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Current challenges in understanding immune cell
functions during septic syndromes
Zechariah Franks1, McKenzie Carlisle1 and Matthew T Rondina1,2*
Abstract

Background: Sepsis is a dynamic infectious disease syndrome characterized by dysregulated inflammatory responses.

Results: Despite decades of research, improvements in the treatment of sepsis have been modest. These limited
advances are likely due, in part, to multiple factors, including substantial heterogeneity in septic syndromes, significant
knowledge gaps in our understanding of how immune cells function in sepsis, and limitations in animal models that
accurately recapitulate the human septic milieu. The goal of this brief review is to describe current challenges in
understanding immune cell functions during sepsis. We also provide a framework to guide scientists and clinicians in
research and patient care as they strive to better understand dysregulated cell responses during sepsis.

Conclusions: Additional, well-designed translational studies in sepsis are critical for enhancing our understanding of
the role of immune cells in sepsis.
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Review
Despite decades of molecular, clinical, and translational
research, sepsis remains a significant public health bur-
den in the United States and worldwide. More than
750,000 patients with sepsis, severe sepsis, or septic
shock are admitted into United States hospitals annually
and this number continues to rise each decade [1]. Un-
fortunately, adverse outcomes following septic syn-
dromes remain only marginally improved [2]. Many of
the improvements in sepsis management are attributable
to a better understanding of appropriate processes of
care, such as “bundling”, ventilator management, and
goal-directed therapy [3]. Advances in sepsis treatment
as a result of improved therapeutic agents have been
more modest. In addition, mortality and other outcome
estimates are complicated by heterogeneous definitions
of illness severity and organ dysfunction, increased sur-
veillance for sepsis, and changes in electronic coding to
capture the diagnosis of sepsis [4].
Sepsis is also commonly associated with a number of

longer-term complications, including cognitive dysfunction,
debilitation, and significant reductions in health-related
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quality of life in patients who survive sepsis [5-7]. These
adverse longer-term outcomes are especially common in
the elderly. As the risk and incidence of sepsis increases
with age, coupled with forecasts of a sustained rise in the
age of the population, septic syndromes will continue to be
a common and substantial public health issue [8,9]. As
such, ongoing research efforts examining the fundamental
cellular and biological mechanisms underlying septic phy-
siology are needed.
These limited successes in the management of septic

syndromes are not due to lack of effort. Through on-
going, innovative, and rigorous scientific inquiry, the
field has seen the development of advances in diagnostic
and prognostic biomarkers and scoring systems, promis-
ing pre-clinical animal studies, and a substantial number
of clinical trials testing therapeutic agents targeting
thrombo-inflammatory mediators and pathways. Despite
these efforts, only a few therapeutic agents made it to
phase III clinical trials and none have seen sustained
clinical use. For example, two of the most promising
therapeutics recently met unfortunate endings: activated
protein C (APC) was pulled from the market and an
anti-toll-like-receptor 4 compound failed in a phase III
clinical trial [10]. While investigators continue to iden-
tify and study new therapies that hold promise, there is
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a growing body of evidence suggesting that single thera-
peutic agents may not be an effective solution for a
dynamic, complicated disease like sepsis [11]. The end
result of these and other setbacks illustrates that we are
still fundamentally limited in our understanding of im-
mune system dysregulation, cell-pathogen interactions,
and safe and effective therapies to modulate injurious
responses during septic syndromes. The goal of this brief
review is to describe current challenges in understanding
immune cell functions during sepsis. We also provide a
framework to guide scientists and clinicians in research
and patient care as they strive to better understand dys-
regulated cell responses during sepsis. For additional,
well-written, and comprehensive reviews on individual
aspects of sepsis, the reader is referred to other recent
publications [12,13].

Sepsis is a dynamic, heterogeneous disease process in
humans
Sepsis remains a highly complex, heterogeneous, and
dynamic disease process in humans. Differences in patho-
gen virulence, clinical presentations, and individual patient
responses to bacterial and viral invaders make sepsis in
humans a challenging disease to study. Moreover, certain
patient groups are at much higher risk for sepsis. For
example, the incidence of sepsis is disproportionately
higher in the elderly, and age is an independent predictor
of sepsis-related mortality. While comprising only 12% of
the US population, older individuals aged ≥65 years repre-
sent approximately 65% of all sepsis cases [14]. Older sepsis
non-survivors die earlier during hospitalization compared
with younger non-survivors. In addition, and complicating
efforts to study age-related immune responses in sepsis,
older septic patients are often immunologically impaired
prior to the development of sepsis due to comorbid ill-
nesses and are thus more susceptible to infection and sub-
sequent complications [15-17]. For those older patients
who survive, they require more skilled nursing or rehabili-
tative care after hospitalization than younger sepsis survi-
vors. This increased risk of sepsis, death, and associated
adverse outcomes in older patients, while incompletely
understood, may partially be due to immunosenescence, or
age-related impairment of inflammatory responses and im-
mune system functions [17-19].
Premorbid factors modify both the disease process and

therapeutic approaches used during the course of sepsis.
Premorbid factors also contribute to heterogeneity in
disease severity, cellular immune functioning, and the
safety and effectiveness of therapeutic agents studied for
sepsis. For example, an investigation using a global regis-
try of over 12,000 patients with severe septic shock
found that diabetes (23%), chronic lung disease (17%),
active cancer (16%), congestive heart failure (14%), renal
insufficiency (11%), and liver disease (7%) were common
comorbidities [20]. Immunologic comorbidities such as
immune suppression, cancer, HIV/AIDS, and hepatic
failure are also risk factors for sepsis-related mortality
[6,21]. Intriguingly, obesity has been associated with im-
proved mortality among severe sepsis patients [22].
Genetic variations may also influence susceptibility to

sepsis. In a landmark study of adoptees, premature death
in adopted adults had a large heritable component, espe-
cially infectious-related death [23]. These, and other in-
vestigations, suggest that genetic factors may play an
important role in determining the risk of sepsis and
sepsis-related adverse outcomes, such as mortality.
Nevertheless, many questions remain regarding the con-
tribution of genetics to the risk of sepsis, and it is likely
that any genetic factor is polygenic, such that multiple
genetic variants are involved [24,25].

Sepsis is a dynamic disorder of dysregulated
inflammatory and immune responses
Many factors limit advances in our understanding of im-
mune cell functions in sepsis. One factor is the evolving
appreciation that sepsis is a much more dynamic process
than we may have initially recognized. For example,
while adverse events in sepsis were initially thought to
be due to exaggerated, pro-inflammatory cytokine pro-
duction (i.e. “the cytokine storm”), increasing evidence
supports an emerging hypothesis that the immunosup-
pression following the development of early sepsis con-
tributes significantly to later complications of organ
failure and mortality in sepsis [13]. As part of this shift
in thinking, many investigators and clinicians now con-
sider sepsis as having two overlapping phases. These
phases may also occur concomitantly with both pro- and
anti-inflammatory responses evident from the onset of
sepsis [26]. An understanding of these phases helps
guide research efforts as well as clinical care decisions.
The first phase, called the systemic inflammatory re-

sponse syndrome (SIRS), is characterized by injurious,
systemic inflammation and lasts several days following
the onset of infection. SIRS develops when exaggerated
immune cell activation responses damage host tissues
and organs during efforts to clear infection. For example,
pro-inflammatory cytokines synthesized by innate im-
mune cells such as circulating monocytes and macro-
phages, as well as cells residing within tissues or organ
compartments may augment host defense mechanisms
against invading pathogens, but in doing so, also impair
adaptive responses by immune and non-immune cells
[27,28]. Clinically, SIRS is manifested as alterations in
temperature (hypothermia or hyperthermia), tachycardia,
tachypnea, and abnormal white blood cells counts
(leukopenia or leukocytosis) [29].
The second phase, known as the compensatory anti-

inflammatory response syndrome (CARS), may last
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anywhere from days to weeks. During the CARS phase,
the immune system in some, but not all cellular com-
partments, is markedly suppressed, leading to secondary
infection and organ failure [30]. As one example of this
immunosenescence, immune cells isolated from septic
non-survivors exhibit markers of immunosuppression
and apoptosis. Moreover, the cells that remain demon-
strate impairments in cytokine production, immune sig-
naling, and associated innate and adaptive immune
functions [13,31,32]. Recent evidence points to the im-
mune suppression during CARS as a major cause of
morbidity and mortality in patients with sepsis, although
substantial knowledge gaps on this topic remain and in
experimental animal models, the absence of lympho-
cytes, IL-10, and myeloid-derived suppressor cells may
be protective [31,33-35].
These emerging discoveries have many important im-

plications for the treatment of sepsis. Nevertheless,
translating these findings to clinical care is challenging.
These two phases often overlap, creating a highly com-
plex and dynamic spectrum of pathophysiologic re-
sponses that may not be easily amenable to safe,
effective therapeutic interventions [13,36]. Investigations
are currently underway to parse out these complexities,
and many biomarkers have been identified to describe
these phases of treatment. For a more in-depth and well
written review discussing these biomarkers and their im-
plications and roles on future sepsis research the reader
is referred elsewhere [37].
There is also increasing recognition that dysregulated

immune cell functioning in sepsis is not due simply to
Figure 1 Brief summary of some of the roles and functions of immun
alteration in one cytokine or one cell population. Rather,
changes in a repertoire of pro- and anti-inflammatory
cytokines, complement pathway mediators, coagulation
factors, adipokines, and vascular permeability factors act
in concert to cause much of the pathophysiology of sep-
sis [38]. During septic syndromes, one component of the
immune system (e.g. a specific cytokine or immune cell)
may be overly activated, causing injurious responses in
the host. Yet, at other times during the course of sepsis,
this same component may be deficient or have impaired
functional responses, thus preventing appropriate host
defense mechanisms. Taken together, these and other
key findings have hindered our understanding of how to
treat these heterogeneous and dynamic phases of sepsis.

Immune cells mediate host reponses during sepsis
Although scientific advances continue, there remain
many gaps in our understanding of immune cell func-
tions and how they impact host responses during sepsis.
Here, we briefly review some of these cells, their known
functions during sepsis, and highlight several current
challenges in understanding the role and contribution of
these cells to the physiology and pathophysiology of sep-
sis (Figure 1). For further information on macrophages,
monocytes, and natural killer cells, as well as the cellular
subsets described briefly below, the reader is referred to
several recent articles [13,39-42].
Polymorphonuclear neutrophils (PMNs) are a key arm

of the innate immune response, and during sepsis PMN
functioning is dysregulated [39,40]. While PMNs increase
in number and demonstrate reduced markers of cellular
e cells during septic syndromes.
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apoptosis during sepsis [43], there is impaired migration
of PMNs to areas of infection and misdirected accumula-
tion within remote organ compartments [40,44]. These
injurious, dysregulated responses correlate with sepsis-
related morbidity and mortality, thus suggesting that alter-
ations in PMN functioning during sepsis impact clinical
outcomes [45].
Upon stimulation with lipopolysaccharide (LPS), direct

microbial contact, or other agonists present within the
septic milieu, PMNs also decondense and extrude their
DNA into the extracellular space, forming neutrophil
extracellular traps (NETs) comprised of nuclear chroma-
tin, extracellular histones, and antimicrobial proteins
[39,46,47]. Intriguingly, platelet toll-like receptor 4
(TLR4) [48] and platelet-derived human β-defensin 1
(hBD-1) [49] also induce NET formation, suggesting that
platelets serve as immune sensors and activators during
infectious insults.
The role and functions of NETs are still incompletely

understood, but established and emerging evidence im-
plicates NETs as key mediators of immune, inflamma-
tory, and thrombotic pathways. Moreover, in some
settings NET formation may augment host defense
mechanisms, while in other situations NET formation
may be injurious. For example, NETs mediate bacterial
capture as well as interactions between bacteria and
antimicrobial factors, enhancing bactericidal activity
[39,46]. In premature neonates who are at increased risk
of sepsis, NET formation is markedly impaired [50].
Nevertheless, NETs may have injurious effects, causing
misdirected inflammation, thrombosis, and tissue dam-
age [51-53]. Extracellular histones, a marker of NET for-
mation, is cytotoxic on the endothelium, and in vivo, has
been associated with organ failure and mortality in sep-
sis syndromes [54].
Dendritic cells (DCs) are a group of antigen-presenting

cells (APCs) that interact with T and B cells, mediating
key host defenses to pathogens and thus serving as a
bridge between innate and adaptive immune responses. In
sepsis, DC apoptosis is markedly increased. In this fashion,
DCs may be a substantial contributor to the immunose-
nescence that characterizes the CARS phase of sepsis [55].
Nevertheless, a comprehensive understanding of DC func-
tions in sepsis remains limited. Murine models have
helped fill gaps in our understanding and demonstrated
how augmenting DC function and number improve mor-
tality following induction of endotoxemia, but these re-
sults have yet to be replicated in clinical settings [56].
Since dendritic cells have a major role in innate and adap-
tive immunity, DC apoptosis has potentially broad impli-
cations for developing new therapeutics in sepsis.
Additionally, a better understanding of the mechanisms
controlling dendritic cell death may help prevent sepsis-
related morbidity and mortality [13,57].
In adaptive immunity, apoptosis of B and T cells also
plays a critical role in host defense mechanisms during
the SIRS and CARS phases. This has consequences on
innate cell recruitment as well as adaptive cell function.
Thus, understanding how to prevent or reverse B and T
cell apoptosis may lead to new therapies for sepsis. Fur-
thermore, if they do not undergo apoptosis, T cells may
exhibit a phenomenon known as T-cell exhaustion. Only
recently identified in septic syndromes, T-cell exhaustion
occurs when cells are exposed to long-term and high
antigen loads. The T cells subsequently have impaired
cytokine production, are less cytotoxic, and are more
apoptotic [13,31]. Currently, our understanding of the
mechanisms inducing or regulating T-cell exhaustion is
limited. Much work remains in order to understand how
T-cell exhaustion can be prevented or reversed. Add-
itionally, there is a subclass of CD4 + CD25+ T lympho-
cytes, known as TReg cells that are upregulated in sepsis
[58,59]. TReg cells have several immune-suppressing ef-
fects, including some that are exhibited on monocytes
[60]. However, what leads to TReg cell up regulation and
control is still unclear. Moreover, other classes of T lym-
phocytes (e.g. CD4 + CD25-) are reduced in sepsis,
highlighting the need for additional studies in this area.

Animal models for sepsis
The use of animal models of sepsis has led to numerous
new observations and discoveries, providing in vivo ra-
tionale for studies in humans. More recently there has
been an increased appreciation for translating findings
in sepsis animal models to human studies, although tri-
als may be more limited than previously recognized.
Despite decades of research and many preclinical trials
utilizing well-defined and accepted animal models of
sepsis, only a small number of agents and techniques
have ultimately been demonstrated to improve the care
of septic patients [61].
The reasons underlying this more limited correlation

between animal and human settings of sepsis, which may
not be surprising to some investigators, are not entirely
understood. However, animal models often involve con-
trolled, single insults that may not entirely recapitulate the
natural history of sepsis in humans, where multiple infec-
tious pathogens, wide differences in age, comorbidities,
and therapeutic interventions are common. In addition,
genomic responses to inflammatory insults may not correl-
ate well between humans and mice, although these appar-
ent differences are still not well understood [62,63] and
recent studies have suggested that under some experimen-
tal conditions, gene expression patterns in mice are similar
to those of human inflammatory settings [64]. Finally, a fre-
quently used experimental animal model of polymicrobial
sepsis, the cecal ligation and puncture (CLP) model, may
not recapitulate clinical septic syndromes and emerging
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strategies to improve upon these models are being deve-
loped [65].
Despite these potential limitations, animal models cur-

rently remain an important tool in our arsenal for better
understanding cellular responses in sepsis. Many observa-
tions seen in humans can be directly observed and corre-
lated in mouse animal models [13]. As just one example,
the widespread immune cell apoptosis observed in human
sepsis is also observed in mouse models [66]. Thus, while
in vivo models will continue to be utilized for studies in-
vestigating cell function, immune responses, and potential
therapies in sepsis, we need to remain cognizant of the
limitations of animal models when translating our findings
to the human condition. Models that accurately mimic the
physiologic, cellular, and molecular changes observed in
human sepsis are difficult to achieve, yet remain an im-
portant goal in our journey to develop novel and effective
therapies in sepsis.

Conclusions
Sepsis remains a significant public health burden in the
United States and worldwide. An understanding of the
role of immune cells in the pathophysiology of sepsis
remains limited but advances continue to be made, filling
key knowledge gaps and identifying new potential the-
rapeutic targets. Additional well-designed translational
studies in sepsis are critical for success in this arena.
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