RESEARCH ARTICLE

Open Access

Human CD3γ, but not CD3δ, haploinsufficiency differentially impairs γδ versus αβ surface TCR expression

Miguel Muñoz-Ruiz^{1,2†}, Verónica Pérez-Flores^{1†}, Beatriz Garcillán^{1,2}, Alberto C Guardo¹, Marina S Mazariegos^{1,2}, Hidetoshi Takada³, Luis M Allende⁴, Sara S Kilic⁵, Ozden Sanal⁶, Chaim M Roifman⁷, Eduardo López-Granados⁸, María J Recio^{1,2}, Eduardo Martínez-Naves¹, Edgar Fernández-Malavé^{1,2} and José R Regueiro^{1,2*}

Abstract

Background: The T cell antigen receptors (TCR) of $\alpha\beta$ and $\gamma\delta$ T lymphocytes are believed to assemble in a similar fashion in humans. Firstly, $\alpha\beta$ or $\gamma\delta$ TCR chains incorporate a CD3 $\delta\epsilon$ dimer, then a CD3 $\gamma\epsilon$ dimer and finally a $\zeta\zeta$ homodimer, resulting in TCR complexes with the same CD3 dimer stoichiometry. Partial reduction in the expression of the highly homologous CD3 γ and CD3 δ proteins would thus be expected to have a similar impact in the assembly and surface expression of both TCR isotypes. To test this hypothesis, we compared the surface TCR expression of primary $\alpha\beta$ and $\gamma\delta$ T cells from healthy donors carrying a single null or leaky mutation in *CD3G* ($\gamma^{+/-}$) or *CD3D* ($\delta^{+/-}$, $\delta^{+/leaky}$) with that of normal controls.

Results: Although the partial reduction in the intracellular availability of CD3 γ or CD3 δ proteins was comparable as a consequence of the mutations, surface TCR expression measured with anti-CD3 ϵ antibodies was significantly more decreased in $\gamma\delta$ than in $\alpha\beta$ T lymphocytes in CD3 $\gamma^{+/-}$ individuals, whereas CD3 $\delta^{+/-}$ and CD3 $\delta^{+/leaky}$ donors showed a similar decrease of surface TCR in both T cell lineages. Therefore, surface $\gamma\delta$ TCR expression was more dependent on available CD3 γ than surface $\alpha\beta$ TCR expression.

Conclusions: The results support the existence of differential structural constraints in the two human TCR isotypes regarding the incorporation of CD3 γ e and CD3 δ e dimers, as revealed by their discordant surface expression behaviour when confronted with reduced amounts of CD3 γ , but not of the homologous CD3 δ chain. A modified version of the prevailing TCR assembly model is proposed to accommodate these new data.

Keywords: T cells, CD3, Haploinsufficiency

Background

The human T cell antigen receptors (TCR) of $\alpha\beta$ and $\gamma\delta$ T lymphocytes are believed to assemble in a similar fashion [1]. First, variable $\alpha\beta$ or $\gamma\delta$ heterodimers bind to invariant CD3 $\delta\epsilon$ heterodimers, then to CD3 $\gamma\epsilon$ heterodimers and finally to CD247 (or TCR ζ) homodimers, resulting in surface TCR complexes with equal amounts of the two different, albeit highly homologous, CD3 heterodimers. In contrast, mouse $\alpha\beta$ and $\gamma\delta$ TCR differ

drastically in their stoichiometry, since the $\gamma\delta$ TCR does not incorporate any CD3 $\delta\epsilon$ dimers but, rather, two CD3 $\gamma\epsilon$ dimers [2]. This finding begs the question as to whether the human variable $\alpha\beta$ and $\gamma\delta$ chains show identical affinity for both CD3 heterodimers.

We reasoned that, if both the $\alpha\beta$ and the $\gamma\delta$ TCR isotypes use identical amounts of CD3 $\gamma\epsilon$ and CD3 $\delta\epsilon$, then decreased availability of CD3 γ or CD3 δ proteins, as observed in heterozygous carriers of mutations in *CD3* genes [3], would be expected to have a similar impact on the assembly and surface expression of both $\alpha\beta$ and $\gamma\delta$ TCR isotypes. To test this hypothesis, we compared TCR surface levels of primary $\alpha\beta$ and $\gamma\delta$ T cells from healthy haploinsufficient donors carrying null or leaky

© 2013 Muñoz-Ruiz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: regueiro@med.ucm.es

[†]Equal contributors

¹Inmunología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain

²12 de Octubre Institute of Health Research, Madrid, Spain

Full list of author information is available at the end of the article

mutations in *CD3G* ($\gamma^{+/-}$) or *CD3D* ($\delta^{+/-}$, $\delta^{+/\text{leaky}}$). The results did not support the hypothesis of a similar impact on both TCR isotypes, but rather suggested a differential CD3 $\gamma\epsilon$ and CD3 $\delta\epsilon$ usage scheme for each TCR isotype.

Results

Reduced surface $\alpha\beta$ and $\gamma\delta$ TCR expression in CD3 $\gamma^{+/-}$, CD3 $\delta^{+/-}$ or CD3 $\delta^{+/leaky}$ human T lymphocytes

 $CD3G(\gamma^{+\prime-})$ or $CD3D(\delta^{+\prime-})$ haploinsufficient donors were uniformly healthy and showed abundant peripheral blood T lymphocytes with an essentially normal phenotype (Table 1). However, total T cell numbers were consistently lower than controls (Figure 1A) which correlated with a partial impairment of lymphocyte function (Table 1).

We have previously observed in $\gamma^{-/-}$ individuals that CD3 expression levels are overestimated when T cells are defined using antibodies against TCR-associated epitopes [7], such as BMA031 (for TCR $\alpha\beta$) or Immu510 (for TCR $\gamma\delta$). To avoid a similar bias in haploinsufficient donors, TCR-independent electronic gates were first

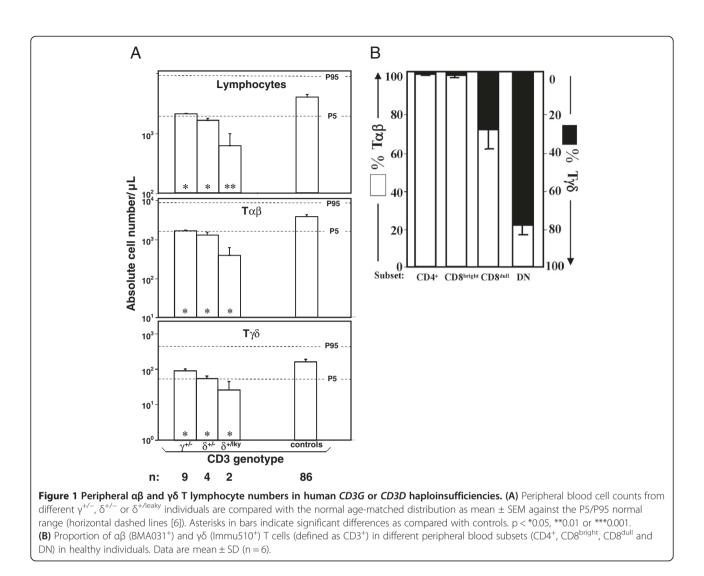

defined in order to identify $\alpha\beta$ or $\gamma\delta$ T cell subsets (Figure 1B). The results indicated that CD3⁺ cells within $CD4^+$ or $CD8^{bright}$ lymphocytes were >98% $\alpha\beta$ T cells, whereas CD3⁺ double negative (DN) lymphocytes were $78 \pm 6\% \gamma \delta$ T cells. Accordingly, $\alpha\beta$ and $\gamma\delta$ T cells were gated as CD4⁺/CD8^{bright} and DN cells, respectively, for further analyses. Using several CD3-specific antibodies, analysis of surface TCR expression consistently showed reduced antibody binding in $\gamma^{+/-}$ and $\delta^{+/-}\ T$ lymphocytes as compared to normal controls (50-90% as judged by their relative mean fluorescence intensity, Figure 2A, B). These results were confirmed in family members of two newly reported patients with a leaky mutation in *CD3D* (termed $\delta^{+/\text{leaky}}$) [8]. Consistent with their relatively higher CD3 δ content as compared to $\delta^{+/-}$ donors, $\delta^{+/leaky}$ donors showed a milder, but nevertheless clear decrease in surface TCR expression (Figure 2A, B). In order to establish if these results were associated with reduced availability of each CD3 chain, we measured intracellular CD3y (iCD3y) or CD3& (iCD3&) by flow cytometry in haploinsufficient $\gamma^{+/-}$ and $\delta^{+/\text{leaky}}$ donors.

Table T Lymphocyte studies in	n napioinsufficient individuals
	N+/-

CD3 GENOTYPE	γ ^{+/-}	δ+/-	δ ^{+/leaky}	Normal adults
Number of subjects	4	2	2	12
Ages	46 ± 10	44	33 ± 1	37 ± 12
LYMPHOCYTE IMMUNOPHENOTYPE (%)				Mean (range)
T (CD3 ⁺)	60 ± 6	66 ± 1	62 ± 5	71 (54–77)
T (CD3 ⁺ CD4 ⁺)	45 ± 4	39 ± 5	26 ± 1	43 (30–53)
T (CD3 ⁺ CD8 ⁺)	18 ± 1	26 ± 6	16 ± 7	32 (16–39)
B (CD19 ⁺)	18 ± 5	12 ± 2	ND	12 (6–19)
NK (CD3 ⁻ CD16 ⁺ /CD56 ⁺)	17 ± 3	17 ± 2	9 ± 6	15 (8–31)
LYMPHOCYTE FUNCTION				
T cell proliferation (% of control max) ^b				Normal control
Medium	3 ± 1	1	8 ± 2	4 ± 3
Anti-CD3 (UCHT-1)	74 ± 4	ND	84 ± 6	100
Phytohemagglutinin (PHA)	61 ± 5	60 ± 4	ND	100
Serum Ig (mg/dl)		ND	ND	Mean (range)
lgG	790 ± 319			1158 (644–1436)
IgA	306 ± 54			200 (65–348)
IgM	47 ± 29			99 (55–206)
lgG1	611 ± 37			840 (380–1000)
lgG2	165 ± 222			240 (90–500)
lgG3	30 ± 6			80 (15–150)
lgG4	9 ± 6			40 (3–210)
NK cell cytotoxicity (% lysis)	52 ± 6	80 ± 5	ND	31 (21–41)

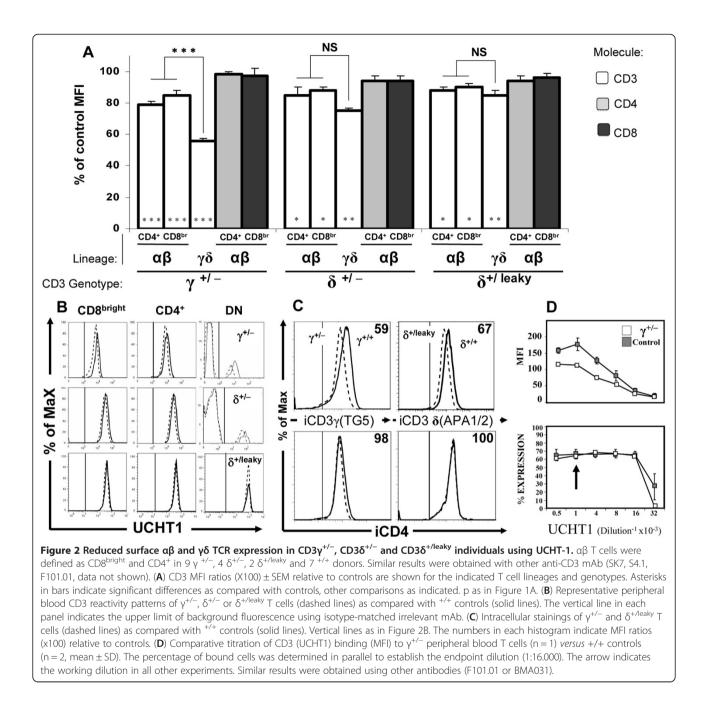
^aMean ± SD of the indicated number of different subjects. When available, multiple values from single donors were included as single means in the calculations. Data obtained from several sources, including published material [4,5].

^bPercentage proliferation (H³-thymidine uptake for $\gamma^{+/-}$ and $\delta^{+/-}$ donors, CFSE dilution for $\delta^{+/leaky}$ donors) referred to the maximum response of a healthy control in each experiment.

The results showed that this was indeed the case (Figure 2C), confirming previous reports of decreased CD3 γ protein in haploinsufficient donors [3].

Serial dilutions of CD3 mAb further confirmed the findings above (Figure 2D), since the reduced binding to $\gamma^{+/-}$ T cells persisted in saturation conditions, but it was gradually lost near the endpoint, supporting the existence of less CD3 binding sites [9].

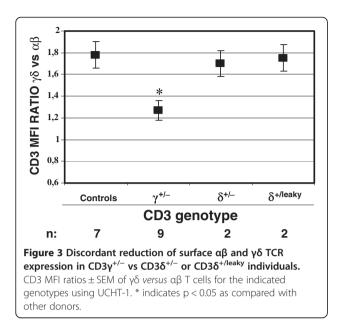
From these results we conclude that human *CD3G* or *D* haploinsufficient donors show reduced binding of CD3-specific mAb to the TCR of their $\gamma\delta$ and $\alpha\beta$ T cells.

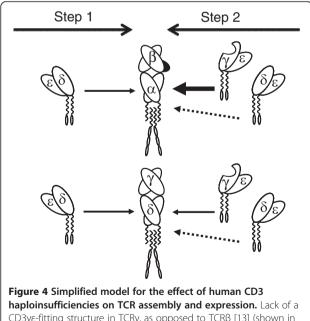

Discordant reduction of surface $\alpha\beta$ and $\gamma\delta$ TCR expression in CD3 $\gamma^{+/-}$ but not CD3 $\delta^{+/-}$ or CD3 $\delta^{+/leaky}$ human T lymphocytes

Analysis of CD3 mAb surface binding to $\alpha\beta$ and $\gamma\delta$ T cells with the different *CD3G* and *CD3D* genotypes, relative to normal controls, revealed that binding of CD3 mAb to $\gamma^{+/-} \gamma\delta$ T cells was unexpectedly poor (55 ± 3%) as compared with $\gamma^{+/-} \alpha\beta$ T cells (82 ± 8%, Figure 2A).

This discordant reduction was specific for $\gamma^{+/-}$ donors, as it was not observed in $\delta^{+/-}$ or $\delta^{+/leaky}$ donors. Further support for this discordant reduction was provided by the $\gamma\delta$ versus $\alpha\beta$ CD3 expression ratio, which is normally 1.9 ± 0.22 [10,11] but becomes significantly less in $\gamma^{+/-}$ donors only (Figure 3). Taken together, these results indicate that normal surface $\gamma\delta$ TCR expression in humans is more critically dependent on the relative availability of CD3\gamma, but not CD3\delta, than that of the $\alpha\beta$ TCR.

Discussion


Human and mouse TCR complexes are assembled into octamers following common cues provided by transmembrane ionizable aminoacids in each dimer, with CD3 $\gamma\epsilon$ and CD3 $\delta\epsilon$ ectodomains contributing additional extracellular interactions for their ordered incorporation into the complex [12]. The extracellular interactions are quite specific, as the mouse $\gamma\delta$ TCR does not incorporate otherwise available CD3 $\delta\epsilon$ dimers, but rather two


copies of the highly homologous CD3 $\gamma\epsilon$ dimer. In sharp contrast, the human $\gamma\delta$ TCR incorporates both [2]. Mammalian CD3 γ , but not CD3 δ , has a uniquely kinked ectodomain which fits into an asymmetrical loop in TCR β for optimal $\alpha\beta$ TCR assembly and expression, and cannot be easily replaced by CD3 δ due to steric hindrance, with functional consequences [13]. This likely leads to the conserved structural asymmetry shared by the human and mouse $\alpha\beta$ TCR. In contrast, TCR γ lacks the asymmetrical loop of its TCR β homologue and seems to allow a less stringent (i.e., with less affinity)

CD3 dimer usage in the $\gamma\delta$ TCR, which may explain its disparate stoichiometry in the two species.

The present study suggests that there must be differential structural constraints for the building and stable expression of $\alpha\beta$ and $\gamma\delta$ TCR complexes, as revealed by their discordant behaviour in cell surface expression when confronted with reduced availability of CD3 γ , but not of CD3 δ (Figures 2 and 3). Our findings are in agreement with available information about the assembly of human surface $\alpha\beta$ and $\gamma\delta$ TCR [12], as explained above and as proposed in Figure 4. In the model, CD3 $\delta\epsilon$

dimers show a similar affinity for the human TCR α and TCR δ chains (step 1), thus reduced CD3 δ expression has a similar impact on both. In contrast, when CD3 γ is limiting, lack of a CD3 γ ϵ -fitting structure in TCR γ , as opposed to TCR β [13], may result in a lower affinity of the former relative to the latter for CD3 γ ϵ . This may favour the incorporation of competing CD3 δ ϵ dimers to nascent $\gamma\delta$ TCR complexes (step 2), and would

CD3 γ ε-fitting structure in TCR γ , as opposed to TCR β [13] (shown in black), and the resultant lower affinity of the former relative to the latter for the CD3 γ ε dimer (represented by arrows), may explain the stronger impact of decreasing CD3 γ (shown with a nick) but not CD3 δ availability on surface $\gamma\delta$ TCR expression as compared to that of the $\alpha\beta$ TCR.

ultimately lead to $\gamma\delta$ TCR receptors devoid of the required stability for optimal surface expression. Moreover, human TCR δ (but not TCR α) can stably recruit not only CD3 $\delta\epsilon$ but also CD3 $\gamma\epsilon$ [14] during step1, which may reduce further the availability of CD3 $\gamma\epsilon$ dimers for step2 when CD3 γ is limiting (not shown).

Further studies are required to demonstrate a direct link between CD3 γ or δ availability and TCR assembly and surface expression. However, the paucity of CD3 haploinsufficient individuals might hamper these studies in humans. A flow cytometry-based approach as illustrated in Figure 2B could help to identify such individuals.

Lastly, since carriers of *CD3G* or *CD3D* mutations showed affected TCR expression (Figure 2) and T-cell selection (Figure 1), which seemed in turn to impair to some extent T-cell function (Table 1) [15] the question of whether they also have increased risk of immunological dysfunction deserves further investigation.

Conclusions

The results indicate that the dimer assembly scheme of the human TCR complex is different in $\alpha\beta$ versus $\gamma\delta$ T cells, as revealed by their discordant behaviour when confronted with limiting amounts of CD3 γ , but not of the homologous CD3 δ chain. The novel data allow proposing a modified version of the prevailing TCR assembly model.

Methods

Cells

obtaining informed consent following IRB After authorization (Ethics Committee for Clinical Investigation of Clínico San Carlos Hospital, Madrid), we studied nine healthy heterozygous carriers of mutations in CD3y $(\gamma^{+/-})$ [3,7] of Spanish or Turkish descent and six healthy heterozygous carriers of mutations in CD3 δ ($\delta^{+/-}$, $\delta^{+/leaky}$) [8,16,17] of Japanese, Mennonite or Colombian descent. Normal donors (termed $^{+/+}$) were used as controls. Their lymphocyte immunophenotype and functional features are summarized in Table 1. PBL were isolated by Ficoll-Hypaque (GE Healthcare) gradients and resuspended in RPMI 1640 medium (Gibco) supplemented with 10% FCS (PAA Laboratories), 1% Lglutamine and antibiotics-antymitotic (100 units/ml of penicillin G, 100 µg/ml of streptomycin sulfate, and $0.25 \ \mu g/ml$ of amphotericin B) from Gibco.

Antibodies and flow cytometry

The expression of different surface markers was studied by flow cytometry using standard procedures in fresh whole blood or isolated PBL [18]. For intracellular stainings cells were fixed and permeabilized as previously reported [19].

The following anti-human mAb were used: anti-CD3ɛ (S4.1) from Caltag Laboratories (now Invitrogen), anti-CD $3\epsilon\gamma/\epsilon\delta$ (UCHT-1), anti-TCR $\alpha\beta$ (BMA031), and anti-TCRγδ (Immu510) from Beckman Coulter, anti-CD3e (SK7), anti-CD4 (Leu2a), anti-CD8 (Leu3a), anti-TCRyδ (11F2), and anti-CD8 (SK1) from BD Biosciences. Anti-CD3εγ/εδ (F101.01) hybridoma supernatant and anti-CD38 (APA1/2) ascitic fluid were a generous gift from Dr. B. Rubin (CHU de Purpan, France). TG5 (an anti-CD3y rabbit antiserum raised against the CD3y C-terminal peptide GLQGNQLRRN) was kindly provided by D. Alexander (Babraham Institute, U.K.). The mAb were FITC-, PE-Cy5 or PE-conjugated, or purified, and for the latter a PE-conjugated goat antimouse IgG (H + L) or anti-rabbit (H + L) from Caltag Laboratories was used as a secondary reagent. Background fluorescence was defined with an isotypematched irrelevant mAb from Caltag Laboratories. For comparative stainings we used the mean fluorescence intensity (MFI), defined as the average fluorescence value of the corresponding mAb referred to the logarithmic scale of fluorescence intensity along the x-axis of the histograms. Data were analyzed with FlowJo software (TreeStar).

Proliferative assays

1×10⁵ PBLs were placed in round-bottom microtitre wells and stimulated with 10 µg/ml anti-human CD3 (UCHT-1) or 10 µg/ml PHA. After 3 days of *in vitro* culture, wells were individually pulsed with 1 µCi of ³H-TdR (Amersham, Buckinghamshire, U.K.) for another 16 to 18 h and harvested onto glass fiber filters. Thymidine incorporation into cellular DNA was evaluated as cpm in a scintillation βcounter (Packard, Meriden, CT).

For CFSE (carboxyfluorescein diacetate succinimidyl ester) dilution experiments, cells were labeled with 1 μ M CFSE in PBS for 10 min at 37°C at day 0, washed twice in cold PBS, plated and stimulated as above. CFSE dilution was subsequently determined by flow cytometry within CD3⁺ lymphocytes.

Cytotoxicity assays

Cytotoxicity was measured using the nonradioactive Cytotoxicity Detection kit LDH (Roche). Cells were cocultured in a 96 V-well plates for 4 h at 25: 1 (Effector: Target) ratios and the percentage of specific lysis was determined from the amount of lactate dehydrogenase activity detected in culture supernatants.

Statistical analysis

Student's *t*-tests were performed using SPSS 11.5.1 statistical program software (Chicago, IL). Only p values below 0.05 were considered significant. Data are presented as mean \pm SEM (standard error of the mean) or \pm SD (standard deviation).

Abbreviations

PBL: Peripheral blood lymphocytes; MFI: Mean flourescence intensity; TCR: T cell antigen receptor; FCS: Fetal calf serum; ND: Not done; NS: Not significant.

Competing interest

The authors declare no conflict of interest.

Authors' contributions

VP-F, ACG, BG, MM-R and HT carried out the analysis of TCR expression and function in human T lymphocytes MM-R, BG and MM-L performed titration studies and drafted the manuscript. LMA, SSK, OS, EL-G and CMF provided lymphocytes samples and leucocyte counts. MJR, EM-N, and EF-M provided technical knowledge and supervision. JRR planned the study and provided funds. JRR and EF-M wrote the manuscript. All authors read and approved the final manuscript.

Authors' information

E. Fernández-Malavé and J.R. Regueiro are joint senior authors.

Acknowledgements

Bent Rubin provided continuous support and comments. Elena M. Busto, Joaquín Caspistegui, Juana Gil, Miguel Fdez-Arquero and Jesús Reiné provided technical help. Brenda Reid, Sandra Mendonca and Linda Pires from the Hospital for Sick Children in Toronto are greatefully acknowledged for their excellent collaboration to obtain and ship blood samples. This work was supported by grants from the Ministerio de Educación (BFU2005-01738/ BMC and SAF2011-24235), Comunidad Autónoma de Madrid (CAM) (GR/SAL/ 0570/2004 and S2011/BMD-2316), Fundación Lair, Instituto de Salud Carlos III (ISCIII PI080921, PI060057 and RIER RD08-0075-0002) and the Hospital 12 de Octubre Health Research Institute. MMR was supported by the Universidad Complutense de Madrid and ISCIII and VPF was supported by Ministerio de Educación.

Author details

 ¹Inmunología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain. ²12 de Octubre Institute of Health Research, Madrid, Spain.
³Departament of Pediatrics, Kyushu University, Higashi-ku, Fukuoka, Japan.
⁴Inmunología, Hospital 12 de Octubre, Madrid 28041, Spain. ⁵Pediatric Immunology, Uludag University, Görükle-Bursa, Turkey. ⁶Inmunology Division, Hacettepe University, Children's Hospital, Ankara, Turkey.
⁷Inmunology and Allergy, Hospital for Sick Children, University of Toronto, Toronto, Canada. ⁸La Paz University Hospital, Madrid, Spain.

Received: 21 September 2012 Accepted: 16 January 2013 Published: 21 January 2013

References

- Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW: The organizing principle in the formation of the T cell receptor-CD3 complex. *Cell* 2002, 111(7):967–79.
- Siegers GM, Swamy M, Fernández-Malavé E, Minguet S, Rathmann S, Guardo AC, et al: Different composition of the human and the mouse gammadelta T cell receptor explains different phenotypes of CD3gamma and CD3delta immunodeficiencies. J Exp Med 2007, 204(11):2537–44.
- Thomassen EA, Dekking EH, Thompson A, Franken KL, Sanal O, Abrahams JP, et al: The impact of single amino acid substitutions in CD3gamma on the CD3epsilongamma interaction and T-cell receptor-CD3 complex formation. Hum Immunol 2006, 67(8):579–88.
- Regueiro JR, López-Botet M, De Landazuri MO, Alcami J, Corell A, Martín Villa JM, Vicario JL, Arnaiz-Villena A: An in vivo functional immune system lacking polyclonal T-cell surface expression of the CD3/Ti(WT31) complex. Scand J Immunol 1987, 26(6):699–708.
- Perez-Aciego P: Caracterización clínica, inmunologica y molecular de una inmunodeficiencia familiar por defecto de expresión del receptor para antígeno del linfocito T, PhD thesis. 12 de Octubre Hospital, Madrid, Immunology Department. 1992.

- Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WC, Groeneveld K, *et al*: Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. *J Pediatr* 1997, 130(3):388–93.
- Recio MJ, Moreno-Pelayo MA, Kiliç SS, Guardo AC, Sanal O, Allende LM, et al: Differential biological role of CD3 chains revealed by human immunodeficiencies. J Immunol 2007, 178(4):2556–64.
- Gil J, Busto EM, Garcillán B, Chean C, García-Rodríguez MC, Díaz-Alderete A, et al: A leaky mutation in CD3D differentially affects αβ and γδ T cells and leads to a Tαβ-Tγδ + B + NK + human SCID. J Clin Invest 2011, 121(10):3872–6.
- Geuijen CA, Clijsters-van der Horst M, Cox F, Rood PM, Throsby M, Jongeneelen MA, et al: Affinity ranking of antibodies using flow cytometry: application in antibody phage display-based target discovery. J Immunol Methods 2005, 302(1–2):68–77.
- Thibault G, Bardos P: Compared TCR and CD3 epsilon expression on alpha beta and gamma delta T cells. Evidence for the association of two TCR heterodimers with three CD3 epsilon chains in the TCR/CD3 complex. J Immunol 1995. 154(8):3814–20.
- Nicolas L, Monneret G, Debard AL, Blesius A, Gutowski MC, Salles G, et al: Human gammadelta T cells express a higher TCR/CD3 complex density than alphabeta T cells. *Clin Immunol* 2001, 98(3):358–63.
- Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME: Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. *Cold Spring Harb Perspect Biol* 2010, 2(4):a005140.
- Kim ST, Touma M, Takeuchi K, Sun ZY, Dave VP, Kappes DJ, et al: Distinctive CD3 heterodimeric ectodomain topologies maximize antigen-triggered activation of alpha beta T cell receptors. J Immunol 2010, 185(5):2951–9.
- Alibaud L, Arnaud J, Llobera R, Rubin B: On the role of CD3delta chains in TCRgammadelta/CD3 complexes during assembly and membrane expression. Scand J Immunol 2001, 54(1–2):155–62.
- 15. Labrecque N, Whitfield LS, Obst R, Waltzinger C, Benoist C, Mathis D: How much TCR does a T cell need? *Immunity* 2001, 15(1):71–82.
- Takada H, Nomura A, Roifman CM, Hara T: Severe combined immunodeficiency caused by a splicing abnormality of the CD3delta gene. Eur J Pediatr 2005, 164(5):311–4.
- Dadi HK, Simon AJ, Roifman CM: Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med 2003, 349(19):1821–8.
- Alvarez-Zapata D, de Miguel OS, Fontán G, Ferreira A, García-Rodríguez MC, Madero L, *et al*: Phenotypical and functional characterization of herpesvirus saimiri-immortalized human major histocompatibility complex class II-deficient T lymphocytes. *Tissue Antigens* 1998, 51(3):250–7.
- Pacheco-Castro A, Alvarez-Zapata D, Serrano-Torres P, Regueiro JR: Signaling through a CD3 gamma-deficient TCR/CD3 complex in immortalized mature CD4+ and CD8+ T lymphocytes. J Immunol 1998, 161(6):3152–60.

doi:10.1186/1471-2172-14-3

Cite this article as: Muñoz-Ruiz *et al.*: Human CD3 γ , but not CD3 δ , haploinsufficiency differentially impairs $\gamma\delta$ versus $\alpha\beta$ surface TCR expression. *BMC Immunology* 2013 14:3.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar

) BioMed Central

• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit