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Abstract

Background: Both antibody secreting cells (ASCs) and memory B cells are essential for the maintenance of
humoral immunity. To date, limit studies have focused on the two populations in Kawasaki disease (KD). To address
the status of humoral immunity during KD, our current concentration is on the variations of ASCs and memory B
cells, as well as their subsets in both acute and remission stages of KD.

Methods: ASCs were defined as the population with high expressions of CD27 and CD38 among CD3-CD20-
lymphocytes. Based on the expression of surface marker CD138 and intracellular marker IgG, ASCs were further
divided into two subsets. Memory B cells were characterized by the expressions of IgD, CD27 and IgM, upon which
memory B cells were further categorized into CD27 + IgD- (switched memory, Sm), CD27-IgD- (Double negative,
DN) and CD27 +1gD + IgM+ (marginal zone, MZ) B cells. Collectively, six populations were analyzed using flow
cytometry. The blood samples were collected from KD patients in different stages and healthy controls.

Results: In the acute stage, the percentages of ASCs, CD138+ ASCs, and IgG+ ASCs were significantly increased. In
contrast, the percentages of memory B cells including Sm and MZ B cells were significantly decreased. Correlation
analysis found ASCs positively correlated with the level of serum IgM, whereas MZ B cells not only positively
correlated with the level of serum IgG, IgA, and IgM, but also positively correlated with the level of serum
complement C3 and C4 and negatively correlated with the value of C-reactive protein (CRP). In the remission stage,
the percentages of IgG+ ASCs and MZ B cells were significantly reduced, whereas other subsets presented
heterogeneous variations.

Conclusions: Our study provided direct evidence that ASCs contributed to the pathogenesis of KD, and it was the
first time to describe the variation of memory B cells in this disease. Among the subsets, only IgG+ ASCs presented
a significant increase in the acute stage and decreased after IVIG administration, indicating the involvement of IgG+
ASCs in the inflammation of KD and also suggesting that IVIG played an inhibitory role in the expression of
cytoplasmic IgG.
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Background

Kawasaki disease (KD) is an acute, self-limited, febrile
vasculitis that predominantly affects children under 5
years of age. KD remains the leading cause of acquired
heart disease during childhood. Classically, it can be
characterized by high spiking fever persisting for more
than 5 days, erythematous rash, bilateral conjunctivitis,
congestive oral mucosa, swelling lymph node, and
edematous extremity [1]. Precisely due to these highly
identifiable clinical manifestations, KD is also known as
mucocutaneous lymph node syndrome. Intravenous im-
munoglobulin (IVIG) is the most effective therapy for
the improvement of symptoms and the prevention of
coronary abnormalities [2]. During the past four de-
cades, investigations on the pathogenesis of KD have
never been ceased. Nowadays, aberrant immune re-
sponses triggered by invading pathogens on the genetic-
ally susceptible individual is thought to be the key point
in the occurrence and development of KD [3, 4].

The most visualized immunological abnormality in KD
is the activation of innate immunity represented as the
elevations of neutrophils, C-reactive protein (CRP),
erythrocyte sedimentation rate (ESR), and cytokines such
as interleukin (IL)-6, tumor necrosis factor alpha [5].
However, innate and adaptive immunity are intercon-
nected. Innate cells can drive the initiation of adaptive
immunity [6]. Indeed, the humoral immunity, which is
an indispensable part of adaptive immunity, is demon-
strated to participant in the pathogenesis of KD by accu-
mulative evidence. Early studies have shown elevated
levels of serum immunoglobulins and activated poly-
clonal B cells [7, 8]. Increased immunoglobulin complex
in circulation has also been reported [9]. Besides, de-
creased circulating IgA+ B cells and plasma cells were
detected possibly due to the infiltration of IgA+ cells
into vascular tissues, including the proximal cardiac
tract, pancreas, kidney and coronary artery [10, 11]. Re-
cently, researchers found the increased percentage as
well as absolute number of CD19+ cells in the peripheral
blood of patients with KD [12]. In addition to these dir-
ect evidence, our latest study presented an increased
level of one activated subset of T follicular helper cells
and serum IL-21 [13, 14], which are vital to B-cell prolif-
eration and differentiation [15], strongly suggesting the
involvement of humoral immunity in KD. Moreover,
with the development of genomics, susceptible genes as-
sociated with B cells have also been identified [16].
Therefore, it is convinced that humoral immunity plays
a crucial role in KD.

B cells are one of the most important molecules of
humoral immunity due to their irreplaceable ability in
antigen presentation, cytokines secretion and antibodies
production. B cells are comprised of heterogeneous
subpopulations with distinct phenotypes. Among these
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subsets, antibody secreting cells (ASCs) and memory B
cells are the key feature and contributors to maintain
the humoral immunity. ASCs can be distinguished
using flow cytometry based on the bright expressions of
CD27 and CD38 in bone marrow, as well as in circula-
tion [17]. ASCs are well-differentiated and effector cells
that are responsible for the abundant secretion of anti-
bodies that can neutralize foreign antigens [18]. Despite
such obvious advantages of ASCs in human health, ex-
cessive or persistent ASCs would lead to pathogenic
conditions [19]. In KD, a case report has described a
patient with excessive plasmablasts [20]. Another study
has reported that the median percentage of plasma-
blasts in KD patients were 2.51% of circulating B cells,
indirectly indicating that the plasmablasts would be in-
creased in KD because the normal level of plasmablasts
should be less than 1% of circulating B cells according
to the results from the literature [21]. To some extent,
the two studies substantiated the involvement of ASCs
in KD. However, the exact difference between KD pa-
tients and healthy individuals, and their potential roles
during KD remain to be determined.

Memory B cell is another crucial component of humoral
immunity. Human memory B cells in circulation can be
characterized by the expression of their surface markers
such as CD27, IgD and IgM among the mature B cells
[22, 23]. These markers divide memory B cells into dis-
tinct subgroups. Remarkably, although the most of mem-
ory B cells are thought to be derived from the germinal
centers (GCs) of the secondary lymphoid organs when the
encountering with pathogens for the first time [24], the
origin of CD27 + IgD + IgM+ B cells remains controversial
as a result of their diversified roles in both innate and
adaptive immunity. Unlike ASCs, memory B cells are ab-
sent of the ability in secreting antibodies, while if the host
is re-stimulated, will memory B cells undergo the differen-
tial process into ASCs and provide faster humoral re-
sponse than naive B cells do, demonstrating that they are
of essence for the secondary immune response [25, 26].
To our knowledge, investigation on memory B cells in KD
remains to be completed. Nonetheless, the self-limiting
nature and low recurrence rate strongly imply the connec-
tion between memory cells and KD. Therefore, memory B
cells were also taken into this study. Indeed, we found
some significant variations in both ASCs and memory B
cells. We hope our study would be beneficial for the fur-
ther understanding of humoral immunity in KD.

Methods

Patients

We enrolled 18 KD patients hospitalized in the Depart-
ment of Pediatric Rheumatology and Allergy, The First
Hospital of Jilin University, China, from January to De-
cember 2018. After a detailed physical examination and
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necessary laboratory tests, the diagnosis was established
meeting with the criterion that the 2017 American Heart
Association (AHA) clinical guidelines [1]. All patients
underwent the same treatment options, which were the
administration of IVIG at a dose of 2 g/kg for 1 day and
oral aspirin at a dose of 30-50 mg/kg per day from the
establishment of diagnosis to defervescence. After IVIG
administration, all patients were in remission, at which
stage the patients had been afebrile for at least 48 h.
Eighteen blood samples from patients in the acute stage
were collected, whereas only nine of the patients agree
with blood collection in the remission stage. Another fif-
teen sex- and age-matched healthy children who came
for healthy examination were chosen. These children
had not suffered from any diseases at least in the previ-
ous month. Neither patients nor healthy controls had
been diagnosed with any autoimmune diseases. Patients
with incomplete or refractory KD were not brought into
this study. The documented clinical parameters from
both patients and healthy controls included: white blood
cell counts, neutrophil counts, lymphocyte counts,
serum C-reactive protein CRP, ESR, serum immunoglob-
ulins (IgG, IgA, IgM) and complement C3 and C4. The
Ethics Committee of The First Hospital of Jilin Univer-
sity authorized the experimental protocol following the
guidelines of the Declaration of Helsinki. Written in-
formed consent was obtained from the parents of all
individuals.

Flow cytometric analysis

In order to the successful acquirement of ASCs, four-
milliliter fresh blood samples were collected from both
healthy controls (HCs) and KD patients in acute and re-
mission stages. Peripheral blood mononuclear cells
(PBMCs) at 4 x 10°/ml were isolated from each individual
by density-gradient centrifugation using Ficoll-Paque Plus
(Amer- sham Biosciences, Little Chalfont, UK) at 800xg
for 30 min at 25°C. PBMCs were stained with antibodies
(Becton Dickinson, San Jose, CA, USA) including surface
CD3 (BV510), CD19 (APC-H7), CD20 (BV421), CD27
(PE-Cy7), CD38 (APC), CD138 (PE), IgD (PE-CF594), and
IgM (BV515) at room temperature for 30 min. Next, the
cells were fixed, permeabilized, and intracellularly stained
with IgG (Becton Dickinson, San Jose, CA, USA). Finally,
PBMCs were analyzed by multicolor flow cytometry
(FACSAria II; BD Biosciences, Franklin Lakes, NJ, USA),
and the results were analyzed using FlowJo v10.0.7 soft-
ware (Tree Star, Ashland, OR, USA).

Statistical analysis

The data were represented as the median and range and
performed with SPSS version 22.0 software. Kruskal-
Wallis test was applied to assess the difference among
groups. The correlation analysis was evaluated using
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Spearman’s rank correlation test. The difference between
the acute and remission stage was analyzed by the Wil-
coxon matched pairs test. P < 0.05 was considered to be
statistically significant.

Results

Patients characteristics

Eighteen KD patients and fifteen healthy children were
involved in the present study. Nine samples of KD pa-
tients in the remission stage were collected. Their demo-
graphic and clinical parameters are shown in Table 1.
The differences in age and sex between the KD patients
and the HCs were not significant. The patients in the
acute stage shown a significantly higher number of white
blood cells and neutrophils than those in HCs and the
patients in the remission stage, however, their lympho-
cyte counts did not change obviously. The levels of CRP
and ESR were significantly elevated in the acute stage of
KD. After treatment, CRP decreased rapidly to an almost
normal level, whereas the level of ESR remained higher.
The median level of serum immunoglobulins and com-
plement proteins was maintained within the normal
range in the acute stage of KD.

The levels of ASCs in different stages of KD

To investigate the status of humoral immunity, we ex-
amined the overall levels of ASCs and their subsets in
both acute and remission stages. PBMCs from all partici-
pants were immune-stained with CD3, CD20, CD27,
CD38, CD138, and intracellular IgG, and subsequently
analyzed by flow cytometry [17]. ASCs can be distin-
guished by high expression of CD27 and CD38 in the
CD3-CD20- lymphocyte. CD138+ ASCs and cytoplasmic
IgG+ ASCs were further identified on ASCs gate. The
gating strategy of ASCs and their subsets was shown in
Fig. 1a. The results shown that the percentages of ASCs,
CD138+ ASCs, and IgG+ ASCs were all increased in
acute stage of KD (P <0.0001, Fig. 1b; P = 0.0018, Fig. 1c;
P =0.0003, Fig. 1d; respectively). Therefore, our data
provide direct evidence that the expression of ASCs is
enhanced in the acute stage of KD. After the application
of IVIG, despite the level of CD138+ ASCs was not sig-
nificantly higher than that in the acute stage (P = 0.6062,
Fig. 1c), they maintained a relatively higher level (P =
0.0001, Fig. 1c), implying their responsibility for the
humoral immunity in remission stage.

The levels of memory B cells in different stages of KD

As memory B cells are another important portion of the
humoral immunity, we subsequently explored their overall
levels in acute and remission stages of KD. PBMCs with
immune-staining CD3, CD19, CD20, CD27, IgD and IgM
were investigated. Upon these surface markers, memory B
cells were initially categorized into two subgroups namely
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Table 1 The demographic and clinical characteristics of the study participants

Parameters Kawasaki disease Controls (n=15)
Acute stage (n=18) Remission stage (n=9)

Age, year 3.1 (09-4.8) 2.7 (1.1-4.8) 3.0 (0.8-5.1)

Sex, Female/Male 8/10 3/6 7/8

WBC, 10°/L 156 (6.99-332) ™ 725 (5.71-10.82) 769 (5.1-9.83)

Neutrophils, 10°/L 1035 (1.2-30.8) ™* 3.18 (1.96-5.5) 282 (251-5.02)

Lymphocytes, 10/L 336 (1.3-89) 297 (1.87-391) 406 (1.03-53)

CRP, mg/L 49 (12.71-186)™* 11.5328-17.1) 7 1.7 (0.5-3.8)

ESR, mm/h 75 (12-110) 1 79 (15-99) ¥ 6 (2-19)

IgG, /L 6.485 (1.83-16.3) ND 593 (2.12-10.72)

IgA, g/L 083 (0.11-1.29) ND 092 (0.5-2.4)

IgM, g/L 1.045 (0.18-1.77) ND 1115 (0.2-1.63)

3, g/l 1.26 (0.72-2.07) 1.1 (0.63-1.98) 132 (0.63-18)

C4, g/l 0.275 (0.16-0.51) 026 (0.16-0.5) 0.235 (0.18-049)

Data are represented as median (range) or the number of cases

WBC white blood cell counts, CRP C-reactive protein, ESR erythrocyte sedimentation rate, /g immunoglobulin, C3 complement component 3, C4 complement

component 4, ND not determined
P <0.05 vs. the controls. ¥P < 0.05 vs. the remission stage

CD27 +IgD- (Switched memory, Sm) and CD27-IgD-
(Double negative, DN) B cells (Fig. 2a) [22, 23]. Both of
the two subsets were gated on the CD3-CD19 + CD20+ B
cells. Whether in the acute stage or remission stage, the
percentages of Sm B cells were significantly lower than
that in HCs (P =0.0045 and P =0.0006, respectively; Fig.
2b). By contrast, the variation of DN B cells in the acute
stage was not significant, whereas their level in remission
stage was significantly lower than that in HCs (P = 0.1804
and P =0.0089, respectively; Fig. 2c). Next, we examined
another subset namely CD27 +IgD + IgM+ (marginal
zone, MZ) B cells [27, 28]. MZ B cells were gated initially
on living lymphocytes, and then on CD3-IgM+ cells, and
finally on CD19 + CD20+ cells (Fig. 2d). The percentages
of MZ B cells in both the acute stage and remission stage
were significantly lower than that in HCs (P =0.0238 and
P =0.0007, respectively; Fig. 2e). Our results showed a
relatively low level of memory cells whether in the acute
stage or the remission stage.

The correlations among ASCs, memory B cells and
laboratory findings

With the purpose for further understanding the roles of
ASCs and memory B cells in KD, we analyzed their corre-
lations with laboratory findings including the values of
CRP and ESR, the levels of serum immunoglobulins (IgG,
IgA, IgM) and the levels of complement C3 and C4. The
percentage of ASCs shown a positive correlation with the
level of serum IgM (r=0.5258, P =0.0250, Fig. 3a). The
percentage of Sm B cells was positively correlated with the
levels of serum IgA and IgM (r=0.6512, P =0.0034, Fig.
3b; r=0.6889, P=0.0016, Fig. 3c; respectively). It is im-
pressive that MZ B cells shown diverse correlations with

both adaptive and innate immunity. First, the percentage
of MZ B cells was positively correlated with the level of
serum IgG, IgA and IgM (r=0.5728, P=0.0130, Fig. 3d;
r=0.5382, P=0.0212, Fig. 3e; r=0.7035, P=0.0011, Fig.
3f; respectively). Second, we also found their positive cor-
relations with the levels of complement C3 and C4 (r=
0.6436, P =0.0040, Fig. 3g; r = 0.5643, P =0.0147, Fig. 3h;
respectively), and their negative correlation with the value
of CRP (r=-0.6409, P=0.0042, Fig. 3i). Although the
percentages of IgG+ ASCs and CD138+ ASCs were also
increased in the acute stage, neither of them shown any
significant correlations with laboratory findings (shown in
Additional file 1: Figure S1). Due to the opposite variation
trend between ASCs and memory B cells, we subsequently
explored the correlations among subsets of ASCs and sub-
sets of memory B cells. We did not find any significant
correlations among them (Fig. 4a-i). Thus, ASCs and
memory B cells maybe affect the development of KD in
distinct ways. Besides, there is no absolute connection be-
tween the reduction of memory B cells and the elevation
of ASCs.

Variations of ASCs and memory B cells after IVIG
administration

To present a more integrated status of humoral immunity
during the course of KD, we investigated the variations of
ASCs and memory B cells in the same individual at differ-
ent stages. Among patients, we found heterogeneous vari-
ations in ASCs and CD138+ ASCs cells (P=0.2500,
Fig. 5a; P =0.5938, Fig. 5b; respectively), as well as in Sm
and DN B cells (P =0.9102, Fig. 5¢; P = 0.2500, Fig. 5d; re-
spectively). By contrast, the percentage of IgG+ ASCs and
the percentage of MZ B cells were significantly reduced in
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remission stage (P = 0.0039, Fig. 5e; P =0.0273, Fig. 5f; re-
spectively). It is of note that the percentage of MZ B cells,
which has reduced in the acute stage, further decreased in
the remission stage. Collectively, no matter it is on the
overall or individual perspective, it can be concluded that
the dysregulated humoral immunity might not be entirely
restored in the remission stage.

Discussion

Based on our observations, it can be concluded that ASCs
were involved in the acute stage of KD. In this stage, we
found a significantly increased percentage of ASCs. ASCs
could be anti-inflammatory via the secretion of immuno-
globulins, alternatively through the production of IL-10
[29]. So next, we investigated the correlations between the
percentage of ASCs and laboratory findings including the
levels of serum immunoglobulins and the inflammatory
indicators. The percentage of ASCs positively correlated

with the level of serum IgM, but not IgG or IgA, indicat-
ing that the ASCs played their roles in the acute stage of
KD predominantly through secreting IgM. However, indi-
viduals with a higher percentage of ASCs did not show
relatively lower levels of inflammatory indicators, suggest-
ing that their anti-inflammatory role in the acute stage of
KD was likely to be less satisfactory. Hence, it might be
reasonable to speculate that these increased ASCs in the
acute stage of KD developed from extrafollicular B cells
[19, 30]. The increased percentage of ASCs may be as a
result of the elevation of stimulative factors. One of the
advantages for the differentiation of B cells into ASCs may
be the elevation of B-cell-activating factor (BAFF), which
can effectively promote the proliferation, differentiation,
and survival of B cells [31]. Another superiority for ASCs
is the increased levels of cytokines, such as IL-6, IL-17
and IL-21 [13, 32, 33]. Furthermore, increased expression
of CD138 is capable of promoting the maturation,
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accumulation and particularly, survival of ASCs upon IL-6
signaling [34]. Therefore, elevated BAFF and CD138 in
concert with those increased cytokines can directly en-
hance the differentiation of B cells into ASCs. Meanwhile,
the expression of IgG in the cytoplasm was enhanced. In
contrast to our results, Shingadia et al. have reported a
decreased absolute number of cytoplastic IgG+ plasma
cells [11]. The precise reason causing the contrary results
is unclear. Perhaps, it is due to the difference of the defin-
ition of the ASCs. Recent research found that CD19 nega-
tive ASCs would emerge in circulation at the early stage
plasmablasts to plasma cell transition [35]. Hence, the cat-
egory of ASCs based on CD19 expression might leave out
a part of B cell capable of producing antibodies. The en-
hanced expression of cytoplasmic IgG positive plasmablasts
was demonstrated in ulcerative colitis likewise [36]. Their
results also found positive correlations between the level of
IgG+ plasmablasts and indicators of disease activity,
thereby suggesting this subset could be pro-inflammatory
in the pathogenesis of ulcerative colitis. In KD, the overall
levels of both cytoplasmic IgG and inflammatory indicators

were increased, apparently insisting the pro-inflammatory
role of IgG+ ASCs. However, our data did not find any sig-
nificant positive correlations between IgG+ ASCs and in-
flammatory indicators including CRP, ESR. Additionally,
although the percentage of IgG+ ASCs in the acute stage
was significantly increased, it was not correlated with the
level of serum IgG, and the median level of serum IgG in
KD patients was equivalent to that in HCs, suggesting the
increased cytoplasmic IgG was not completely excreted. In-
deed, it was reported that cytoplasmic IgG was likely to be
beneficial for the elimination of kinds of intracellular virus,
which were indicated as pathogenic candidate agents in
KD, possibly via intracellular antibody-mediated degrad-
ation [37-39]. Thus, we hypothesize that the roles of cyto-
plasmic IgG in KD are heterogeneous and may be related
to the kind of invading pathogen.

The precise mechanism of IVIG in the treatment of KD
remains unknown. Potential mechanisms of action include
the neutralization of toxin, modulation of the activity of
monocyte/macrophage and neutrophils, provision of anti-
idiotypic IgG, regulation of T cell differentiation and
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cytokine release [40]. To date, the study regarding the ac-
tion of IVIG on B cells in KD was limited. A previous
study found a significant decrease in B cells after IVIG
treatment, suggesting that IVIG could restore B-cell ab-
normalities [41]. In the present study, we found the per-
centage of IgG+ ASCs, which was increased in the acute
stage, was significantly reduced after IVIG administration.
The results provided strong evidence demonstrating the
involvement of IgG+ ASCs in KD inflammation and im-
plied a regulatory effect of IVIG on IgG+ ASCs. The de-
crease of IgG in ASCs cytoplasm may be as a result of the
increased level of serum IgG caused by the application of
high dose IVIG, which contributes to the neutralization of
toxin and antigens, and thereby negatively regulates the
synthesis of cytoplasmic IgG. Those cell-penetrating in-
gredient antibodies in IVIG may be responsible for the in-
hibition of cell activation and the clearance of intracellular
pathogens [42]. It also could be associated with the pres-
ence of anti-BAFF antibodies in IVIG preparation and the
triggering of Fas apoptotic pathway by IVIG [43]. More-
over, it was shown that IVIG promoted the expression of
Fc-gamma Receptor (FcyR)-IIB on B cells, which could
bind to the Fc segment of IgG and subsequently induced
inhibitory signal [44]. Thus, these mechanisms would
eventually attenuate the activities of IgG+ ASCs and en-
hance their sensitivity to apoptosis. Importantly, our data
did not find a definitely inhibitory effect of IVIG on ASCs
or CD138+ ASCs, because they presented a heteroge-
neous variation after IVIG administration. Accordingly,
the action of IVIG on ASCs should include other regula-
tory mechanisms. It was reported that the expression of A
Proliferation-inducing Ligand (APRIL), which is advanta-
geous for development and survival of B cells, was in-
creased after IVIG administration, opposing to the
variation of BAFF [31]. In addition, in vitro study on the

patients with SLE found increased plasma cell differenti-
ation in the presence of IVIG [45]. Consequently, the spe-
cific role of IVIG in regulating ASCs remains to be further
elucidated. Another valuable matter was that in compari-
son with other ASCs, the overall level of CD138+ ASCs in
remission was higher, despite not significantly, than that
in acute, suggesting their distinct role in the remission
stage of KD. The latest researches demonstrated that
CD138+ plasma cells in bone marrow were inclusive of a
group of long-lived plasma cells, which present a memory
nature through persistent secretion of specific antibodies
even though the patients had not exposed to the patho-
gens for decades [46—48]. Hence, it can be speculated that
those increased CD138+ ASCs may be an explanation for
the low recurrent rate of KD, as well as for the self-
antibodies lasting for years [49].

Besides ASCs, memory B cells were also believed to be
essential for maintaining humoral immunity. In the
acute stage, the percentage of DN B cells was lower, but
not significantly, than that in HCs. By contrast, the per-
centages of Sm and MZ B cells were significantly de-
creased. The data demonstrated that the patients with
KD underwent profound variations and imbalances of
memory B-cell subsets. Intriguingly, the variation of
memory B cells was contrary to the variation of ASCs;
however, there were no definite correlations among the
subsets of memory B cells and ASCs. Thus, it may be
hard to decide whether the reduction in memory B cells
is simply due to their switching into ASCs. Among
others, MZ B cells shown correlations with multiple la-
boratory findings, suggesting that MZ B cells contrib-
uted to both innate and adaptive responses, more likely,
to the alleviation of inflammation via positive effects on
immunoglobulins secretion and complements activation.
A systemic review of the distinct features of MZ B cells
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insisted on their importance in inflammation [50]. When
patients entered into remission, the overall levels of
memory B cells were significantly lower than those in
HC. It seemed that suppressed memory response was
throughout the course of KD and IVIG failed to modu-
late the memory immunity. However, it may be partial
to draw this conclusion only upon the analysis of circu-
lating memory B cells because in some conditions,
memory B cells are abundant in the spleen [51, 52] or
the mucosa [53]. Therefore, in order to present a more
integrated memory immunity, it may be necessary to
investigate the status of memory B cells in the organ
or tissue.

In our current study, we described a general picture of
the status of ASCs and memory B cells during the course
of KD. However, we also realized the limitations of our
study. First, it may be worthy of analyzing the function of
ASCs, particularly IgG+ ASCs, as well as those long-lived
ASCs in bone marrow, if accessible. Second, investigation
on the memory response in such as spleen and mucosa
lymphoid tissue may be necessary. Third, the sample size
in the remission stage should be enlarged. We will focus
on these issues in subsequent studies.

Conclusions

Our data directly demonstrated the involvement of
ASCs in KD. Among the subsets, the significant expan-
sion of IgG+ ASCs in the acute stage indicated their im-
portance in KD inflammation. Besides, IgG+ ASCs
reduced consistently after IVIG administration, suggest-
ing that IVIG played a role in inhibiting the expression
of cytoplasmic IgG, which might be one of the mecha-
nisms of action of IVIG in treatment of KD. We also
firstly described memory B cells in this disease, the level
of which was relatively low in both acute and remission
stages. Our study would be beneficial for the further un-
derstanding of the pathogenesis of KD.

Additional file

Additional file 1: Figure S1. Correlation analysis. (A) Correlations
between the percentage of IgG+ ASCs and laboratory findings including
CRP, ESR, immunoglobulins, and complement C3 and C4. (B) Correlations
between the percentage of CD138+ ASCs and those laboratory findings.
(PDF 69 kb)
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