071# 9527 17308 26776 35038 23310 18296 3587 16634

KLRDCTLLV 5a 19744 13 14912 15150 10 5150 2800 27145 36627 21481 20362 1720# 18071

ALRDCTMLV 4a 19976 19 4673 19836 29 9982 5384 26302 36740 24190 22343 1206# 20027

<50 IC50nm, bold, high affinity.
>50 IC50nm, <500 IC50nm, italic, intermediate affinity.
>500 IC50nm, #, poor affinity.
No value indicates server produced no binding score.
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Table 4 Binding affinity scores of “newly predicted” epitopes and their variants were determined by the IEDB prediction program to relevant supertypes in
South Africa

GENE EPITOPE
SEQUENCE

GENOTYPE
OF EPITOPE

Class A- Alleles Class B- Alleles

Supertypes A01 A02 A24 A01A03 A01A24 B07 B58 B27

Allele type A*01:01 A*02:01 A*68:02 A*23:01 A*30:01 A*29:02 B*07:02 B*35:01 B*53:01 B*57:01 B*58:01 B*15:03 B*27:05

NS3 LTGPTPLLY 5a, 1b 15 23679 24474 24873 4551 5 24599 6188 7688 448 28 1558# 22842

LHGPTPLLY 1a 10396 24884 27469 21381 17350 10 26731 12561 6443 21175 9987 442 23420

FLSTATQTF 5a 165 15329 17845 3634 1663 1886 15839 40 17977 16320 4231 8 18662

IVSTAAQTF 1a 20409 23323 22013 4758 11756 5496 11246 75 13372 814# 425 55 22273

VLSTVTQSF 1b, 2a 18550 13712 17004 4838 16940 5785 15666 988# 29052 11492 1654 26 21745

IVSTDTQSF 4a 19885 22289 20020 12440 14943 5300 6080 151 8229 4394 973# 47 24757

TLAGPKGPV 5a, 6a 23444 2081# 13 33957 16907 18949 6657 21854 39095 25027 22108 20499 22034

TLASPRGPV 1b 22044 1451# 8 32375 13790 18855 2453 21660 39379 25346 22237 6235 22501

TLASSRGPV 2a 22034 857# 11 29481 9965 20464 2095 19022 38571 24511 22225 3353 22267

TLASAKHPA 3a 21914 413 49 29038 10681 19694 16284 12935 39038 24637 21967 13015 23364

TIASPKGPV 1a 22885 7397 7 34010 15054 20663 7437 19533 38620 25493 22070 16303 24145

SVIDCNSAV 5a 21948 30 9 24435 8789 12923 1702 4571 35486 21627 21514 3381 25586

SVTDCNTCV 1b 21476 131 24 30991 15202 21169 19345 15846 19349 26045 22021 11521 22609

SVIDCNVAV 1b, 2a, 6a 21855 15 6 22019 7833 13308 3218 4376 31399 24317 21463 3412 24232

SVIDCNTCV 1a 22281 25 13 23478 14812 17452 17390 13879 20769 25334 21666 7032 23918

SVIDCNTSV 4a 22543 18 9 25166 10636 15522 3402 11164 17097 24124 20942 4646 24512

ITYSTYGKF 1b, 5a, 2a, 2b, 1a, 4a 16829 22979 16133 124 9722 352 21954 6132 16141 354 43 27 20982

LTYSTYGKF 3a 14296 22834 13829 263 10036 379 22076 3345 11660 860# 41 31 20046

KVLVLNPSV 1a, 1b, 2a, 2b, 4a, 5a, 6a 23587 50 6303 27046 21 18669 14670 21450 31145 20648 8842 3129# 18558

RAKAPPPSW 5a, 1b, 2a, 6a 25817 25080 27568 8387 308 25791 7172 18126 8580 31 11 596# 22382

RAQAPPPSW 1b, 3a, 1a 24980 24747 27454 22992 6443 24136 6017 14212 3253 38 8 1675# 17482

KVWLAPPPSW 4a 24000 4927 22172 26746 170 16220 18770 9620 39029 21580 20215 12296 20633

LTSLGVNAV 5a 5815 3795 42 33629 6533 20008 16663 13886 27357 24243 18277 3860# 24767

LTSLGLNAV 5a variant 5305 3082 64 32917 6065 18186 16615 16431 29952 24579 19519 7004 23118

<50 IC50nm, bold, high affinity.
>50 IC50nm, <500 IC50nm, italic, intermediate affinity.
>500 IC50nm, #, poor affinity.
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Table 5 Binding affinity scores (as percentages) of Class II published epitopes and their variants were determined by
the ProPred prediction program to common DRB1* alleles prevalent in the South African population

Epitope: Sequence HCV Genotype
specificity

DRB1*0101 *0102 *0301 *0401 *0701 *1101 *1301 *1501

Core 17–42 RRPQDVKFPGGGQIVGGVYLLPRRGP 1, 2, 5 & 3var & 6var

VYLLPRRGP 1, 2, 4, 5, 6 0.0% 0.0% 18.0% 0.0% 0.0% 16.0% 48.0% 18.0%

VGGVYLLPR 1, 2, 4, 5, 6 0.0% 0.0% 17.0% 0.0% 9.0% 9.0% 10.0% 20.0%

NS3 1248–1261 GYKVLVLNPSVAAT 1, 2, 4, 5, 6

LVLNPSVAA 1, 2, 3, 4, 5, 6 37.0% 54.0% 36.0% 47.0% 28.0% 17.0% 34.0% 39.0%

YKVLVLNPS 1, 2, 4, 5, 6 5.0% 0.0% 0.0% 30.0% 9.0% 31.0% 27.0% 17.0%

NS4B 1781–1800 LPGNPAIASLMAFTAAVTSP 1a, 4var

LPGNPAVAS 2,3, 5, 6 0.0% 2.0% 0.0% 4.0% 0.0% 0.0% 9.0% 0.0%

LPGNPAIAS 1, 4 0.0% 0.7% 15.0% 4.0% 0.0% 2.4% 0.0% 7.0%

IASLMAFTA 1 7.0% 23.0% 0.0% 0.0% 4.0% 0.0% 14.0% 21.0%

NS4B 1801–1820 LTTSQTLLFNILGGWVAAQL 1a, 1bvar,

LFNILGGWV 1, 4, 5 0.0% 0.0% 16.0% 0.0% 24.0% 0.0% 16.0% 28.0%

FNILGGWVA 1, 4, 5 47.0% 47.0% 0.0% 2.0% 16.0% 28.0% 16.0% 31.0%

ILGGWVASQ 4, 5 0.0% 0.0% 28.0% 0.0% 0.0% 2.4% 8.0% 0.0%

LGGWVASQI 4, 5 0.0% 0.0% 0.0% 0.0% 21.0% 0.0% 13.0% 21.0%

NS5B 2571–2590 KGGRKPARLIVFPDLGVRVC 1, 2var& 6var

VFPDLGVRV 1 0.0% 0.0% 34.0% 0.0% 0.0% 0.0% 0.0% 0.0%

VYPDLGVRV 3, 5 0.0% 0.0% 35.0% 0.0% 14.0% 0.0% 0.0% 19.0%

IVYPDLGVR 3, 5 0.0% 0.0% 28.0% 0.0% 0.0% 0.0% 7.0% 0.0%

LIVYPDLGV 3, 5 0.0% 0.0% 0.0% 0.0% 12.0% 0.0% 3.0% 60.0%

NS5B 2661–2680 QCCDLDPQARVAIKSLTERL 5var

LAPEARQAI 1b 0.0% 0.0% 8.0% 0.0% 11.0% 0.0% 4.5% 11.0%

LDPQARVAI 5 0.0% 0.0% 8.0% 0.0% 0.0% 0.0% 0.0% 0.0%

LQPEARAAI 5var 0.0% 0.0% 22.0% 0.0% 12.0% 1.0% 22.0% 26.0%
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experimental binding changes for all of the alanine ex-
change peptides with the exception of the total abroga-
tion of signal for substitutions in positions 3, 4 and 5
(data not shown).Of note, while consistent binding was
observed across the supertype A02 for all of the variants
of the A*02 restricted epitope NS31073-1081, epitopes of
genotypes 1, 3a and 5a (variant) were found to be inter-
mediate binders (Table 3).
The genotype 4a and 5a variants of the HLA-A*02

restricted epitope NS5B2727-2735displayed some level of
promiscuity as these were predicted to bind with high
affinity to the A01A03 supertype allele, A*30:01 (29 and
10 IC50nM, respectively), while the genotype 1b variant
had low affinity with this allele (2071 IC50nM) and the
original genotype 1a peptide was not predicted to bind
at all. The original peptide and one of the two of three
variants of the published B*15-restricted NS5B2422-2433

epitope displayed intermediate binding IC50 nM values
of 80 and 144 (Table 3). This epitope showed the highest
cross-reactivity across the supertypes with both the
original epitope and one of the genotype 5a variants
binding very strongly to A*68:02 (supertype A02) and
B*35:01 (B7 supertype; Table 3).
Of the 6 class I- epitopes used in this study, only two

epitope variants were found to be promiscuous:
MSYTWTGAL (supertypes A02, B07, B27) and
KLRDCTLLV (A02, A01A03).In a preliminary attempt
to identify conserved epitopes showing greater promis-
cuity across supertypes, strings of epitopes (other than
the ones selected from publications for this study) of the
NS3 protein were placed into the IEDB server. Table 4
indicates that five of the eight epitopes were predicted
to be promiscuous, binding with high (<50 IC50nm)
and intermediate (<500 IC50nm) affinities to two or
more supertypes: LTGPTPLLY (A01, A01A24, B58),
FLSTATQTF (A01, B07, B58, B27), ITYSTYGKF (A24,
A01A24, B58, B27), KVLVLNPSV (A02, A01A03),
RAKAPPPSW (A01A03, B58). Of the five epitopes above,
three were conserved among genotypes 1, 2, 4 and 5
(Table 4), ITYSTYGKF, KVLVLNPSV and RAKAPPPSW.
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Class II- alleles
ProPred II was used to predict binding of the longer
class II- epitopes. Before calculating the predicted bind-
ing, the programme identifies all overlapping nine amino
acid peptides within the input polypeptide. A predicted
binding score is given as a percentage of the max-
imum possible binding (i.e. the highest log value achiev-
able by an optimal peptide) with the chosen allele
(Table 5). For example, CORE17-42, RRPQDVKFP-
GGGQIVGGVYLLPRRGP, returned two 9-mer peptides,
VYLLPRRGP and VGGVYLLPR, which scored simi-
larly for alleles HLA-DRB1*03:01 and HLA-DRB1*15:01
(Table 5). However, in the context of DRB1*13:01,
VYLLPRRGP had a much higher percentage binding
score (48%) than its flanking sequence VGGVYLLPR
(10%). Note that no class II- epitopes were predicted in
the first 14 amino acids of CORE17-42. The CORE17-42

epitope was well conserved across the genotypes (second
only to NS31248-1261, Table 2), but was not predicted to
bind with HLA-DRB1*01:01, HLA-DRB1*01:02 or HLA-
DRB1*04:01 and only VGGVYLLPR was predicted to
bind with HLA-DRB1*07:01 (9%, Table 5).
The most promiscuous class II-epitope was also the

best conserved epitope, NS31248-1261(Table 2), specific-
ally the region 1252–1260 LVLNPSVAA, bound all
eight of the alleles tested and was the only epitope to
bind HLA-DRB1*04:01.The allele HLA-DRB1*15:01 was
predicted to bind with all but five of the 18 peptides
output by the program (Table 5). The highest percent-
age of optimal binding (60%) was predicted between
peptide LIVYPDLGV within NS5B2571-2590 and the
HLA-DRB1*15:01 allele.This immunogenic epitope is
one of three variants common to genotypes 3 and 5.
The NS31248-1261 epitope YKVLVLNPS was well con-

served among genotypes and bound to three DRB1*
alleles (Table 5). Interestingly, the epitope KVLVLNPSV,
also conserved, bound to two class I- supertypes
(Table 4). Another epitope that is a class I- and II- binder
is FNILGGWVA (Table 3 and Table 5, respectively).

Coverage calculations
The predicted binding scores of published epitopes
(Tables 3 and 5) were used to estimate population cover-
age. Selected programme output (which includes a list of
the input epitopes) has been supplied as supplementary
figures where indicated.

IEDB population coverage The published class I- and
II- epitopes had coverage of 65.85% (Additional file 2:
Figure S2) in South African Blacks and 81.36%
(Additional file 3: Figure S3) in South African Whites.
Corresponding figures when calculations included only
the class I- epitopes were 41.76% and 52.70%, respect-
ively (results not shown). By choosing predominantly
genotypes 1 and 5a epitopes (“best mix”) predicted to be
immunogenic in South African Blacks, the combined
class I- and II-coverage in Blacks improved to 91.87%
(Additional file 4: Figure S4) while coverage improved to
94.77% (Additional file 5: Figure S5) in the South African
Whites.

Optitope Population Coverage The Optitope candi-
date epitopes were proposed whether the chosen popu-
lation was “North American Europeans” or Europe
(geographical) and results showed coverage of 94.28%
(Additional file 6: Figure S6). Alternatively, candidate
epitopes were sought using the same HCV alignment
data and choosing the Zulu ethnic group (the only South
African ethnic group available in OptiTope) and coverage
of 75.16% was shown (Additional file 7: Figure S7).

Optitope Epitopes and IEDB population coverage
Candidate epitopes chosen for “optimal” vaccines for
Caucasians and Zulus, respectively, from the OptiTope
analyses described above, were then tested using the
South African white and black populations. Local popu-
lation data was placed into the IEDB population coverage
web application as before.
Results indicated that South African Blacks had a

72.64% chance of responding to a putative European “op-
timal” vaccine while the same vaccine provided 90.55%
coverage in the population for which it was designed.
The putative “optimal” vaccine for Zulus provided cover-
age of 73.72% in South African Blacks with 90.79% cover-
age in Europeans (summarized in Additional file 8:
Figure S8).

Discussion
HCV genotypes and host genetics vary geographically
and yet proposed epitope vaccines are most often for-
mulated based on genotype 1 peptide sequence data
alone and their restriction confined to the alleles found
predominantly in the Caucasian population. This study
assesses the efficacy of a putative epitope vaccine
designed with this typical sequence bias when used in
South African populations. The heterogeneity of epitope
regions proposed for HCV vaccines was explored to-
gether with their predicted binding, and that of their
variants, to HLA alleles common in the South Africa
population.
There is a need to examine viral variation within

known epitopes, and assess the prevalence and immuno-
genicity of the variants for relevant host alleles within
the target population, before choosing epitopes for in-
clusion in an epitope vaccine. This study, therefore, fo-
cused on subtype 1a, 1b and 5a sequences as these were
found to predominate in South Africa [15]. This is the
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first time that South African genotype 5a data is being
compared to well- studied epitope data of other geno-
types. Genotypes 3 and 4 have also been found in the
South African population but genotype 2 is rare and, to
date, genotype 6 has not been identified. In order to im-
prove the representation of genotype 5a, all available
sequence data was included in the alignments, includ-
ing sequences from our own studies and those of [31]
(Belgium and South Africa) and [32] (France).
There are numerous epitopes meeting the inclusion

criteria that could have been chosen for the study but a
final subset was chosen so that it included well studied
epitopes considered for multi-epitopic [22], therapeutic
[21], minigene [25] and DNA polytope [23] vaccines.
Genotype 1 is a well-studied genotype and considerably
more sequences were available for the genotype 1 align-
ments. Class I- and II- epitope sequences of genotype 5a
were found to be relatively conserved compared to some
of the other genotypes, notably genotypes 2, 3 and 6.
Genotype 5 is considered to be a relatively conserved
genotype as to date, there is only one subtype of geno-
type 5 (5a), compared to the highly intra-genotypically
variable genotype 6 that partitions into 22 different sub-
types, 6a-6v, considerably more than any of the other
genotypes [33].
There have been several studies which show a lack of

cross-protection across the genotypes [34-36]. With re-
gard to the NS31073-1081epitope, an extensively studied
epitope, our study has predicted high and intermediate
binding of variant sequences to A02 supertype, indicating
a level of cross-reactivity for this epitope. The consensus
at the position 2 of NS31073-1081 was an isoleucine (I).
The only other common amino acid in this anchor pos-
ition was Valine (V). Valine was conserved at position 9
in all but the genotype 5a sequences where approxi-
mately one third of the sequences had a leucine (L) in
this position. Despite the fact that substitutions at P2
were conservative (an I or V for the more favourable L),
affinity of this epitope was lowered. When alanine ex-
change peptides were used in in vitro assays [37], sub-
stitutions at positions 3, 4, 5 and 7 of the published
NS31073-1081 epitope abolished IFN-gamma production.
Changes at positions 2, 8 and 9 only partially reduced
production and only positions 1 and 6 had no effect.
Even single amino acid exchanges at non-anchor sites
can significantly limit the potential efficacy of a vaccine
containing only the wild type peptide [37].
[36] identified distinct polymorphism profiles of geno-

types 1a and 3a non-structural gene sequences. Only 2
of the 51 polymorphisms, observed to have significant
HLA association, were common to both genotypes [36].
The extent of genetic diversity can result in a distinct
repertoire of HLA-restricted viral epitopes for different
genotypes. When we looked at consensus alignments of
the chosen epitopes, we also observed this phenomenon.
The consensus at each site of an epitope represents the
amino acid best adapted to T cell responses across the
host population [36]. A consequence of this is that es-
cape of a mutant (driven by the selection pressure of
dominant HLA alleles within the host population) can
become the most dominant amino acid. When this hap-
pens, the polymorphism in the epitope, or negatope, as
it is now called, is over-represented even in hosts not
having the allele which drove the escape [36].
One of the shortcomings of IEDB ANN is that it

can only predict binding peptides that are of the
same length as those in the training set. Hence, the
server will not pick up binding in longer epitopes if
this is not specified [38]. However, by using older
programs, such as SYFPEITHI and BIMAS that use pep-
tide motifs and amino acid matrix based prediction ([39];
Singh and Raghava 200) both of which are popular,
updated and have relevance [40] we were able to flag the
longer epitopes and repeat the prediction in IEDB ANN
for the 10 amino acid epitope.
Epitopes which are well conserved and show good

binding affinities to many HLA alleles (promiscuous) are
the best candidates for in vitro and/or in vivo testing.
Epitopes like NS4B1801-1820are particularly appealing
since they contain substrings which act as class I- and
class II- alleles. While in silico planning has been found
to greatly facilitate peptide design, not all peptides pre-
dicted in silico are optimally immunogenic in vivo [41]
and it remains essential to test predicted peptides in vivo
so as to ascertain that the needed T-cell response is eli-
cited. Numerous in silico studies have shown the value
of using prediction programs to assess the efficiency of
binding of putative epitopes to human alleles [42-45].
Also, [46] showed an increase in the use of in silico pre-
diction studies with an improvement of epitope prediction
programs available. Of the published epitopes used in this
study, only 2 class I- (based on binding to ≥supertypes)
and 3 class II- (binding to >2 DRB1* alleles) epitopes were
found to be promiscuous using the prediction programs.
The NS3 protein is a large protein and has been

shown to generate effective immune responses, which
can resolve acute infection. This study looked across the
NS3 protein to identify possible additional epitopes
(other than the ones chosen from the published papers)
that may be good binders to predominant HLA-alleles
in the South African population. The results of this
search (Table 4) which we have called, “newly predicted”
NS3 epitopes were found to be well-conserved and
bind to more than one HLA class I- allele. Three class I-
epitope sequences were found to be highly conserved,
particularly among genotypes 1 and 5, and were pre-
dicted to be strong binders to two or more supertypes.
None of these “newly predicted” NS3 epitopes were
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found on the Los Alamos HCV immunology database
(http://hcv.lanl.gov/content/immuno/tables/ctl_summary.
html, accessed 05-09-2012). This exercise illustrates the
usefulness of in silico studies to identify potential binders
which will suit the target populations. In vivo studies will
always be needed to confirm immunogenicity of these
predicted peptides but this study has shown that in silico
prediction can consider both host and viral variation, par-
ticularly in countries like South Africa and Egypt where
genotypes other than genotype 1 predominate. In silico
coverage calculations can not only identify promiscuous
epitopes but also optimise the best cocktail for an effective
multi-epitope vaccine. A recent in silico study identified
69 promiscuous HCV class I- and 150 class II- epitopes
that were predicted to bind to genotype 3a [44]. A string
of 18 conserved and promiscuous immunodominant
epitopes spanning 8 HIV-1 proteins produced an effect-
ive immunogen [47], 23 epitopes were found promiscu-
ous to MHC class I- and II- within E-coli 536 genome
[45] and 15 promiscuous epitopes were predicted within
M. tuberculosis peptide [43].
This study focused mainly on A02 –restricted epi-

topes and promiscuity was poor. However, immunogenic
epitopes restricted to other alleles have been identified
[48-50]. Two B alleles, B57 and B27, have been found to
provide spontaneous control of HCV. Neither of these
alleles are prevalent in South African Blacks (Paximadis
et al., 2011) but preliminary investigations on NS5B
(B*57-restricted) epitope, KSKKTPMGF (genotype 1a,
[48]), and genotype 5a variants RSKKTPMAF and
KSKKIPMAF showed promiscuity to B*58:01, B*15:03
and A*30:01(data not shown). Indeed, this reiterates the
need to look at viral variation and promiscuity as this is
particularly important to vaccine design.
The following class I- and II-restricted epitopes were

selected from the original epitope set as likely to provide
the best vaccine in the South African setting. This was
based on binding affinities predicted for epitopes
expected in the local population and binding to several
supertypes recently recommended for inclusion in a vac-
cine which is optimal for both White and Black South
Africans (supertypes A1, A2, B07, B27 and B58; [13]).

1. NS31073-1081 both wild type genotype 1a
CINGVCWTV and genotype 1b CVNGVCWTV
because they are so well studied and show cross-
reactivity within variants and across the supertype
A02.

2. NS4B1807-1816 (LLFNILGGWV; [22,24,25]) because
the 10-mer peptide is well conserved (genotypes 1a,
1b, 4, 5a) and is immunogenic for both class I- and
class II- alleles.

3. NS5B2422-2433, both the original MSYSWTGAL
(genotypes 1a, 1b and 4; Table 3; [22]) and the
genotype 5a variant MSYTWTGAL as they cover the
supertypes B27 as well as B07 and are also the best
available B58 candidate in the recommended
supertype set [13].

4. NS5B2727-2735genotype 5a variant KLRDCTLLV of
the published epitope sequence GLQDCTMLV [22]
as it brings the most prevalent HLA-A allele in the
Black population (A*30:01) and the most prevalent
HCV genotype 5a in South Africa into the mix.

5. The class II-restricted epitopes NS31252-1260

LVLNPSVAA [27] which is conserved in all
genotypes and also very promiscuous.

6. NS4B1809-1817 which overlaps class I-restricted 1807
(FNILGGWVA; [25]) and is restricted by the 2 HLA-
DR alleles in the Black population (HLA DRB1*13:01
and *11:01) and is also promiscuous.

7. Core class II- epitope VYLLPRRGP (genotypes
1,2,4,5,6) included as it is the most reactive of the
class II- epitopes to HLA DRB1*13:01.

The frequencies of the most common HLA alleles in
the South African Caucasian and Indian populations
closely correlate with values from their respective popu-
lations globally. However, the frequencies of the most
common HLA-A and –B alleles in the South African
Black population are both heterogeneous and unique
and quite distinct even from other Black populations in
Western and Northern Africa [51]. Many of the well
studied published and “newly predicted” epitopes
assessed in this study bound to A*68:02 (supertype A02).
HLA-A*68:02 was found 2.6x more often in the Black
population than HLA-A*68:01 (A03 supertype, [13]).
There is a good correlation between immunogenicity

and MHC class I- binding affinity [52]. Based on this
principle, several web-based resources are available
which can assess the population coverage of putative
epitope vaccines based on the predicted binding of the
epitopes and their variants to chosen HLA alleles relevant
to the population being assessed. The predicted coverage
of the original well studied class I- and II-epitopes selected
for this study to illustrate the drawbacks of a vaccine
using South African host population frequencies was
found to be 65.85% and 81.36% for Blacks and Whites,
respectively (Additional file 8: Figure S8).The OptiTope
example highlighted the fact that the greater the know-
ledge of local viral variation and the immunogenicity of
these variants together with accurate high resolution
population allele frequencies allows the design of super-
ior epitope vaccines with much better coverage for more
groups within the target population. Fine tuning the vac-
cine by using an optimal cocktail of genotype 1 and 5a
epitopes raised the coverage of the vaccine to 91.87% and
94.77%, close to the 100% coverage predicted by [13] in
their study population.

http://hcv.lanl.gov/content/immuno/tables/ctl_summary.html
http://hcv.lanl.gov/content/immuno/tables/ctl_summary.html
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Conclusion
In light of data generated in this study, epitope-based
HCV vaccines should contain a mixture of epitope var-
iants from all of the genotypes as wild-type genotype 1
response is not guaranteed to cross-protect against var-
iants, even if the variant is restricted by the same allele.
In addition the efficacy of a proposed epitope vaccine
will differ between the major population groups. While
coverage estimates can be made based on South African
supertypes, cross-reaction of peptides with all supertype
members is not universal. Clearly for a set of epitopes to
elicit a broad and potent immune response in the target
population, viral variation and population genetics data
should be factored into the algorithm particularly in the
light of less-studied variants such a genotype 5a.
Even where proposed epitopes are conserved, host

differences will make the vaccine less effective in the
South African setting. Of the 13 published and well-
characterised epitopes selected for this analysis (including
variants from two of these) four class I- and three class II-
restricted epitopes would be beneficial in a multi-topic
therapeutic vaccine for genotype 5a infection in our
population. Hepatitis C genotypes and high resolution
population data is necessary when planning epitope vac-
cine design. While in vivo and in vitro studies are needed
to confirm predicted immunogenic epitopes, in silico
“reverse immunology” studies provide a sound basis
with which to screen the many possible candidates. This
study has shown that with the ease and usefulness of
web-based sequence- and structure-based prediction ser-
vers, non-bioinformaticians can predict potential binders,
without expensive computer hardware and programming
knowledge.
Methods
Epitope sequences
The literature was searched for known immunogenic
class I- and II-restricted epitope vaccine candidates.
All of the open reading frames (ORF), from the core to
the NS5B protein, yielded putative epitopes and these
ranged in length from 9 base pairs (bp; [22]) to 683 bp
[53]. Six class I- and seven class II- epitopes were
chosen for the analyses (Table 1) based on the following
criteria:

1. All were extensively studied immunogenic epitopes
(as indicated by the number of references in Table 1).

2. All had been published in the peer reviewed
literature.

3. All class I- epitopes had known HLA restriction.
4. All had been recommended for putative vaccines.
5. All were from conserved regions of the genome (core
to NS5 region).
Alignments of representative reference sequences were
obtained over the chosen putative epitope regions using
sequence data from each of the genotypes with the aid
of pre-aligned and updated amino acid sequence data
from the International Nucleotide Sequence Database
Collaboration (INSDC; [54]).
The total number of sequences, available per epitope re-

gion, varied in numbers by genotype and region on the
genome. Genotype 1 (subtypes 1a and 1b) sequences form
by far the major number of sequences on the database
ranging from 54% (of the total number of sequences) to
84% in some regions. In contrast, the little studied geno-
types, genotype 4 and 5, accounted for only 4 to 24%
of available sequences, respectively. Genotype 5a is one
of the major genotypes found in South Africa together
with genotype 1. Thus, to have this local type adequately
represented in the data set, we included our own se-
quence data (25 patients) from the core [GenBank:
JX571010-JX571031], NS4B [GenBank: JX571032-
JX571039] and NS5B [GenBank: DQ482799-DQ482824]
regions of genotype 5a.Care was taken to ensure that all
our own data, as well as data used from public databases,
corresponded to one sequence per subject. The study
was retrospective and approved by the ethics committee
of the University of the Witwatersrand, Johannesburg,
South Africa (WITS HREC M051114), and was therefore
performed in accordance with the ethical standards of
the 1964 Declaration of Helsinki. PCR and sequencing
was performed as previously described [15,31].
BioEdit (version 7.0; [55]), was used to align all the

amino acid sequences. The consensus sequence of im-
munogenic regions, for each of the genotypes, was gener-
ated using the Web based software package, WebLogo
(version 2.8.2; http://weblogo.berkeley.edu/logo.cg; 2008-
09-08). Sequence numbering is according to [56].
WebLogo produces a consensus of the input sequences
output as a series of “letter stacks”, each representing a
single column of the sequence alignment (Additional
file 1: Figure S1).The height of each letter within the
stack is proportional to the relative frequency of the rep-
resentative amino acid at that position in the sequence
[57]. The Weblogo software incorporates a “small sample
number” correction, to correct for potential bias.
The relative conservation of each epitope was calcu-

lated as a percentage of the number of polymorphic sites
over the epitope length when compared to the overall
HCV consensus sequence. The HCV consensus was
determined by taking the most common amino acid at
each amino acid site of the 7 respective genotype consen-
sus sequences (genotypes 1a, 1b, 2, 3, 4, 5a and 6), irre-
spective of representation in the database. A minimal
class I-restricted epitope length of 9 nucleotides was used
for all class I-restricted epitopes. Since class II-restricted
epitopes are longer and are made up of numerous

http://weblogo.berkeley.edu/logo.cg


Prabdial-Sing et al. BMC Immunology 2012, 13:67 Page 12 of 15
http://www.biomedcentral.com/1471-2172/13/67
overlapping regions, the number of amino acids per epi-
tope varied. The statistical analysis was performed using
the analysis of variance (ANOVA) tests of significance in
the Statistica software, version 9.1.

Common South African HLA alleles
Initially, a literature search was conducted in order to
collate available South Africa population HLA-A –B and
–DR allele frequency data which included relevant data
stored online in the New allele Frequency Database
(http://www.allelefrequencies.net 2010-11-30). However,
much of this data was low resolution with 2 digits.
Hence, high resolution data [13], which is required for
the predictions, were used for the study.

Immunogenicity prediction and population coverage
calculations
Two servers (Immune Epitope Database, IEDB (http://
tools.immuneepitope.org, [58]) and Propred II, http://
www.imtech.res.in/raghava/propred/index.html, [59]) were
chosen for this study because these were user-friendly,
easily available online and displayed many of the HLA
alleles prevalent in SA. To predict binding to HLA class1-
alleles, the IEDB server was used. The Propred II server
was used to predict binding to HLA class II- alleles.

Resources of the immune epitope database (IEDB)
The IEDB is a manually curated database of experi-
mentally characterized immune epitopes. Its compan-
ion site, the IEDB resource, is a collection of tools for
prediction and analysis of immune epitopes (http://
tools.immuneepitope.org/main/jsp/menu.jsp; version 2.0,
accessed 2009-09-09 to 2011-03-14, [60]). The “Peptide
Binding to MHC class I- molecules” resource, which
predicts MHC binding to T cell epitopes, was utilised
for class I- predictions. Valid input data include pro-
teins or peptides. The programme splits these into all
possible overlapping peptides and then predicts their
binding to each selected MHC allele using the chosen
prediction method. The sequence-based method, using
the artificial neural network (ANN) algorithm of [61]
on the IEDB server was selected for all HLA class I-
predictions as it is reported to be more reliable than
earlier matrix algorithms [61].
In addition, however, the matrix-based methods,

ProPred 1 (http://www.imtech.res.in/raghava/propredI/
index.html, 2010-11-30, [62]) and SYFPEITHI [39] were
used in parallel and binding efficiencies of the three
methods compared. For brevity, only scores for IEDB
are shown in the result tables and incompatible results
are discussed where appropriate. ANN uses training data
from the IEDB to calculate the affinity of a given peptide
for specific MHC molecules. It calculates binding based
on the position of each amino acid in the putative
epitope while taking into account the probability of adja-
cent amino acids competing for a space in the MHC
pocket. Predicted binding efficiencies are calculated in
units of IC50nM (the half-maximal inhibitory concentra-
tion). IC50 values <50 nM indicate high affinity while
values >500 but <5000 nM indicate low affinity and values
in between the two extremes (>50 nM but <500 nM) indi-
cate intermediate affinity (http://tools.immuneepitope.org/
main/jsp/menu.jsp).
Sequence data in the NS3 region that was available on

the database was used for the genotype 5 conservation
score and binding to predominant HLA-alleles in the
South African context were predicted.The promiscuity of
“newly predicted” (i.e. other than published epitopes)
class I-epitopes of the NS3 gene were analysed using the
IEDB server. An epitope sequence that bound with <500
IC50nM to more than one HLA class I- allele was consid-
ered promiscuous.

ProPred MHC class II- binding prediction
A structure-based method with a quantitative matrix
(QM) algorithm on the Propred II server (http://www.
imtech.res.in/raghava/propred/index.html, 2010-10-20,
[63]) was used to predict binding of HLA class II- epi-
topes. This tool uses a linear prediction model which
scores the binding potential of the query peptide based on
values stored in allele specific coefficient tables, or quanti-
tative matrices. Matrices are generated based on experi-
mental results taking into account the properties of each
individual amino acid and its position within the epitope.
The program is useful in locating promiscuous, versus

allele specific, binding regions in a query peptide se-
quence. Note that, by comparison to IEDB ANN, a high
score is indicative of good binding between the relevant
peptide and the specific HLA allele and vice versa. The
score represents the percentage binding of the query
peptide when compared to the highest possible binding
score for the optimal peptide with the given allele and
thus reflects the binding characteristics of the query
peptide. However, there is no clear cut off as with IEDB
ANN scoring, and actual percentages should not be
compared between alleles. The stringency threshold of
the analysis can be set between 1% and 10% where
the highest stringency guarantees no false positives
and the lowest stringency guarantees no false negatives.
The highest stringency was, therefore, used in all
programme runs to minimize the number of false posi-
tives and ensure that all binding had significance.

Population coverage calculations
Population coverage was calculated by the Popula-
tion coverage tool on the IEDB server (http://tools.
immuneepitope.org/tools/population/iedb) for South
African Whites and Blacks for both the published
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class I- and II- epitopes and an adapted “best mix” which
took into account the most prevalent alleles and epitope
variants in South Africa and their predicted binding. In
order to assess the efficacy of a vaccine epitope, the IEDB
resource Tool calculates the fraction of individuals pre-
dicted to respond to a given set of epitopes with known
MHC restrictions (http://tools.immuneepitope.org/main/
html/analysis_tools.html last accessed 2011-04-20). The
calculation is based on input HLA genotypic frequencies.
Recently released web-based software, OptiTope [64],

looks at viral and host variation in order to customise
and optimise candidate epitopes to a specific population.
Since this approach used the same parameters as this
study, it was decided to compare the coverage of the
chosen epitopes with the coverage of putative optimal epi-
tope vaccines generated in OptiTope using similar biases.
For this reason OptiTope was asked to generate an opti-
mal epitope vaccine from an alignment of “common”
HCV sequences in a Caucasian population. This HCV
sample data (available in OptiTope), while biased, was very
comprehensive and consisted of an alignment of >100
sequences from 10 different HCV proteins (Core, E1, E2,
NS2, NS3, NS4A, NS4B, NS5A, NS5B and p7) but only
included the “common” subtypes 1a, 1b, 2a and 3a.

Additional files

Additional file 1: Figure S1. An example of consensus Weblogos
alignments for the NS31406-1415 peptide for each of the 7 subtypes/
genotypes studied. Percentage correspondence with the HCV consensus
epitope 1407–1415. Average conservation was 65.17% (p = 0.1645), also
shown in Table 2.

Additional file 2: Figure S2. Epitope and population coverage in South
African Blacks with original published epitopes, using IEDB.

Additional file 3: Figure S3. Epitope and population coverage in South
African Whites with original published epitopes, using IEDB.

Additional file 4: Figure S4. Epitope and population coverage in South
African Blacks with “best mix”, using IEDB.

Additional file 5: Figure S5. Epitope and population coverage in South
African Whites with “best mix”, using IEDB.

Additional file 6: Figure S6. Epitope and population coverage in
Caucasians (North American and Europe), using OptiTope.

Additional file 7: Figure S7. Epitope and population coverage in Zulus
(South Africa), using OptiTope.

Additional file 8: Figure S8. A summary of the steps and results of the
population coverage analyses, using the IEDB and OptiTope.
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