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remodeling enzyme
Andrea L Wurster1,5, Patricia Precht1, Kevin G Becker2, William H Wood III2, Yongqing Zhang2, Zhong Wang3 and
Michael J Pazin1,4*

Abstract

Background: SWI/SNF chromatin remodeling enzymes play a critical role in the development of T helper
lymphocytes, including Th2 cells, and directly program chromatin structure at Th2 cytokine genes. Different
versions of SWI/SNF complexes, including BAF and PBAF, have been described based on unique subunit
composition. However, the relative role of BAF and PBAF in Th cell function and cytokine expression has not been
reported.

Results: Here we examine the role of the PBAF SWI/SNF complex in Th cell development and gene expression
using mice deficient for a PBAF-specific component, BAF180. We find that T cell development in the thymus and
lymphoid periphery is largely normal when the BAF180 gene is deleted late in thymic development. However,
BAF180-deficient Th2 cells express high levels of the immunoregulatory cytokine IL-10. BAF180 binds directly to
regulatory elements in the Il-10 locus but is replaced by BAF250 BAF complexes in the absence of BAF180,
resulting in increased histone acetylation and CBP recruitment to the IL-10 locus.

Conclusions: These results demonstrate that BAF180 is a repressor of IL-10 transcription in Th2 cells and suggest
that the differential recruitment of different SWI/SNF subtypes can have direct consequences on chromatin
structure and gene transcription.

Background
In T cells, chromatin structure can be dependent on cell
fate, cell activation, or both. This is well illustrated in
the case of the Th2 cytokine cluster, containing the Th2
cytokines IL-4, IL-5 and IL-13 [1,2]. The Th2 cytokines
are exclusively expressed in Th cells that have differen-
tiated into the Th2 lineage and only upon T cell activa-
tion. DNase I hypersensitivity site (DHS) mapping of the
cytokine loci from different Th subsets revealed dra-
matic changes in chromatin accessibility across the
locus in Th2 cells compared to other Th lineages and
undifferentiated Th precursors (Thps); typically, DHS
are nucleosome-free regions created by chromatin remo-
deling proteins directed by the binding of transcription

factors [2,3]. Many of the DHS were subsequently deter-
mined both genetically and biochemically to be enhan-
cer and silencer elements important to Th2 cytokine
expression and were marked with lineage-specific
changes in histone modifications [2,3]. Although
changes in nuclease accessibility across cytokine loci in
response to differentiation and activation signals have
been well documented, less is known about to the speci-
fic enzymes responsible for these changes [4].
IL-10 was originally described as a Th2-specific cyto-

kine, and the IL-10 gene is located on a different chro-
mosome from the Th2 cytokine gene cluster [5]. Like
the Th2 cytokines, IL-10 expression in Th2 cells is
accompanied by changes in the accessibility in the IL-10
locus directed by both lineage and activation-specific
signals [6-8]. More recently the expression of IL-10 has
been shown to be less restricted and more plastic than
the classical Th2 cytokines. Both Th1 and Th17 cells
can express IL-10 under specific conditions, while the
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newly described Th9 subset produces high levels of IL-
10 along with IL-9 [9-11]. Biologically, IL-10 exhibits
strong immunosuppressive effects and serves to attenu-
ate immune responses. This is illustrated in the develop-
ment of profound inflammatory bowel disease and
exaggerated immune responses in IL-10-deficient mice
[12]. Indeed, some Treg cell populations, critical for the
negative regulation of immune responses, mediate their
activity through IL-10 expression [13,14]. A number of
studies have linked genetic variants at the IL-10 gene to
human disease [15-18].
ATP-dependent remodeling enzymes contain SWI2/

SNF2-like ATPase subunits, and these ATPases couple
the hydrolysis of ATP to changes in chromatin struc-
ture. SWI/SNF, Mi2, ISWI, and other ATP-dependent
remodeling enzymes are classified into subfamilies based
upon homology of the ATPase subunit [4,19,20]. These
remodeling enzymes appear to both activate and repress
gene expression [4,21-25]. SWI/SNF complexes are
arguably the best-characterized ATP-dependent remo-
deling enzymes in T lymphocytes, with demonstrated
functions in both early T cell development and T cell
effector function [4,26]. Mammalian SWI/SNF com-
plexes contain one copy of either the BRG1 or Brm
ATPase, and approximately 10 additional accessory sub-
units to form complexes that are generally over a mega-
dalton in size. Two versions of SWI/SNF complex, BAF
and PBAF, have been described, based on subunit com-
position [25,27-32], as well as other complexes specific
to ES cells and neurons [33,34]. For example, BAF com-
plexes contain either the BRG1 or Brm ATPase, and
either BAF250a or BAF250b. PBAF complexes contain
BAF180, BAF200 and the BRG1 ATPase but not Brm.
Importantly, BAF and PBAF complexes appear to regu-
late different target genes [29,31].
Previous we identified BAF250-containing BAF com-

plexes as important chromatin remodelers of cytokine
loci in T cells [24,35] and, in ES cells, regulators of
pluripotency and self-renewal [36,37]. BAF complexes
have established roles in cell cycle [38] and tumorigen-
esis [39]. PBAF complexes are known to be important
in coronary development [40,41]. However, a role for
PBAF complexes in T cell differentiation and effector
function has not been explored. The PBAF specific
SWI/SNF component, BAF180 or polybromo (Pbrm1),
appears to direct the regulation of a unique set of tar-
get genes [42]. BAF180-deficient mice have defects in
cardiac development that include the specific misregu-
lation of retinoic acid-induced genes [41]. BAF180 also
plays an important role in the regulation of the cell
cycle due, at least in part, to its ability to activate the
transcription of the cell cycle regulator p21 [43,44].
BAF180 mutations have been identified in breast and

renal cancers suggesting BAF180 is a tumor suppressor
gene [44,45]. Mutation of another PBAF component,
BAF200/Arid2, is found in hepatocellular carcinoma
[46]. The BAF180 protein includes an HMG DNA
binding domain, two bromo-adjacent homology
domains involved in protein-protein interactions and
an array of six tandem bromodomains shown to bind
to specific acetylated histone residues [42]. Recruitment
of BAF180 to its specific gene targets has been sug-
gested to involve interactions with other proteins,
including transcription factors, and the recognition of
specific histone signatures.
In this study we examine the role of BAF180-contain-

ing PBAF complexes in CD4+ T cells. Using cells from
mice conditionally deleted for BAF180 in T cells, we
found that overall thymus and peripheral T cell develop-
ment was intact. Additionally, the ex-vivo differentiation
of CD4 T helper cells into different effector fates was
not absolutely dependent on BAF180. However, BAF180
appeared to function as a repressor of the immunoregu-
latory cytokine, IL-10, in Th2 cells. BAF180 bound
directly to regulatory elements in the Il-10 locus but
was replaced by BAF250-containing BAF complexes in
the absence of BAF180, resulting in increased histone
acetylation and CBP recruitment to the IL-10 locus.
These results suggest that the differential recruitment of
different SWI/SNF subtypes (BAF and PBAF) can have
direct consequences on gene transcription and cell fate
in T cells.

Methods
Mice
The generation of BAF180 conditional KO ES cell lines
and mice are similar to that applied in BAF250a KOs
[36]. The BAF180 genomic sequences used for generat-
ing the initial KOs [40] were subcloned into the condi-
tional KO vector [36]. The generation of BAF180
conditional KO ES cell lines and mice are similar to that
applied in BAF250a KOs [35]. Briefly, two FRT and two
loxp sites, together with a polylinker sequence, were
engineered into a vector containing a promoterless b-
geo trapping cassette derived from pGT1. DNA frag-
ments ~4 kb in length were PCR-amplified from geno-
mic DNA 5’ and 3’ of exon 11 of BAF180 and inserted
into the targeting vector as applied previously for con-
ventional BAF180 KO. A 0.5-kb fragment containing
exon 11 was PCR-amplified and inserted upstream of
the b-geo trapping cassette. The BAF180 conditional
knockout vector was linearized by NotI digestion and
electroporated into E14 feeder-independent ES cells to
generate heterozygous ES lines after selection in G418.
Targeted ES lines were confirmed by Southern analysis.
Spe I digestion produces a 7.8-kb fragment for wild type
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(WT) allele and a 5.9-kb fragment for a mutant allele.
The probe used is located between the Spe I sites and
distal to the 5’ recombination region as applied pre-
viously for conventional BAF180 KO. BAF180 heterozy-
gous mice were obtained as described and these mice
were kept in a B6-129 mixed genetic background before
they were crossed to CD4-Cre mice. All other proce-
dures were as described previously [40]. CD4-Cre mice
were obtained from Taconic. Animal approval was
from the NIA ACUC, protocol ASP-365-MJP-Mi, and
all experiments conform to the relevant regulatory
standards.

Cell culture
Mouse T cells were isolated and cultured essentially as
described previously [24,47]. Naïve Thp cells were puri-
fied from lymph node and spleens by using CD4 +
CD62+ T cell isolation kit (Miltenyi) to 95% purity.
Lymphocytes were cultured in RPMI 1640 supplemented
with 10% FCS, 100 U/ml penicillin, 100 μg/ml strepto-
mycin, 1 mM Sodium Pyruvate, 2 mM L-glutamine, 25
mM Hepes, 50 μM b-mercaptoethanol. Purified naïve
Thp cells were plated onto anti-CD3 (1 μg/ml), anti-
CD28 (2 μg/ml) coated plates at 1-2 × 106 in the pre-
sence of 10 ng/ml IL-4, 10 μg/ml anti-IFNg (Th2 condi-
tions) or 1 ng/ml IL-12, 10 μg/ml anti-IL-4 (Th1
conditions). IL-2 (100 U/ml) was added 24 h later. Cul-
tures were expanded in IL-2 (100 U/ml) 3 days after
initial culture. For Th17 differentiation naïve Thp cells
were cultured with soluble anti-CD3 (4 μg/ml), soluble
anti-CD28 (1 μg/ml), 10 μg/ml of both anti-IL-4 and
anti-IFNg, 100 ng/ml IL-6, 10 ng/ml IL-1b and 1 ng/ml
TGF-b. Th17 cells were expanded in 10 ng/ml IL-23.
Proper differentiation was confirmed by intracellular
cytokine staining for Th lineage signature cytokines and
mRNA analysis.

FACS analysis
Cells were stained, then analyzed on a FACSCalibur (BD
Biosciences) using CellQuest software and standard
methods. Fluorescently labeled antibodies to CD4,
CD62L, CD44, CD8, CD3, and B220 were all purchased
from BD Pharmingen. Before staining, Fc receptors were
blocked with anti-CD16/32 Ab (BD Pharmingen). Nega-
tive controls consisted of isotype-matched, conjugated,
nonspecific Abs (BD Pharmingen). Intracellular cytokine
staining was performed using the Intracellular Cytokine
Staining Kit (BD Pharmingen). Briefly, the cells were sti-
mulated with PMA and Ionomycin for 4 hours in the
presence of brefeldin A. The cells were fixed with paraf-
ormaldehyde, permeabilized and subsequently stained
for cytokine expression using antibodies purchased from
BD Pharmingen.

Cell proliferation
Naïve Thp cells were plated in triplicate at 10,000 cells
per well of a 96 well plate in the presence of the indi-
cated amounts of plate bound anti-CD3 and 1 μg/ml
anti-CD28 (Pharmingen). Proliferation was assessed
after 72 h incubation using CyQuant
Cell Proliferation Assay (Invitrogen). Fluorescence was

measured on a CytoFluor 4000 fluorescent plate reader.
Each bar is the average and standard deviation of three
wells and representative of three independent experiments.

RNA analysis
Total RNA was purified using RNeasy columns (Qia-
gen). cDNA was made using iScript (BioRad) according
to the manufacturer’s instructions. Steady state mRNA
levels of indicated genes were determined by real time
PCR using SYBR green (Qiagen) on an ABI 7500.
Ongoing transcription of IL-10 was measured by detec-
tion of the IL-10 primary (unspliced) transcript. Expres-
sion levels were normalized to mTBP [24,48] or m-actin
as indicated. Oligo sequences are in Table 1; IL-10 pri-
mary transcript oligo pair is IL-10 pri.

Illumina oligonucleotide microarray analysis
Three pairs of RNA’s from resting and stimulated WT
and BAF180-/- Th2 cells were analyzed by microarray
analysis. Transcriptional profiling was determined using
Illumina beadchips as described previously [49]. Briefly,
total RNA was used to generate biotin-labeled cRNA
using the Illumina TotalPrep RNA Amplification Kit. A
total of 0.75 ug of biotin-labeled cRNA was hybridized
at 58°C for 16 h to Illumina’s Sentrix Mouse Ref-8v2
Expression BeadChips (Illumina, San Diego, CA). The
arrays were washed, blocked and the labeled cRNA was
detected by staining with streptavidin-Cy3. Hybridized
arrays were scanned using an Illumina BeadStation
500× Genetic Analysis Systems scanner and the image
data extracted using the Illumina GenomeStudio soft-
ware, version 1.1.1.1. For statistical analysis, the expres-
sion data were filtered to include only probes with a
consistent signal on each chip, and a detection p value
of less than or equal to 0.02 for at least one sample of
the data. The resulting dataset was next analyzed with
DIANE 6.0, a spreadsheet-based microarray analysis
program. An overview of DIANE can be found online
at http://www.grc.nia.nih.gov/branches/rrb/dna/diane_-
software.pdf. Using DIANE, the results were normalized
with a Z-Score transformation [50]. Z-normalized data
were then analyzed with principal component analysis
(PCA). To determine the gene expression changes
within each specific RNA comparison, Z-Scores for
paired treatment groups were compared using the Z-
Ratio statistic [50]:
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Z − Ratio =
Z − ScoreLPS − Z − ScoreVehicle

σ [Z − ScoreLPS − Z − ScoreVehicle]

Expression changes for individual genes were consid-
ered significant if they met four criteria: Z-Ratio above
1.5 or below -1.5; false detection rate (FDR) [51] of less
than 0.30; a P-value statistic for Z-Score replicability
below 0.05; and mean background-corrected signal inten-
sity greater than zero. Differentially expressed genes were
identified as significant (p < 0.05) based on Z-scores.
Gene set analysis using GO gene sets with the PAGE
[52] algorithm was performed as previously described
[53]. The data are publicly available at GEO (GSE31676).

Immunoblot analysis
Whole cell extracts were prepared from Th2 cells by
lysing cells in 50 mM Tris 7.4, 1% NP40, 150 mM NaCl,
0.5% Deoxycholate, 0.1% SDS and clearing the lysates by
centrifugation. Protein extracts were separated on a 6%
polyacrylamide gel and transferred to a PVDF mem-
brane (BioRad). The immunoblots were blocked for 1 h
at room temperature in 5% milk in TBST (50 mM Tris
pH7.5, 100 mM NaCl, 0.03% Tween 20) and incubated
with the BAF180 antibody (Bethyl A301-590A) or BRG1
antibody (Upstate/Millipore 07-478) overnight at 4°C.
The blots were washed with TBST and incubated with
anti-rabbit HRP-conjugated antibody (Zymed) at room
temperature. After washing the blots with TBST, detec-
tion was carried out using enhanced chemiluminescence
(Amersham) according to manufacturer’s instructions.

Chromatin immunoprecipitation (ChIP)
Chromatin immunoprecipitation was performed using
methods similar to those described previously
[21,24,47,54]; details are available on request. Approxi-
mately 20 million cells (for 3-5 immunoprecipitations)

were crosslinked with 1% formaldehyde and quenched
with glycine. Cells were lysed with buffer containing 1%
SDS, treated with micrococcal nuclease, sonicated until
the average DNA size was approximately 500 bp, and
adjusted to 0.1% SDS, 1% Triton X-100 and 150 mM
NaCl at 5 ml. Sonicates were precleared with protein A
Sepharose (Upstate) and IP was performed with the fol-
lowing antibodies: 1 ug H3K9Ac (Abcam ab4441), 0.5 ul
BRG1 (J1, Weidong Wang), 1 ug H3K18Ac (Abcam
ab1191), 1 ug H3K4Me (Abcam ab8895), 2 ug BAF180
(A301-591A Bethyl Laboratories), 2 ug BAF250 (A301-
041A Bethyl Laboratories), 1 ug CBP (Assay Biotech
Ab-1535) or rabbit IgG (Santa Cruz sc-2027). Chroma-
tin was collected with protein A, washed, eluted with
TE pH 10.0 and crosslinks were reversed, followed by
protease treatment. Chromatin was quantified by real-
time PCR (Q-PCR) using an Applied Biosystems 7500
with Sybr Green detection (Biorad). Graphs indicate
immunoprecipitated chromatin amounts relative to
input DNA (% input). Oligo sequences are in Table 2.

Results
T lymphocyte development is essentially normal when
the BAF180 gene is deleted relatively late in thymocyte
development
Previous work from our laboratory identified a role for
BRG-containing SWI/SNF complexes in the differentia-
tion of Th2 cells as well as in the acute induction cyto-
kine genes from Th2 and IL-3/GMCSF loci [24,35].
Additionally, using siRNA technology in effector Th
cells we identified BAF250a-containing BAF complexes
as an important SWI/SNF component in Th2 and IL-3/
GMCSF cytokine expression [24,35]. By contrast, we did
not identify a role for BAF180-containing PBAF com-
plexes in effector Th2 cytokine expression and did not
explore the role of BAF180 in Th2 differentiation.

Table 1 Primers for steady-state mRNA and primary transcript

Locus Primer name Primer 1 Primer 2

IL-4 MP 588 ACAGGAGAAGGGACGCCAT GAAGCCCTACAGACGAGCTCA

IL-13 MP 590 AGACCAGACTCCCCTGTGCA TGGGTCCTGTAGATGGCATTG

IFN-g MP 592 GGATGCATTCATGAGTATTGC CCTTTTCCGCTTCCTGAGG

IL-5 MP 779 AGCACAGTGGTGAAAGAGACCTT TCCAATGCATAGCTGGTGATTT

IL-17A MP 1018 ATCAGGACGCGCAAACATG GCAGCAACAGCATCAGAGACA

IL-17 F MP 1020 ATTCCAGAACCGCTCCAGTTC GGGTCTCGAGTGATGTTGTAATCC

IL-10 MP 1016 GGCGCTGTCATCGATTTCTC GCTCCACTGCCTTGCTCTTATTT

IL-10 pri MP 1082 CCAATGGGTACTAACCAGATGCT AATTCATTCATGGCCTTGTAGACA

T-bet MP 602 CAACAACCCCTTTGCCAAAG TCCCCCAAGCAGTTGACAGT

GATA3 MP 604 AGAACCGGCCCCTTATCAA AGTTCGCGCAGGATGTCC

RORgT MP 1564 CTGTTTCGAGCCTTGGGCT AAAGTCAAATATGGAGCTGATGAGC

actin MP 598 AGAGGGAAATCGTGCGTGAC CAATAGTGATGACCTGGCCGT

TBP MP 935 CTTCGTGCAAGAAATGCTGAATAT TGTCCGTGGCTCTCTTATTCTCA
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However, it remained possible that the siRNA-mediated
partial depletion of BAF180 was not sufficient to reveal
the role of BAF180 in T cells. To more thoroughly
explore this issue we made use of a mouse strain made
conditionally deficient for BAF180 in T cells [41]. Since
we were testing the role of BAF180 in peripheral CD4 T
cell function, we chose the CD4 promoter/enhancer dri-
ver for cre recombinase expression, as this expression
cassette is expressed at a relatively late stage of thymo-
cyte development [55]; we also expected T cell specific
deletion would bypass the coronary and trophoblast
defects occurring in embryos lacking BAF180 [40].
As expected, in the presence of the cre recombinase

transgene, we observed complete loss of BAF180 protein

expression in T cells from BAF180fl/fl mice (Figure 1).
By contrast, there was little if any effect on BRG1,
another SWI/SNF component. Loss of BAF180 protein
expression did not grossly affect cell number from the
thymus, spleen or lymph nodes (Figure 2A, B and data
not shown) suggesting that overall T cell development
and expansion was not strongly affected by the loss of
BAF180 at this late stage. This was further supported by
FACS analysis showing typical staining profiles for CD4
and CD8 T cell subsets in both the thymus and lym-
phoid periphery, as well as typical T:B cell ratios in the
spleen (Figures 2B, C, D and 3A).
We detected two subtle changes in BAF180-deficient

peripheral CD4 T cells. First, although the naïve and cen-
tral memory marker CD62L was unchanged in BAF180-
deficient T cells, we observed a general down-regulation
of the memory marker CD44 in peripheral T cells (Figure
3A). We do not know whether the loss of CD44 expres-
sion was a direct consequence of reduced CD44 tran-
scription when BAF180 no longer functions on the CD44
gene, or alternatively an indirect effect of altered memory
cell function in the absence of BAF180. In support of the
former possibility, CD44 was one of the first bona fide
SWI/SNF target genes identified in mammalian cells
[56]. Additionally, we observed direct recruitment of
PBAF complexes to multiple transcriptional elements in
the CD44 gene (data not shown) suggesting that BAF180
was a direct positive regulator of CD44 expression in T
cells. Second, BAF180-deficient CD4 T cells consistently
displayed a slight decrease in proliferative response to T
cell stimulation (Figure 3B). This correlated with a small

Table 2 Primers for ChIP and DNase hypersensitivity

Locus Primer name Primer 1 Primer 2

IL-10-30.4 MP 1116 GCCCTTCTGGAGCTGGTTAGT TCATACTTGGGCATGGAAATTTC

IL-10-29.8 MP 1117 GCTCTTGCTGCACATAATTCTGTAC TGAAAGACTAGAACAAATGTGAACGA

IL-10-25.9 MP 2014 TCTGTTCCCAACTTAGGCTGC GACCCACCAAAAGCTTCTGG

IL-10-23.3 MP 2015 CCTGGATGCGAAAGACCTCA TGTGGATGGAGGGAGCATTC

IL-10-20.7 MP 1118 TGGATTGGCATGGGTAGAGAA ATCACCCCAGACTGGATGTCA

IL-10-20.1 MP 1119 CCCTCCAGGTCTCGTCTCAAG CTTTTGATTCCCATGCCTTACC

IL-10-17.2 MP 1120 CCTGCCTCATTATTAGCGTCTCTT CATGGCCTTGGAAATAATATGCA

IL-10-17.0 MP 1121 TGAGAAGGTAAGAGGTTGCCATTA TCTCTCCCCTGCCTCTTTTTC

IL-10-9 MP 911 AACACAGGTGAACACGCAAAAG CTGGAAGTGCCATTCTGTAAGAGA

IL-10 pro MP 913 GCCCATTTATCCACGTCATTATG TGTTCTATGTACAGAGGCCCTCATC

IL-10 +1.8 MP 1246 GGTCTCTTGCTCATCTGTCTCTGA AGGCTATGCGCAAATCTTCAC

IL-10 +3.2 MP 2016 CTCCCCCAAATCAGAACGAG GCCCCGGGACAAGTAAGAAT

IL-10 +6.2 MP 2017 GCAGAGAGTGGGATGGCTCA TCTCACTGGTGCCCGCA

IL-10 +18 MP 2018 AGGAGTTCAGGAGGCATGGA TCACCATGTCTTGTGGTAACAGC

Nfm MP 855 CCACGGCGCTGAAGGA CTGGTGCATGTTCTGGTCTGA

Figure 1 T cell specific deletion of BAF180 Immunoblot of
proteins from wild-type (WT) and BAF180-/- (180) Th2 cells.
BAF180 (upper panel) and BRG1 (lower panel) were visualized.
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Figure 2 T cell specific deletion of BAF180 has little or no effect on T cell development A,B) Cell numbers of A) thymus and B) spleen
from wild-type (WT) and BAF180-/- (180-/-) mice, n = 5 pairs of mice. C,D) Cell surface staining of C) CD8 and CD4 expression on
thymocytes and D) B220 and CD3 expression on splenocytes from WT and BAF180-/- mice.
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increase in the expression of cell cycle inhibitors in
BAF180-deficient T cells (Figure 3C).

Enhanced Th2 differentiation in the absence of BAF180
In order to determine if BAF180 is involved in Th dif-
ferentiation, we purified naïve CD4 T cells (Thp) from
wildtype and BAF180-deficient mice and cultured the
cells under Th1, Th2 and Th17 skewing conditions (Fig-
ure 4A); throughout this study, restimulated cells were

activated with PMA and ionomycin. Analysis of expres-
sion of Th-subset specific cytokines and transcription
factors revealed that, in the absence of BAF180, Th-
differentiation was largely intact (Figure 4B, C, D). Addi-
tionally, BAF180-deficient T cells expanded similarly to
wildtype T cells when cultured under skewing condi-
tions with exogenous cytokines. We did consistently
observe a slight enhancement of IL-4 expression and a
larger increase in IL-10 expression in BAF180-deficient
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Figure 3 Cell surface markers and proliferation of BAF180-deficient Th cells A) Cell surface staining of lymph nodes from WT (upper)
and BAF180-/- (lower) mice, as a function of CD4 expression. CD8 (left), CD44 (middle) and CD62L (right) were detected. B) Proliferation of
CD4+ T cells purified from WT and BAF180-/- mice using the indicated concentration of plate bound anti-CD3 antibody and 1 μg/ml anti-CD28.
Asterisk indicates p < 0.05. C) Cell cycle inhibitor RNA expression in restimulated Th2 cells from WT and BAF180-deficient mice was quantified by
real time RT-PCR and normalized to WT values. n = 3. Double asterisk indicates p < 0.01; paired T-test values were Cdkn1A, 0.07; Cdkn2A-Arf,
0.21; Cdkn2A-Ink4a, 0.25, and Cdkn2B-Ink4B, 0.005. In stimulated naïve cells, the ratios/p values were Cdkn1A, 2.27/0.40; Cdkn2A-Arf, 3.34/0.02,
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Th2 cells (Figure 4C). These results suggest that
BAF180-deficient Th cells are largely capable of differ-
entiating into several Th lineages and express Th cyto-
kines appropriately. However, BAF180 appeared to
repress IL-10 and perhaps IL-4 in Th2 cells.

Deletion of BAF180 alters gene expression in Th2 cells
After observing some changes in candidate gene expres-
sion in BAF180-deficient Th2 cells, we expanded our
analysis in a comprehensive, unbiased manner using
beadchip analysis. We identified BAF180-dependent
gene expression in resting and restimulated Th2 cells
and Naïve CD4+ Th cells; primary data were deposited
in GEO (GSE31676). We found the expression of
approximately 1,100 genes was augmented or dimin-
ished in a statistically significant manner, following
depletion of BAF180 protein in one or more of these
conditions (Figure 5). More genes were affected in

resting cells than in stimulated cells. In resting cells,
more genes were upregulated than downregulated after
deletion of BAF180, suggesting the major function of
BAF180 in resting Th cells was to repress gene expres-
sion. More genes were affected in differentiated cells
than in Naïve cells.
Among GO term gene sets in stimulated Th2 cells,

decreased expression in pathways involving nucleosome
assembly, transcription and DNA binding were evident
in BAF180-deficient Th2 cells, while pathways involving
ribosome biogenesis and translation were increased.
Pathways altered in BAF180-/- Th2 cells involving
immune cell function included “Positive Regulation of T
cell Differentiation” and “Natural Killer Cell Activation”.
Genes that appeared to be repressed by BAF180 in Th2
cells included IL-10, Il2ra, Furin, Ctla4, Icos, Foxp3,
Rgs1, Nras, E2f6, E2f1, Cdkn2a, Nfil3 and Jmjd1a. Genes
that appeared to be activated by BAF180 in Th2 cells
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Figure 5 BAF180-dependent gene expression changes in Th2 cells Upregulated and downregulated genes were counted in each cell
type, after removing genes that were not expressed, and removing genes without statistically significant changes. Total is the sum of
upregulated and downregulated genes within a cell type. Cell types are listed below the graph; “Any” is a count of every gene that is regulated
under at least one condition. Array data were derived from 3 pairs of WT and BAF180-/- mice. Data are deposited in GEO (GSE31676).
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included Cd28, Stat1, Jak2, Twistnb, Daxx, Igf1r, Prkca,
Chd4 Bcl2 Cdk2, Rb1, Ikbke, Egr1, and Adar. In Naïve
cells, repressed genes included Cdkn1a, Foxp3, Gata3,
Ifng, Il17f, Dnmt3b, while activated genes included
Dicer1, Gadd45a, and Smad1. We note we had also
identified Cdkn1a and Cdkn2a as repression targets
using a candidate gene approach (Figure 3C). BAF180
repression targets in resting and stimulated Th2 cells
were largely distinct; only a small number of targets
were shared. Interestingly, the gene most enhanced by
BAF180-deficiency in both resting and activated Th2
cells was IL-10 suggesting a role for BAF180 in the
down-regulation of this cytokine.

IL-10 expression in Th2 cells is negatively regulated by
BAF180
We validated the IL-10 expression changes in BAF180-
deficient Th2 cells at both the protein and RNA level.
Using intracellular cytokine staining, we observed that
the number of IL-10 producing Th2 cells increased
from 16% to 38% in the absence of BAF180 (Figure 6A).
This correlated well with 2-4 fold enhanced IL-10
mRNA production in both resting and activated

BAF180-deficient Th2 cells (Figure 6B). To determine if
the enhanced IL-10 expression was due to increased
transcription, we quantified the IL-10 primary
(unspliced) transcript and similarly found an increase of
at least 4 fold in resting and activated BAF180-/- cells
(Figure 6C). (Incidentally, stimulation increased the IL-
10 primary transcript 5 fold (Figure 6C) in WT cells,
while the mRNA increased 50 fold (Figure 6B) and 10
fold (microarray experiment); while these differences
may reflect experiment to experiment variation, they
also provide some support for regulation of IL-10
mRNA stability.) These results demonstrate that the
transcription of IL-10 is elevated in the absence of
BAF180 and suggest that BAF180 is a repressor of IL-10
transcription.

Enhanced BAF recruitment and histone acetylation at IL-
10 locus in Th cells lacking BAF180
The IL-10 locus is marked by a number chromatin
structure changes in Th2 cells in response to both acti-
vation and lineage-specific signals [6-8]. These modifica-
tions include histone acetylation, methylation and the
generation of DNase I hypersensitive sites present over
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many kilobases upstream and downstream the IL-10
coding sequence. We examined the landscape of BRG1
binding and STAT transcription factor binding at this
locus using ChIP-seq data. We found BRG1 at several
regions near the IL-10 gene (Figure 7). Binding was
strongest at regions upstream and downstream from the

IL-10 promoter than at the promoter itself, as seen pre-
viously with cytokine genes [21,24,35,47]. More and
stronger BRG1 binding was found in stimulated cells
than in resting cells, and in Th2 fate than in other fates.
BRG1 binding was statistically significant at -25.9 k,
-23.4 k, -20 k, -9 k, +6.2 k, +9.6 k, and +18.5 k. Previous
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Figure 7BRG1 and transcription factor binding at the IL-10 locus in multiple T helper subtypes BRG1 and transcription factor
binding at the IL-10 locus in multiple T helper subtypes. ChIP-seq profiles from T helper cells for BRG1, STAT6, STAT4 and STAT5B are
shown. BRG1 data are from [47], Stat6 data are from [57] and Stat5 data are from [58]. Resting naïve cells (uNaive), resting Th1, (uTh1), resting
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range values (y axis) are identical for all graphs to allow direct comparison (minimum tag frequency of 0, maximum tag frequency of 1.14 × 10-
5). A scale bar for the × axis (genomic location) is shown. IL-10 exons are indicated as vertical bars, and an arrow indicates the direction of
transcription; vertical arrows indicate features analyzed in other figures, and their distance relative to the IL-10 promoter. The genomic
coordinates represented (MM9 assembly) are chromosome 1, 132,870,000 to 132,940,000.
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studies found DNase hypersensitivity at most of these
sites [6-8]; BRG1 has previously been found to play a
role in formation of DHS [24,35,47]. We note that
STAT transcription factor binding overlaps with a num-
ber of these sites, and suggest that transcription-factor
mediated recruitment might explain some of the
observed BRG1 binding. Interestingly, STAT4 binding
occurs in Th1 cells at locations lacking STAT6 in Th2
cells; these could be negatively acting sites.

We examined BRG1, BAF180, and BAF250 binding at
the IL-10 locus using ChIP-PCR. We found BRG1 bind-
ing at several regions, consistent with the ChIP-seq
results (Figure 8A); BRG1 binding was strongest at -29.8
k, -25.9 k, -23.3 k, -9 k, and +6.2 k. BRG1 binding was
low in naïve cells, induced during differentiation,
decreased in resting cells, and was strongest in re-stimu-
lated cells (data not shown), as seen with the Th2 cyto-
kine loci [24]. We found BRG1 was required during Th2
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differentiation to establish DHS at -9 k and +1.8 k (data
not shown), as found previously at the IL-4 and GATA3
promoters [24]. The binding of the BRG1 paralog Brm
was similar to BRG1 (data not shown). BRG1 binding
was not affected by BAF180 deletion at some sites, such
as -9 k, while other sites such as -29.8 k BRG1 and the
above-mentioned STAT4 binding sites in Th1 cells,
BRG1 binding was reduced. We next examined BAF180
binding to the IL-10 locus; we detected BAF180 binding
especially at distal sites (-30.4 k, -29.8 k) and the IL-10
promoter in Th2 cells (Figure 8B). The pattern of
BAF180 binding was similar to BRG1, with the promi-
nent exception that little if any BAF180 binding
occurred at -9 k, a strong BRG1 binding site. As
expected, BAF180 binding was absent in BAF180-defi-
cient Th2 cells (Figure 8B). Finally we measured
BAF250a binding as a marker of BAF complexes. We
detected enhanced binding of BAF250a to distal ele-
ments and the IL-10 promoter in BAF180-deficient Th2
cells compared to WT cells (Figure 8C). The strongest
BAF250a binding was to the IL-10 promoter, a weak
BRG1 site, while there was little if any BAF250a binding
to -9 k, a strong BRG1 site. These results suggest that
while overall SWI/SNF recruitment is not strongly
affected by BAF180-deficiency, the composition of the
SWI/SNF complex (BAF vs PBAF) is altered and thus
changing the composition of SWI/SNF changes IL-10
gene expression.
Next, we examined histone modifications and modi-

fiers at the IL-10 locus using ChIP-PCR, as we had pre-
viously found BRG1 regulated histone acetylation [24].
H3K4me1, a mark frequently found at enhancers, was
found at all the tested regions of the IL-10 locus, espe-
cially at -29.8 k, -20.7 k, -20.1 k, and -9 k (Figure 9A,
blue bars). H3K4me1 was not strongly affected by dele-
tion of BAF180 (red bars), though IL-10 expression was
enhanced in BAF180-deficient Th2 cells. H3K18ac and
H3K9ac, marks that are enriched at active enhancers
and promoters [59], were found at all the tested regions
of the IL-10 locus; H3K18ac was especially prominent at
-20.7 k and -20.1 k, H3K9ac especially at the promoter
and downstream regions (blue bars). Histone acetylation
was elevated in BAF180-deficient cells (Figure 9B and
9D, red bars); this difference was prominent at sites dis-
tal to the IL-10 promoter (-30.4 k, -29.8 k, -20.7 k, -20.1
k). These results suggested that the replacement of
PBAF complexes with BAF complexes altered histone
modifications of the locus, or alternatively that these
histone modifications were acquired as a consequence
of SWI/SNF-mediated transcriptional regulation. The
CBP and p300 histone acetyltransferases been shown
experimentally to generate the H3K18ac and H3K27ac
modification [60,61] associated with active enhancers

and promoters [59,62-65], and these paralogs bind simi-
lar targets [66]. We found CBP binding to many of the
tested regions in the IL-10 locus; we detected increased
CBP recruitment to IL-10 enhancers and the IL-10 pro-
moter in the absence of BAF180 (Figure 9C). Therefore,
the composition of specific SWI/SNF complexes can
influence histone acetyltransferase recruitment and his-
tone acetylation; as the changes in histone modifications
do not always coincide with changes in BAF180 binding,
we do not know whether they are the result of looping,
or spreading of histone modifications. These alterations
in histone modifications might be programmed by SWI/
SNF to direct transcription, or might be a consequence
of transcription programmed by SWI/SNF.

Binding of BRG1 and transcription factors in the IL24/
IL20/IL19/IL10 locus
IL-10 is part of a multi-gene cluster in mouse and
human. A recent report indicated that IL-24 expression
is Th2 specific, mediated in part by STAT6 function
through the IL-24 promoter [67]. We asked whether
there might be functional elements dispersed through-
out this locus, as found for the IL4/IL13/IL5 locus;
these can be identified through genomic analysis, espe-
cially when multiple datasets are combined [4,68]. We
found BRG1 binding clustered around the IL-24 and
IL-10 genes (Figure 10). There were few if any binding
regions in the central 60 kb interval containing the IL-
20 and IL-19 genes. In resting and stimulated cell
types, BRG1 binding was Th2 specific, and binding was
stronger in stimulated cells. Consistent with our pre-
vious global analysis and analysis of specific genes,
these effects were not absolute; for example, there is
substantial BRG1 binding in Th1 cells; it is not clear
whether this is the result of combinatorial control, or if
these sites can be both positively and negatively acting.
STAT6 and STAT5 binding was present at numerous
upstream and downstream regions, extending the
observation of STAT6 at the IL-24 promoter. The loca-
tion of statistically significant binding regions for both
loci is presented as a table (See Additional file 1) of
genomic coordinates and features, organized by factor/
condition (By Factor tab) and by genomic coordinate
(By site tab). We note that occupancy of the IL-19
-19.8 k and IL-10 +3.2 k sites was detected in cells that
do not express these genes under these conditions; per-
haps negative regulatory elements lie in these regions.
We also note that the IL-10 -25.9 k, IL-10 -9 k, IL-10
+9.5 k, and IL-20 +8.6 k elements are bound by BRG1,
STAT6, STAT5A and STAT5B; perhaps these are
especially important positive elements. We have con-
firmed that these elements are DHS in Th2 cells (data
not shown).
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Discussion
We examined the role of ATP-dependent chromatin
remodeling in T cell function. Our previous work identi-
fied an activating role for BAF complexes, SWI/SNF com-
plexes containing BAF250, in cytokine gene expression in
T helper cells [24,35,47]. In the current study we examined
the contribution of PBAF, a different SWI/SNF complex

containing BAF180, in T cell function and cytokine
expression using T cell specific BAF180-deficient mice.
We identified numerous BAF180-dependent changes in
gene expression in our microarray analysis; however, over-
all Th cell development and cytokine expression were
intact. BAF180 was a negative regulator of IL-10 transcrip-
tion and, in the absence of BAF180, histone modifications

20 kb

uTh1, BRG1

uTh2, BRG1

Th1s, BRG1

Th2s, BRG1

uNaive, BRG1

Th17s, BRG1

Input

Th1s, STAT4

Th2s, STAT6

Th2s, STAT5B

Figure 10BRG1 Binding at the IL-10/IL-24 Locus in multiple T helper subtypes BRG1 Binding at the IL-10/IL-24 Locus in multiple T
helper subtypes. ChIP-seq profiles from T helper cells for BRG1, STAT6, STAT4 and STAT5B are shown. BRG1 data are from [47], Stat6 data are
from [57] and Stat5 data are from [58]. Resting naïve cells (uNaive), resting Th1, (uTh1), resting Th2 (uTh2), re-stimulated Th1 (Th1s), re-stimulated
Th2 (Th2s), re-stimulated Th17 (Th17s) cells are shown. Input is shown as a control. Occupancy range values (y axis) are identical for all graphs to
allow direct comparison (minimum tag frequency of 0, maximum tag frequency of 1.14 × 10-5). A scale bar for the × axis (genomic location) is
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were reprogrammed and BAF250-containing BAF com-
plexes were recruited to the IL-10 locus.
We find the binding patterns of BAF180 and BAF250

are overlapping, yet readily distinguishable. Our data are
consistent with the model that SWI/SNF exists in dis-
tinct BAF and PBAF complexes, determined by several
independent research groups examining different spe-
cies. Our data are also consistent with a stepwise assem-
bly model, as proposed based upon time-resolved cell
imaging studies [69]. These data are more difficult to
reconcile with the proposal that BAF180 and BAF250
are, or can be, in the same complex [70,71]. We note
that genetic studies have found different targets and
functions for the BAF-specific subunits BAF250a/Arid1a
and BAF250b/Arid1b in ES cells [36,37]. Differences
have also been found for the PBAF-specific subunits
BAF180, BAF200 and BRD7 [25,31]. There may be dif-
ferent BAF and PBAF complexes; alternatively, it may
be that only some SWI/SNF subunits within a complex
contribute to function at a particular locus. Direct, com-
prehensive comparison of these subunits would extend
our understanding of the SWI/SNF system.
The targeting of remodeling complexes to specific

DNA elements is mediated by association with tran-
scription factors, histone modifications, non-coding
RNA and interactions with the general transcription
machinery [4,42,72-76]. Our previous studies identified
important roles for transcription factors, particularly
STATs, in the recruitment of BRG1 to specific regula-
tory elements in T cells [4,24,47]. Interestingly, Stat6
has been shown to be a critical transcription factor in
the Th2-specific expression of IL-10 and IL-24 [67,77],
and analysis of BRG1 and Stat6 ChIP-Seq data reveal
Stat6 binding at many of the distal regulatory elements
in the IL-10 locus occupied by BAF and PBAF com-
plexes [47,57]. Whether or not Stat6 is mediating the
recruitment of SWI/SNF to the IL-10 locus or if Stat6
preferentially interacts with BAF or PBAF complexes
remains to be determined. Ets-1 is reported to be a
repressor of IL-10 expression [78,79], and Ets sequence
motifs are enriched at BRG1 binding sites in resting Th
cells [47].
Our recent examination of BRG1 did not reveal

repression as a prominent function for SWI/SNF, by
comparison of Th2S gene expression and BRG1 binding
[47]. We note that most BAF180-mediated repression
was in uTh2 cells, and we did not examine resting cell
gene expression in our previous work. Alternatively,
there may be more SWI/SNF activation targets than
repression targets; this assessment awaits analysis of
BAF250a KO and BRG1 KO Th2 cells for direct com-
parison under identical conditions. A previous report
suggested Brm more important for repression, BRG1

more important for activation [80]. It is unclear how
BAF180 complexes are mediating repression; they may
be working as repressor complexes, or preventing the
binding and function of activator complexes containing
BAF250.
It is perhaps surprising that we found that deletion of

BAF180 (late in T cell development) does not strongly
perturb early T cell development. We have used a CRE
expression cassette that induces deletion at a late DN
stage, potentially bypassing an earlier requirement for
BAF180 expression. Several other factors, such as
GATA3, BRG1, TCF7, b-catenin and BPTF, appear to
be required for early T cell development [22,81-85].
Given that BRG1 has obvious effects on T cell develop-
ment, we could have found that BAF180 deletion would
also have strong effects on T cell development. BAF180-
deficient mice have defects in cardiac development [41]
and BAF180 is a cell cycle regulator in some settings
[43,44]; it is not clear what determines the relative
importance of PBAF complexes in different cell states.
Genetic variants within IL-10 have been associated

with human disease. The human SNP rs3024505, asso-
ciated with Type 1 Diabetes, Crohn’s disease and ulcera-
tive colitis [15-17], maps to BRG1, STAT6, and STAT4
binding at +6.3 k in the mouse. Ulcerative colitis is also
linked to rs3024493 [16], within intron 3; this is 1 k
upstream of BRG1, STAT4 and CBP binding at +3.2 k,
and slightly downstream of BRG1 binding and H3K9
acetylation at +1.8 k. Behcet’s disease is associated with
a variant (rs1800871) that lies near the IL-10 promoter
[18], adjacent to BRG1, STAT6 and CBP binding. The
proximity of these genetic variants to these remodeling
enzyme and transcription factor binding regions sug-
gests these binding regions may regulate IL-10 gene
expression in a physiologically relevant manner.
Previous studies on breast cancer cells suggested

BAF180 is a tumor suppressor gene that positively regu-
lates the expression of the cell cycle inhibitor p21
through direct interaction and activation of the p21 pro-
moter [44]. A positive role for BAF250a in the regula-
tion of p21 transcription has been suggested in studies
in a pre-osteoblast line [38]. However BAF250a can also
serve as a repressor of c-myc in these same cells while
another BAF-specific protein, BAF250b, is an activator
of c-myc [38]. We observed a slight decrease in the abil-
ity of BAF180-deficient Th cells to proliferate in
response to T cell activation and enhanced expression
of cell cycle inhibitors, including p21 (CDKN1), suggest-
ing that in T cells BAF180 is a repressor of these genes.
We also observed binding of PBAF complexes to the
p21 locus in T cells (data not shown). At this time,
there is no simple relationship between BAF/PBAF com-
plexes and cell cycle progression.
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Conclusions
The relative contribution of different SWI/SNF subtypes
in T cell gene expression is largely unknown. Here we
identify gene targets in Th2 cells regulated by the
PBAF-specific SWI/SNF component, BAF180. In parti-
cular, we find that BAF180 is a repressor of IL-10 gene
transcription. BAF180 binds directly to regulatory ele-
ments in the IL-10 locus but is replaced by the BAF-
specific component, BAF250a, in the absence of
BAF180, resulting in enhanced histone acetylation at the
IL-10 locus. This study demonstrates that the differen-
tial recruitment of SWI/SNF subtypes can have direct
consequences on chromatin structure and gene
transcription.

Additional material

Additional file 1: IL -10/IL-19/IL-20/IL-24 locus features are
described in the excel file < IL10_IL24_Features.xlsx> On the tab
“By Factor”, each row reports a feature in the locus identified by
ChIP-seq. This presentation facilitates identifying primer sequences for
future studies. Columns A, B, and C report the mm9 chromosomal
coordinates, column D, the length of the feature in bp, column E, the
nearest transcriptional start site (TSS), Columns E, F, G, H, and I, the Gene
Symbol ref-seq accession number, TSS, and transcription end site (TSE)
for the gene containing the nearest TSS, Column J, the distance from the
center of the feature to the nearest TSS, in bp; and Column K, condition,
the feature present, when reported as statistically significant, using Cis
Genome [86]; uN_BRG1 indicates BRG1 binding in resting Naïve cells,
uN_BRG1 indicates BRG1 binding in unstimulated Naïve cells, u2_BRG1
indicates BRG1 binding in unstimulated Th2 cells, 1S_BRG1 indicates
BRG1 binding in Stimulated Th1 cells, 2S_BRG1 indicates BRG1 binding in
Stimulated Th2 cells, 17S_BRG1 indicates BRG1 binding in Stimulated
Th17 cells, 2S_H3K4me3 indicates H3K4 trimethylation, a mark frequently
found slightly downstream of active TSS, 2S_STAT6 indicates STAT6
binding in stimulated Th2 cells,, 2S_STAT5A, 2S_STAT5B indicate binding
of STAT5A and STAT5B, respectively, in stimulated Th2 cells, 1S_STAT4
indicates binding of STAT4 in stimulated Th1 cells. BRG1 data are from
[47], STAT6 and STAT4 data are from [57], STAT5 data are from [58],
H3K4me3 data are from [87]. On the tab “By Site” each row is a
chromosomal location, and the columns indicate location and features.
This presentation facilitates identifying which features are present at the
same site, and how the features change within the T helper subsets.
Columns A and B indicate the Gene Symbol and approximate distance
to the nearest TSS; Columns D-N tabulate the features above, in lineage
order; Yes in any box indicates the feature identified in that column is
present in the location described in that row; present meaning identified
as statistically significant using CisGenome. Column N, GWAS findings,
indicates locations that are homologous to human regions (or nearby
homologous regions) that contain genetic variants that are in linkage
disequilibrium with the indicated conditions, as described in the
discussion. The “By Site” tab was prepared using the data from the “By
Factor” tab. Note some locations, such as IL-10 -25.8 k, -9 k, +6.2 k, and
+9.5 k, IL-20 +8.7 k, IL-24 +9 k and +7.4 k, are annotated for statistically
significant findings under several conditions/features.
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