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Abstract

Background: The activation induced T cell specific adapter protein (TSAd), encoded by SH2D2A,
interacts with and modulates Lck activity. Several transcript variants of TSAd mRNA exist, but their
biological significance remains unknown. Here we examined expression of SH2D2A transcripts in
activated CD4+ T cells and used the SH2D2A variants as tools to identify functionally important
regions of TSAd.

Results: TSAd was found to interact with Lck in human CD4+ T cells ex vivo. Three interaction
modes of TSAd with Lck were identified. TSAd aa239-256 conferred binding to the Lck-SH3
domain, whereas one or more of the four tyrosines within aa239-334 encoded by SH2D2A exon
7 was found to confer interaction with the Lck-SH2-domain. Finally the TSAd-SH2 domain was
found to interact with Lck. The SH2D2A exon 7 encoding TSAd aa 239-334 was found to harbour
information essential not only for TSAd interaction with Lck, but also for TSAd modulation of Lck
activity and translocation of TSAd to the nucleus. All five SH2D2A transcripts were found to be
expressed in CD3 stimulated CD4+ T cells.

Conclusion: These data show that TSAd and Lck may interact through several different domains
and that Lck TSAd interaction occurs in CD4+ T cells ex vivo. Alternative splicing of exon 7
encoding aa239-334 results in loss of the majority of protein interaction motives of TSAd and
yields truncated TSAd molecules with altered ability to modulate Lck activity. Whether TSAd is
regulated through differential alternative splicing of the SH2D2A transcript remains to be
determined.
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Background

When the human genome was sequenced, it was found to
contain approximately 35 000 genes [1]. Considering the
complex biological system encoded by these genes, this
seems to be a small number. However, alternative tran-
scripts that arise from different transcription start sites or
alternative splicing, may yield a much larger array of func-
tionally related proteins than suggested from the number
of actual genes. Large scale genomic studies have revealed
that 65% of all genes have alternative transcripts [2]. Elu-
cidation of the role and regulation of transcript variants
may shed light on how a rather modest number of genes
can give rise to the complexity of human biology [2-4].

Related proteins encoded by the same gene through alter-
native transcription may have opposing functions in the
cell. For instance, transcription factors may exist as iso-
forms lacking particular DNA- or protein interacting
domains. When such isoforms are expressed, they may
inhibit the function of the full length protein [5]. An in sil-
ico analysis of the mouse transcriptome revealed that
alternative splicing preferentially adds or deletes domains
in transcription factors that are important for DNA bind-
ing [6].

The function of a protein encoded by a particular gene
may thus be regulated at the level of differential expres-
sion of various transcript variants dependent on the tissue
or cell type, or the differentiation status and previous his-
tory of the cell [7]. One prominent example of this type of
gene regulation in T cells, is the CD45 protein, a mem-
brane receptor tyrosine phosphatase that exists as several
isoforms generated by alternative splicing of exons [8].
The quality of the T cell response in naive versus experi-
enced T cells is determined in part by the composition of
expressed CD45 isoforms on the cell surface [9-12].

Previously, we reported the cloning of the immunoregula-
tory gene SH2D2A that encodes the T cell specific adapter
protein (TSAd) [13,14]. Adapter proteins lack catalytic
activity, but may be crucial in regulation of cellular signal-
ling by mediating protein-protein interactions through
conserved protein binding domains [15]. The function of
TSAd is as yet unclear, but the murine homologue Lad/
RIBP has been identified as a binding partner for Lck, Itk/
Rlk, MEKK2 and Grb2 [16-18] and human TSAd has been
found to associate with Lck [19] as well as the molecular
chaperone VCP [20] and vascular endothelial growth
receptor 2 (VEGFR-2) [21]. Recently it has been shown
that TSAd VEGFR-2 interaction promotes actin polymeri-
zation and migration [22]. TSAd may be involved in the
regulation of membrane proximal T cell signalling by
modulating the Lck activity [19,23,24], and it has been
proposed that TSAd may be directly involved in regulation
of gene transcription as a transcription adapter protein
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[25]. Mice lacking expression of TSAd are apparently nor-
mal [17], but as they grow older they spontaneously
develop a systemic autoimmune disease [26].

Five naturally occurring transcript variants of human
TSAd exist. The SH2D2A-1 (GeneBank: AJ000553) variant
encodes full length TSAd [13], whereas the SH2D2A-2
(GenBank: AY763100) and -3 (GenBank:AY763098) var-
iants encodes TSAd proteins shortened by 18 aa and 28 aa
in the N-terminus, respectively. The SH2D2A-4 (Gen-
Bank:AY763099) variant encodes a 10 aa insertion in the
SH2 domain of TSAd, whereas the SH2D2A-5 variant
(GeneBank:AA063001) lacks the entire exon 7 [14],
which encodes most of the proline rich region including
the four C-terminal tyrosines (aa239-334) of TSAd. The
SH2D2A-1-4 variants have been isolated from T cells,
whereas the SH2D2A-5 variant was first identified in a
pineal gland cDNA library [14].

In this study, we analysed TSAd molecules encoded by the
SH2D2A transcript variants to identify potentially impor-
tant functional domains. We identified TSAd aa239-334
encoded by exon 7, to be crucial for tyrosine phosphoryla-
tion of TSAd by Lck, for interaction with the Lck-SH2 and
Lck-SH3 domain, and for modulation of Lck activity. In
addition, TSAd aa239-334 controls TSAd translocation to
the nucleus. In conclusion, this study demonstrates that
exon 7 encodes structures of importance for TSAd func-
tion, and that truncated TSAd is co-expressed with the full
length TSAd in CD4+ T cells. Whether alternative tran-
scripts of TSAd contribute to regulation of TSAd function,
by being differentially regulated under given circum-
stances or in given tissues remains to be elucidated.

Results

Expression of TSAd variants in primary CD4+ T cells

Five transcript variants of TSAd that encode TSAd
polypeptides with variable lengths have been reported
(figure 1A-C). We previously observed that TSAd mRNAs
SH2D2A-1-4 were expressed in PHA stimulated periph-
eral blood mononuclear cells [14]. In this study, we used
reverse transcriptase quantitative PCR assay (RT-PCR) to
assess the relative amounts of TSAd transcript variants
expressed in primary CD4+ T cells (figure 2A). The
SH2D2A-2 and -3 variants constituted 10-15% each,
whereas the SH2D2A-5 variant which was originally
cloned from a pineal gland library, constituted around 5-
10% of the total amount of TSAd-transcripts in anti-CD3
stimulated CD4+ T cells from healthy blood donors. The
SH2D2A-4 variant, although present, often fell below the
detection limit of the assay. It is possible that the function
of TSAd may be regulated by changing the relative amount
of the different TSAd transcript variants. We therefore ana-
lysed the expression of TSAd transcript variants at differ-
ent time points after anti-CD3 stimulation of CD4+ T
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An overview of the polypeptides encoded by SH2D2A transcript variants. A. Schematic presentation of putative pro-
tein-interacting domains in the SH2D2A isoforms and mutants described in this study: The SH2D2A-1 encodes the full length TSAd,
whereas the SH2D2A-2 and -3 variants represent different N-terminal sequences of TSAd. The SH2D2A-4 variant has a 10 aa
insertion in the SH2-domain, whereas the fifth variant, SH2D2A-5, lacks 2a239-334, containing the proline rich region including
the four C-terminal tyrosines (Y = tyrosine). TSAd 4YF has the four C-terminal tyrosines exchanged with phenylalanine (F =
phenylalanine). TSAd d239-256 has a deletion of amino acids 239-256 containing the motif PSQLLRPKPPIPAKPQLP. B. Com-
parison of the N-terminal amino acid sequences of the SH2D2A-1, -2 and -3 variants: The amino acid position is numbered according
to full length TSAd (SH2D2A-1). The SH2D2A-2 and -3 variants differ from the SH2D2A-1 in the N-terminal 1-21 aa and 1-28
aa, respectively. C. Comparison of the N-terminus SH2 domain aa sequences of the SH2D2A-1 and -4 variants: The conserved
arginine (R) at position 120 is marked. The SH2D2A-4 has an additional 10 aa (ins aal03—112) in the TSAd-SH2 domain. A SH2
consensus (con) sequence obtained from a Blast search, [42] is included for comparison. Conserved residues are marked in

bold.
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Expression of SH2D2A variants in primary CD4+ T cells. A. Expression of SH2D2A transcript variants in anti-CD3 stimu-
lated CD4+ T cells: mMRNA expression levels of SH2D2A variants relative to Zap-70 were assessed by RT-PCR in CD4+ T cells
stimulated with CD3 ligation for 2 hours from four healthy blood donors. Results shown are median values + SD of the esti-
mated level of alternative SH2D2A transcripts relative to the total amount of SH2D2A transcripts. The SH2D2A-4 variant was
not always observed. The median value of the SH2D2A-4 is 0,03% + 0,2%. B: The relationship between the different SH2D2A tran-
scripts does not vary significantly throughout anti-CD3 stimulation of CD4+ T cells: Primary CD4+ T cells were stimulated with anti-
CD3 for 24 hours, and total amount of SH2D2A transcript (I-5) and mRNA levels of SH2D2A transcript variants 2, 3,4 or 5
were assessed at different time points. After the initial two hours of anti-CD3 stimulation, the relationship between the five
SH2D2A transcripts remained constant throughout the stimulation period. Results shown are median values of TSAd tran-
scripts relative to Zap-70 transcripts. C: TSAd of 37 kDa is expressed in CD3 stimulated primary CD4+ T cells. Primary CD4+ T
cells were stimulated with anti-CD3 for 2 and 4 hours and total sonicated cell lysates were separated by SDS-PAGE and immu-
noblotted with TSAd Abs and Zap-70 mAbs as a loading control. TSAd Abs detects two CD3 induced bands of 52 kDa and 37
kDa respectively. D. Expression of TSAd of 52 and 37 kDa is repressed by siRNA treatment of CD4+ T cells: Primary CD4+ T cells
were transfected with control medium (0) or increasing concentration of TSAd siRNA (0,05, 0,5 or 5 uM p690) or with 5 uM
control siRNA (C = TSAd p369) using Amaxa electroporator and stimulated with anti-CD3 beads for 24 hours. Total soni-
cated cell lysates were separated by SDS-PAGE and immunoblotted with TSAd Abs and Zap-70 mAbs as a loading control (not
shown). Lysates of Jurkat TAg cells stably transfected with HA-tagged TSAd cDNA (3a3) was included as a blotting control.
TSAd Abs detects two bands of 52 kDa and 37 kDa that can be inhibited by siRNA, and one non-specific band of 45 kDa, which
is not affected by siRNA treatment.

cells. As seen from figure 2B, the relative distribution of  together, these results suggest that different isoforms of

the TSAd transcript variants was relatively constant during
the observation period. Immunoblot of primary CD4+ T
cells stimulated through ligation of CD3¢, revealed induc-
tion of a strong band of 52 kDa and a weaker band of 37
kDa reactive with TSAd antibody after 2 and 4 hours of
stimulation. The 37 kDa band is induced in parallel with
the 52 kDa TSAd reactive band (figure 2C) and is inhib-
ited similar to TSAd in CD4+ T cells transfected with
siRNA prior to CD3 stimulation (figure 2D). Taken

TSAd are expressed in CD4+ T cells, and that TSAd in CD3
stimulated CD4+ T cells is not controlled through the dif-
ferential expression of TSAd transcript variants.

The TSAd N-terminus modifies phosphorylation of TSAd in
Jurkat T cells

We then tested whether TSAd variants encoded by the
SH2D2A gene displayed distinct functional properties.
TSAd is phosphorylated upon tyrosines after CD3 stimu-
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lation [23] and Lck has been identified as a kinase that is
able to interact with and phosphorylate TSAd [16,19]. We
therefore assessed tyrosine phosphorylation of HA-tagged
TSAd variants transiently expressed in Jurkat T cells before
and after anti-CD3 stimulation. In comparison with full
length TSAd (SH2D2A-1), TSAd molecules with short-
ened N-terminus (encoded by the SH2D2A-2 or 3 vari-
ants), displayed 2-3 fold higher levels of phosphorylation
both in resting and CD3 stimulated Jurkat T cells (figure
3A). Both variants were tyrosine phosphorylated when co-
expressed with Lck in 293T cells (figure 3B). These results
suggest that the N-terminal 18 amino acids of TSAd har-
bours information that either modify TSAd interaction
with Lck or other kinases within Jurkat T cells, or that the
N-terminus contains some localisation signal, that when
absent makes TSAd more accessible for particular tyrosine
kinase activity within the Jurkat T cell.

TSAd with aberrant SH2 domain is not phosphorylated by
Lck

Several lines of evidence indicate that TSAd in addition to
Lck may be tyrosine phosphorylated by other kinases,
including Src [27], VEGFR-2 [22], PDGFR [28] and Zap-70
[19]. TSAd with an aberrant SH2 domain (encoded by
SH2D2A-4) displayed a similar phosphorylation level as
full length TSAd (i.e. the SH2D2A-1) when expressed in
Jurkat T cells (figure 3A). We previously showed that trun-
cated TSAd lacking the N-terminal aa 1-206 including
TSAd SH2 domain, is phosphorylated by Lck when co-
expressed in 293T cells [19]. However, surprisingly as
shown in figure 3B, when expressed in 293T cells, Lck did
not phosphorylate the SH2D2A-4 variant. This result is
consistent with similar results obtained with TSAd
mutated for the conserved arginine in position 120 in the
SH2 domain (data not shown). Taken together, these
results indicate that although the C-terminus of TSAd is
sufficient for phosphorylation of TSAd by Lck, in non-T-
cells there is a requirement for an intact SH2 domain for
Lck mediated tyrosine phosphorylation of the full length
TSAd.

TSAd aa239-334 controls tyrosine phosphorylation of
TSAd

TSAd lacking aa239-334 (SH2D2A-5) was not tyrosine
phosphorylated in Jurkat T cells, nor in 293T cells when
co-expressed with Lck (figure 3A and 3B). This indicates
that aa239-334 harbors one or more tyrosine phosphor-
ylation sites, or motifs crucial for interaction of TSAd with
Lck or other tyrosine kinases. Indeed a Scansite search
[29] identified several potential Lck-SH2 and Lck-SH3
interaction motifs within the TSAd aa239-334 [19]. To
specifically test whether one or more of the four tyrosines
in the aa239-334 sequence could be phosphorylated by
Lck, we thus generated a TSAd mutant with all four tyro-
sines mutated to phenylalanine (TSAd-4YF). We also gen-
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erated a TSAd mutant where a putative Lck-SH3
interaction site at aa239-256 was deleted (TSAd-d239-
256). When transiently co-expressed with Lck in 293T
cells TSAd-d239-256 was still phosphorylated on tyro-
sine, whereas TSAd-4YF was only very weakly phosphor-
ylated (figure 3C).

TSAd aa239-334 and the TSAd-SH2 domain mediate
interaction with Lck

We previously demonstrated that TSAd interacts with Lck
in Jurkat T cells stably expressing HA-tagged TSAd [19].
Here we demonstrate that endogenous TSAd interacts
with Lck in CD3/CD28 stimulated human peripheral
blood CD4+ T cells (Figure 4A). In Jurkat transient trans-
fectants, Lck co-precipitates with TSAd variants 1-4 (fig-
ure 4B). Upon longer exposure, a weak Lck band can also
be seen in immunoprecipitates of TSAd lacking aa239-
334 (not shown). In pull down experiments, Lck-SH2
domain binds to full length TSAd and TSAd with trun-
cated N-terminus (SH2D2A-2 and -3) but only when co-
expressed with Lck (figure 4C). Furthermore, the Lck-SH3
domain could precipitate all TSAd variants except for
TSAd lacking aa239-334 (SH2D2A-5) (figure 4D). Simi-
lar pull down experiments using the TSAd-4YF and TSAd
d239-256 mutants showed that Lck-SH3 domain interac-
tion is dependent on the aa239-256, whereas the Lck-
SH2 domain interaction is dependent on one or more of
the four tyrosines within aa239-334 (figure 4E). Finally,
and consistent with the weak co-immunoprecipitation of
Lck seen with TSAd aa239-334, the TSAd-SH2 domain
interacted with Lck in pull down experiments (figure 4F).
Taken together, these data are in accordance with our pre-
vious observation that interaction of TSAd with the Lck
SH2 and the Lck SH3 domains requires the C-terminus of
TSAd (aa 189-aa 389) [19] and strongly suggests that the
aa239-334 is of major importance for TSAd interaction
with Lck in vivo. Furthermore, phosphorylation of TSAd
by Lck is dependent on the presence of one or more of the
four C-terminal tyrosines whereas the Lck-SH3 interaction
site is dispensable.

Tyrosines in TSAd aa239-334 confer the modulatory effect
of TSAd on Lck activity

We have previously reported that TSAd inhibits early T cell
signalling by inhibiting Lck activity [19,23]. Lck is the first
kinase to become activated after triggering of the TCR.
Phosphorylation of the ITAMs of CD3( recruits Zap-70
and Zap-70 Y319 becomes phosphorylated by Lck or Fyn
[30,31]. Zap-70 thus activated subsequently phosphor-
ylates the transmembrane adapter LAT [32]. Phosphoryla-
tion of Zap-70 Y319 and LAT in resting and stimulated T
cells can thus be viewed as indirect measures of Lck activ-
ity within the cell. Immunoblots of cell lysates from CD3¢
stimulated Jurkat cells transiently transfected with
SH2D2A variants 1-4 showed decreased phosphorylation
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Figure 3
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Differential Lck phosphorylation of variant TSAd molecules. A. Tyrosine phosphorylation of TSAd variants in Jurkat T cells:
Jurkat T cells transiently transfected with pEF-HA or pEF-HA-SH2D2A-1-5 cDNAs, were stimulated (+) with anti-CD3
(OKT3) mAbs for 2.5 min or left unstimulated (-), lysed and subjected to immunoprecipitation with anti-TSAd Abs (TSAd IP).
The precipitates were separated by SDS-PAGE and immunoblotted with anti-phoshotyrosine (pY) mAbs (upper panel) and
anti-HA mAbs (lower panel). Relative level of tyrosine phosphorylation of TSAd variants is shown in the chart, and the rela-
tionships between the pY signal versus the HA signal of bands is normalised to that observed for the full length TSAd IP
(SH2D2A-1) expressed in resting Jurkat T cells. B. Lck phosphorylates the SH2D2A-1, -2 and -3 variants of TSAd in 293T cells: 293T
cells were transiently transfected with pEF-HA or pEF-HA-SH2D2A-1-5 cDNAs alone (-) or together (+) with pEF-Lck. The
cells were lysed and treated as in A. C. Tyrosine phosphorylation of TSAd mutated for the four C-terminal tyrosines is attenuated when
co-expressed with Lck in 293T cells. 293T cells were transiently transfected with pEF-HA, the pEF-HA-TSAd-4YF or pEF-HA-
TSAd-d239-256 cDNAs together with pEF-Lck. The cells were lysed and treated as in A.
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Figure 4

SH2D2A exon 7 encodes ligands for Lck-SH2 and SH3 domains. A. TSAd interacts with Lck: Primary CD4+ T cells were
stimulated with anti-CD3/CD28 beads for one day. TSAd was precipitated with anti-TSAd Abs or irrelevant serum (NRS) and
protein A/G sepharose beads from precleared lysates. Precipitates were separated by SDS-PAGE and immunoblotted with
anti-Lck and anti-TSAd Abs as indicated. B. TSAd variants interact with Lck in Jurkat T cells: Jurkat T cells were transiently trans-
fected with pEF-HA or one of the pEF-HA-SH2D2A-1-5cDNAs. Immunoprecipitation was performed using anti-TSAd Abs and
protein G magnetic beads. Precipitates were separated by SDS-PAGE and immunoblotted with anti-Lck and anti-HA as indi-
cated. C. The SH2 domain and aa239-334 of TSAd is important for interaction with the Lck SH2 domain: 293T cells were transiently
transfected with one of the pEF-HA-SH2D2A-1-5 cDNAs alone (-) or together (+) with pEF-Lck. Cell lysates were subjected
to pull down experiment with GST-Lck-SH2 Sepharose beads. Precipitates were immunoblotted with anti-HA mAbs (upper
panel). An anti-HA immunoblot of precleared lysates before GST-Lck-SH2 pull down is included to verify expression of the dif-
ferent HA-tagged TSAd variants (lower panel). D. Aa239-334 contains ligands for the Lck-SH3 domain: 293T cells were tran-
siently transfected with pEF-HA or one of the pEF-HA-SH2D2A-1-5 cDNAs together (+) with pEF-Lck. Only the pEF-HA-
SH2D2A-1 cDNA were also co-transfected with pEF-HA (-). Cell lysates were subjected to pull down experiment with GST-
Lck-SH3 Sepharose beads, and precipitates (upper panel) and precleared lysates (lower panel) were immunoblotted as in C. E.
Identification of TSAd structures interacting with Lck domains: 293T cells were transiently transfected with pEF-HA, the pEF-HA-
TSAd-4YF or pEF-HA-TSAd-d239-256 cDNAs together with pEF-Lck. Cell lysates were subjected to pull down experiment
with GST-Lck-SH2 or GST-Lck-SH3 Sepharose beads. GST-Lck-SH2 (panel 1) and GST-Lck-SH3 (panel 2) precipitates were
immunoblotted with anti-HA mAbs, and the precleared lysates were immunoblotted with anti-HA mAbs (panel 3) or anti-Lck
mAbs (panel 4). F. The SH2 domain of TSAd precipitates Lck in 293T cells: 293T cells were transiently transfected with pEF-HA,
pEF-Lck, pEF-HA-SH2D2A-1 or pEF-Lck and pEF-HA-SH2D2A-1 cDNAs together. Precleared cell lysates were subjected to
pull down experiment with GST-TSAd-SH2 Sepharose beads. Precipitates were immunoblotted with anti-Lck mAbs (upper
panel). An anti-Lck immunoblot of precleared lysates before GST-TSAd-SH2 pull down is included to verify expression of Lck
(lower panel).
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of Zap-70 Y319 and LAT, whereas in cells expressing the
SH2D2A-5 variant or TSAd-4YF no change in Y319 or LAT
phosphorylation was observed (figure 5). Taken together,
these data show that the tyrosines in TSAd aa239-334 is
essential not only for TSAd phosphorylation by and inter-
action with Lck, but also the modulating effect of TSAd on
Lck activity.

Nuclear localisation of TSAd depends on the TSAd-SH2
domain as well as aa239-334

The localisation of TSAd was initially found to be
cytosolic [13], but was later also shown to be nuclear in
activated T cells. TSAd was thus proposed to play a role in
transcriptional regulation [25]. Here we used immunocy-
tochemistry to assess the intracellular localisation of HA-
tagged TSAd variants transiently expressed in Jurkat TAg
cells. The nuclear membrane protein LAP-2 was used as a
marker for the nuclear membrane. Similar to full length
TSAd, N-terminally truncated TSAd variants were local-
ised both in the cytoplasm and in the nucleus. In contrast,
TSAd with disrupted SH2 domain or TSAd without
aa239-334 were only found in the cytoplasm (figure 6
and data not shown). Thus nuclear localisation of TSAd
depends not only on the TSAd-SH2 domain [25] but also
on the TSAd C-terminal sequence aa239-334.

SH2D2A - 1 2 3
MW

4 5 4YF
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Discussion

Alternative transcription may extend the repertoire of
functionally different proteins expressed from one single
gene. In this study, alternative transcript variants of
SH2D2A were used as a tool to identify functionally rele-
vant structures of TSAd. We found that TSAd variants dis-
played different functional features, indicating that
differential expression of SH2D2A transcript variants may
contribute to the regulation of TSAd function.

Our findings are summarised in figure 7A. We revealed a
prominent role for aa239-334 encoded by SH2D2A exon
7 in controlling TSAd interaction with Lck, modulation of
proximal TCR signalling as well as translocation of TSAd
to the nucleus, indicating that TSAd function may be reg-
ulated through alternative splicing of exon 7. In addition,
the TSAd N-terminus and the SH2 domain affected TSAd
phosphorylation by Lck.

In support of the notion that TSAd aa239-334 is impor-
tant for TSAd function, a high stringency Scansite search
[29] of possible protein interaction motifs in TSAd
encoded by SH2D2A-1 revealed that several possible lig-
ands for SH2 and SH3 domains, as well as tyrosine kinase
substrates are encoded by exon 7 and are thus contained
within aa239-334 (Figure 7B). A low stringency search
also revealed one possible SH2 and several possible SH3
interaction sites encoded outside of exon 7 (not shown).

WB:

_ 37_- -

Anti-pY (LAT)

57 . B 6. o . S S

Anti-LAT

Anti-pY319 (Zap-70)

Anti-Zap70

Anti-HA

[z S, )
704 e
Lysates .
20 | (OrDamD & & S
50 7] % -
- 37 [
Figure 5

Tyrosines within aa239-334 determines the inhibitory effect of TSAd on Lck activity. The phosphorylation level of
LAT and Y319 of Zap-70 in Jurkat T cells expressing the SH2D2A-5 variant and TSAd-4YF is normal upon TCR stimulation:
Jurkat T cells were transiently transfected with either pEF-HA or one of the pEF-HA-SH2D2A-I-5 or pEF-HA-TSAd-4YF
cDNAs. The cells were stimulated (+) with anti-CD3 (OKT3) mAbs for 2.5 min and lysed. The lysates were immunoblotted

with Abs as indicated.
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Anti-HA Anti-LAP2 overlay

( Y
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Figure 6

Nuclear translocation of TSAd depends on aa239-334. The SH2D2A-5 variant is excluded from the cell nucleus in Jurkat
TAg cells: Confocal immunocytochemistry analysis of Jurkat TAg cells transiently transfected with pEF-HA-SH2D2A-2 and -5.
The nuclear membrane protein LAP-2 was stained red (Cy™-3), whereas the HA-tagged recombinant proteins are stained
green (Cy-2™). Cells were stimulated with anti-CD3 mAbs (OKT3) for 30 min. Horizontal sections are labelled Y, vertical
sections are labelled Z (100 objective, 4% zoom).

However, a Scansite search is limited in that functionally  although our present studies indicate a role for the N-ter-
relevant motifs may not appear in searches using the = minus in modulating TSAd tyrosine phosphorylation, no
motif algorithms currently available. In particular, interaction motif is found by Scansite in the TSAd N-ter-
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minus. The motif database underlying Scansite searches
are based on high affinity interactions as determined by
selection of peptides from expression libraries. Recently,
peptides representing all cytoplasmic phosphorylation
sites of the four members of the EGFR receptor family
were tested for binding to all SH2 domains in the genome
using plasmon resonance [33]. In those instances where a
consensus SH2 domain binding motif was available in
Scansite, there were only partial overlap between the
EGFR motives predicted from Scansite analysis and the
EGFR motives found to bind to the recombinant SH2
domains [33]. It thus remains to be determined whether
TSAd encoded by SH2D2A-5 is able to interact with other
proteins in an SH2 domain independent manner.

Previous studies on TSAd and murine homologue LAD
supports the notion that motives in the aa239-334 are
functionally important. We previously reported that Lck
activity is modulated by the C-terminus of TSAd [19], and
Choi et al reported that the isolated LAD-SH2 domain is
unable to modulate Lck activity [16]. Recently Marti et al
reported that both the three C-terminus LAD tyrosines
and a predicted Lck-SH3 interaction site in the C-terminal
of LAD influenced LAD modulation of Lck activity [24].
Moreover, Grb2 interacts with LAD Y292 (i.e. TSAd
Y280), and Y292 and Y302 (i.e. TSAd Y290 and Y305)
mediates PDGF induced AP-1 transcriptional activity [28].
Thus, taken together these previous studies as well as the
present study strongly point to a role for TSAd aa239-
aa334 in control of various functions of TSAd.

Differential regulation of the expression of functionally
distinct alternate transcripts from a single gene may con-
tribute to the regulation of the gene's function. We found
that the alternative TSAd transcripts may constitute up to
15-30% of the total amount of SH2D2A mRNA in the
CD4+ T cell. At the protein level, we showed that in CD4+
T cells, although the full length TSAd 52 kDa band domi-
nate, also TSAd of 37 kDa lacking the aa239-334 is
expressed. However, we did not reliably observe protein
bands representing N-terminally truncated TSAd variants.
When expressed in Jurkat T cells or 293T cells, each of the
SH2D2A ¢DNAs produced TSAd molecules of expected
lengths (figure 3A and 3B and 4B-D), indicating that all
TSAd variant mRNAs encoded by the plasmid constructs
were also translated. When co-transfecting Jurkat T cells
with SH2D2A-1 cDNA together with 10% of the amount
of SH2D2A-3 ¢cDNA, we were not able to detect the
SH2D2A-3 protein band on Western blots, although the
SH2D2A-3 cDNA when transfected alone did reveal a dis-
tinct protein band of expected length (data not shown).
This indicates that the N-terminally truncated TSAd mole-
cules fall below the detection limit of global TSAd Western
blot analysis. In order to directly assess the expression of
variant TSAd molecules antibodies specifically recogniz-
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ing one but not any of the other TSAd molecules must be
generated. However, the sequence differences between the
various TSAd molecules are minimal, and the predicted
antigenicity as assessed by the program "antigenic" of the
EMBOSS suite [34,35] of the N-terminal TSAd amino
acids, as well as the exon 6-8 boundary is not favourable.
At present it is therefore not possible to determine to what
extent these transcript variants are also represented at the
protein level.

We were not able to demonstrate differential regulation of
the different alternate transcripts of the SH2D2A gene in
anti-CD3 stimulated CD4+ T cells. However, we have only
examined expression of TSAd transcripts in one cell type
under one stimulatory regimen. Physiological T cell acti-
vation also requires the presence of co-stimulatory signals
delivered through CD28-B7 interactions. In addition,
TSAd mRNA expression may be induced in CD4+ T cells
via CAMP dependent signals [36]. Since the initial cloning
and characterisation of TSAd [13,17], TSAd has also been
found to be expressed in endothelial [21,22] and epithe-
lial cells [28]. It is possible that the pattern of SH2D2A
transcripts differ in these cells.

The importance of the SH2 domain for nuclear transloca-
tion of TSAd was previously pointed out by Marti et al
[25]. Here we extend these data by showing that also the
aa239-334 of TSAd is necessary for translocation of TSAd
to the nucleus. TSAd does not contain a nuclear localisa-
tion signal, but are associated with the molecular chaper-
one Valocin-containing protein/p97 (VCP), and this
interaction is thought to be necessary for translocation of
TSAd to the nucleus [20]. How TSAd interacts physically
with VCP is not yet known. The isolated TSAd-SH2
domain has been shown to be translocated to the nucleus
[25]. It is however conceivable that the intact TSAd mole-
cule may have different requirements for interaction with
VCP and translocation to the nucleus, as indicated by our
observation that truncated TSAd with intact SH2 domain
fails to be translocated to the nucleus.

The 10 aa insertion in the SH2 domain of the TSAd pro-
tein encoded by the SH2D2A-4 cDNA probably result in a
misfolded SH2 domain. This variant behaved like TSAd
harbouring in vitro generated point mutation of the con-
served arginine in the SH2 domain (R120K) ([19,25] and
data not shown) supporting this notion. The SH2D2A-4
transcript was not consistently observed in quantitative
PCR analysis of anti-CD3 stimulated CD4+ T cells, and it
is thus probably expressed at very low levels in T cells.
Taken together, this indicates that the SH2D2A-4 tran-
script has no functional relevance in the cell and probably
represents transcriptional noise.
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Conclusion

We have demonstrated functional differences between
TSAd molecules encoded by alternative transcript variants
of the SH2D2A gene, and these studies have pointed out a
crucial role for aa239-334 encoded by exon 7 in mediat-
ing TSAd function (figure 7). Further studies are needed to
assess to what extent differential regulation of the alter-
nate SH2D2A transcripts may contribute to the regulation
of TSAd function in T cells and other cell types.

Methods

Plasmids

The TSAd variants SH2D2A-1-4 were isolated from a
c¢DNA library from activated CD8+ T cells [13], and
cloned into the EcoRI site of the mammalian expression
vector pEF/HA. The SH2D2A-5 variant was derived from
an EST cone (IMAGE cdone id: 382223,
GeneBank:AA063001). Since this clone contains a partial
cDNA, the cDNA was fused using mega PCR [37] with the
lacking 5' end of the SH2D2A-1 variant. cDNA encoding
the Lck-SH3 domain as well as the TSAd-SH2 domain
were subcloned into the pGEX-6P-1 expression vector
(Amersham Biosciences, Uppsala, Sweden). The pEF-Lck
and pGEX-3T-Lck SH2 constructs were generous gifts from
Dr. Tomas Mustelin.

TSAd Functional domains:
NH:2 i
N terminus:
F Modulation of TSAd
tyrosine phosphorylation
N SH2 domain:
SH2 | Interaction with p-Y proteins
Translocation of TSAd to nucleus
]
Pl 2a239-334 (exon 7):
Y
|° Interaction with Lek
Y i | Tyrosine phosphorylation by Lck
Y |n] Modulation of Lck activity
Y : Translocation of TSAd to nucleus
/
COOH

Figure 7
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Antibodies

The following monoclonal antibodies (mAbs) were used:
anti-Zap-70 (Transduction Laboratories, Lexington, KY),
anti-HA (Babco, Richmond, CA), anti-human CD3g
(OKT3, American Type Culture collection, Manassas, VA),
anti-phosphotyrosine (clone 4G10, Upstate Biotechnol-
ogy, Lake Placid, NY), anti-Lck (clone IF6, a generous gift
from Joseph B. Bolen) and anti-LAP 2 (clone 27, Trans-
duction Laboratories). The following polyclonal antibod-
ies were used: anti-HA, anti-LAT and anti pY319 Zap-70
(Santa Cruz Biotechnology, Santa Cruz, CA), and anti-
TSAd antibodies raised against synthetic peptides of TSAd
[13,19]. Secondary antibodies were horseradish peroxi-
dase-conjugated goat anti-mouse IgG, goat anti-rabbit
IgG, donkey anti-rabbit IgG with fluorescence Cy™-2 and
donkey anti-mouse IgG with fluorescence Cy™-3 (Jackson
ImmunoResearch Laboratories, West Grove, PA).

Cell cultures and transfections

Primary resting CD4+ T cells were positively selected from
peripheral blood samples from healthy blood donors as
described [38] using anti-CD4 coated Dynabeads (Dynal,
Oslo, Norway). Jurkat TAg cells [39], 293T cells and Jurkat
E6.1 cells (American Type Culture Collection) were cul-
tured in RPMI 1640, 5-10% foetal calf serum (FCS) sup-
plemented with 1 mM sodium pyruvate, 1 mM non-
essential amino acids (all from GIBCO BRL?, Life Technol-
ogies™, The Netherlands) and antibiotics. Transfections of

SH3
P247
SH3
P250
pY
ErkD Y260 pY,SH2
L109 | Y305
SH2D2A-1 :{: ] I ]
SH2 Y280
(96-171) e
ErkD
L109
SH2D2A-5 |:|_‘:]:1
SH2
(96-171)

Schematic presentation of TSAd functional domains and predicted sites. A Schematic presentation of functional regions
of TSAd. B Predicted sites identified in high stringency Scansite search of SH2D2A-1 and SH2D2A-5 peptide sequences: Core amino
acids are indicated. pY: tyrosine kinase phosphorylation site. SH2 and SH3: SH2 and SH3 binding sites respectively. ErkD: bind-

ing site for ErkD domain.
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2 x 107 Jurkat T cells in RPMI 1640 with 5% FCS with 5-
30 pg plasmid DNA were performed using a BTX electro-
porator (Genetronix, San Diego, CA) at 200 V, 70 ms.
Transfectants were cultured for 16-24 hours. 293T cells
were transfected by Lipofectin (Invitrogen) in Optimem 1
medium (GIBCO BRL®) as described by the manufacturer.

SiRNA-mediated attenuation of TSAd expression

SiRNA against the human TSAd sequence p690 5'-GGA
CCG AAG AAU CAA ACU U tt-3', antisense 5'-AAG UUU
GAU UCU UCG GUC C tc-3' (Eurogentec S.A.), was also
previously described [22]. SiRNA directed towards human
TSAd sense p369 5'-UGG UUC CAU GGC UUC AUC A tt-
3'and antisense 5'-UGA UGA AGC CAU GGA ACC A tt-3'
(Eurogentec S.A.), was used as a negative control since it
was found unable to knock-down TSAd expression (data
not shown). Transfection of 5 x 10° CD4+ T cells with
0.05-5 uM SiRNA were performed using the Amaxa elec-
troporator [40] and Human T cell Nucleofector™ Kit
(VPA-1002) following the description by the manufac-
turer.

Cell stimulation, lysis, immunoprecipitation and Western
blot

Primary CD4+ T cells were stimulated using CD3 Dyna-
beads (Dynal) or CD3/CD28 beads (Dynal) when indi-
cated. For immunoprecipitation (IP) experiments, Jurkat
T cells (1 x 107 cells/IP) were washed in RPMI 1640, resus-
pended and stimulated with 5 pug/ml anti-CD3 (OKT3)
mAbs pr 5 x 107 cells for 2.5 min. Cells were lysed by add-
ing an equal volume of 2 x lysis buffer (1 x lysisbuffer: 1%
Nonidet P40 (Calbiochem-Novabiochem Corporation,
LaJolla, CA) or 1% Igepal (Sigma-Aldrich, St. Louis, MO),
50 mM n-octyl-B-d-glucoside (Sigma-Aldrich), 20 mM
Tris (pH 7.5), 100 mM NaCl, 50 mM NaF, 1 mM Na;VO,,
10 pg/ml of the protease inhibitors; leupeptin, pepstatin
A, chymostatin and antipain (all from Sigma Aldrich).
The 293T cells, Jurkat T cells or primary CD3/CD28 stim-
ulated CD4+ T cells were washed with PBS and lysed in 1
x lysis buffer. Lysates were precleared 2-3x for 45 minutes
with protein A/G Sepharose™ (Amersham Pharmacia Bio-
tech, Uppsala, Sweden) or protein G magnetic beads
(Dynalbiotech, Oslo, Norway), incubated with the rele-
vant antibodies for 45 minutes followed by protein A/G
or protein G beads precipitation for 1 hour. Precipitates
were washed 3x in 1 x lysis buffer. Primary CD3 stimu-
lated CD4+ T cells were sonicated in 1 x lysis buffer.
Immunoprecipitations or cell lysates were separated by 8-
10% SDS-PAGE and blotted onto a polyvinylidine difluo-
ride membrane (PVDF) (BioRad Laboratories, Hercules,
CA). Blots were probed with the indicated antibodies in
Tris buffered saline (TBS, pH 7.4) with 0,1% Tween
(Sigma Chemical, St. Louis, MO) and 3% bovine serum
albumin (BSA) (Biotest, Dreieich, Germany) or 3%
skimmed milk (Sigma-Aldrich). Binding of antibodies to
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the target proteins were detected by secondary HRP-
labelled antibodies and Super Signal® West Pico Stable
Peroxide Solution (Pierce, Rockford, Illinois), using either
Kodak BioMax MR film (Kodak, Rochester, NY) or Kodak
Image Station 2000R (Kodak). Signal intensity of blots
was analysed using Kodak 1D image Analysis software.

GST-pull down assays

The GST-fusion proteins were produced in BL21 Codon
plus bacteria (Stratagene, La Jolla, CA), and purified on
glutathione Sepharose beads (Amersham Biosciences).
Cellular lysates prepared as described above were pre-
cleared 3x for 1 hour, each with a 1:1 mixture of GST-glu-
tathion/4B Sepharose. Precleared lysates of 5-10 x 10°¢
cells, were added to aliquots of Lck-SH2, Lck-SH3 or
TSAd-SH2-GST-gluthatione Sepharose beads and rotated
for 1 hour. Beads were washed 3x with 1 x lysis buffer,
proteins were eluted in SDS-loading buffer and separated
on a 8-10% SDS-PAGE gel.

Quantitative RT-PCR of SH2D2A transcripts

Total RNA were extracted using Absolutely RNA kit (Strat-
agene, La Jolla, Ca, USA) according to the manufacturers
instructions. cDNA was synthesised from total mRNA
using random nonamers and MMLYV reverse transcriptase
as described by the manufacturer (Eurogentec, Seraing,
Belgium).

Quantitative real-time PCR and subsequent data analysis
were performed using the Mx4000 Quantitative PCR sys-
tem (Stratagene) equipped with version 4.0 software. The
custom made primers and probes specific for TSAd tran-
scripts and Zap-70 are shown in table 1 were ordered from
Eurogentec. Primers and probes for TSAd universal and
Zap-70 were designed by Primer Express (PE Applied Bio-
systems, Foster City, CA) whereas the primers and probes
for the different splice variants were designed by us (table
1). None of the amplicons exceeded 150 bp in length. All
probes had a darquencher. For TSAd universal- and Zap-
70 primer/probe set, the PCR reaction contained 900 nM
of each primer, 300 nM of the probe and 1 x TagMan®
Universal PCR Master Mix (Applied Biosystems). For the
TSAd transcript specific primer/probe sets, each PCR reac-
tion contained 600 nM of the primers and 200 nM of the
probe as well as 1 x TagMan® Universal PCR Master Mix.
DNA amplification was performed with the following
thermal cycling profile: initial incubation at 50°C for 2
minutes, initial denaturation at 95°C for 2 minutes, 40
cycles of amplification (denaturation at 95°C for 10 sec-
onds and annealing and elongation for 1 minute at 60 or
62°C). Fluorescence data were collected during the
annealing stage of amplification.

A standard curve in triplicate was constructed for each

transcript variant of TSAd and Zap-70. Serial dilutions of
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Table I: Primers and probes for quantitative PCR
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Oligo Sequence Specificity GeneBank: Position
19-FW 5'-CAT AGT TCC TCT CTG AGA AAC SH2D2A-3 AY763098 7-27
WT-42-FW 5'-TCA TGG AGT TCC CCC TGG C SH2D2A-2 BI820427 19-38
WT-42-19-RV 5'-AGC TCC TGC GGG TCA TGT SH2D2A AJ000553 169-186
45-FW 5'-CTG CCT GGT TCCATGGCTT SH2D2A AJ000553 365-383
45-RV 5'-TCC AGC AGC CTC TCT GCC SH2D2A AJ000553 398415
Ex7-FW 5'-CCA GTA CAG CCC AAT CAT CAA SH2D2A AJ000553 728-748
Ex7-RV 5'.TTG CCC AAT CACAGAGTTCTCA SH2D2A AJ000553 1115-1136
ZAP-70-FW 5'-ACA CCC TCA ACT CAG ATG GAT ACA Zap 70 BC053878 10361060
ZAP-70-RV 5'-TCG GCC GCG GTT TGT Zap 70 BC053878 1090-1 105
Probe-45 5'-FAM-TTC GGC CCC CTC TCT CCG TCA CC-DQ SH2D2A-4 AY763100 397419
Probe-WT-19 5'-FAM-GTC ACG AAG CCC CCA TCC CA-DQ SH2D2A-1,3-5 AJ000553 124144
Probe-42 5'-FAM-AGA TAT GTC CCC AAG CAC CTT CCA GAT SH2D2A-2 BI820427 41-77
C-DQ
Probe-ex7 5'-FAM-AGA AGG AGA ATA CAG GTG GCT CCC SH2D2A-5 AA063001 482-509
AGC-DQ
Probe Zap-70 5'-HEX-CCC TGA GCC AGC ACG CAT AAC GT-DQ Zap-70 BC053878 1062—1184

plasmids containing an insert with either the relevant
TSAd transcripts or Zap-70 were made containing 10000,
1000, 100 and 10 fg/ul of the plasmid. Quantity of TSAd
was estimated relative to the quantity of Zap-70. The
choice of Zap-70 as a housekeeping gene was based on
our previous studies which have shown that the amount
of Zap-70 is relatively stable during the various phases of
T cell activation [23,41]. Experiments were performed in
duplicate for each data point.
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