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Abstract 

Background: Considering the molecular heterogeneity of sarcomas and their immunologically quiet character, 
immunotherapy (e.g., immune checkpoint inhibitors) plays a viable role in only a subset of these tumors. This study 
aimed to determine the immune subtypes (IMSs) of sarcomas for selecting suitable patients from an extremely het-
erogeneous population.

Results: By performing consensus clustering analysis of the gene expression profiles of 538 patients with sarcomas in 
online databases, we stratified sarcomas into three IMSs characterized by different immune cell features, tumor muta-
tional burdens (TMBs), gene mutations, and clinical outcomes. IMS1 showed an immune “hot” and immunosuppres-
sive phenotype, the highest frequencies of CSMD3 mutation but the lowest frequencies of HMCN1 and LAMA2 muta-
tions; these patients had the worst progression-free survival (PFS). IMS2 was defined by a high TMB and more gene 
mutations, but had the lowest frequency of MND1 mutations. IMS3 displayed the highest MDN1 expression level and 
an immune “cold” phenotype, these patients had the worst PFS. Each subtype was associated with different expres-
sion levels of immunogenic cell death modulators and immune checkpoints. Moreover, we applied graph learning-
based dimensionality reduction to the immune landscape and identified significant intra-cluster heterogeneity within 
each IMS. Finally, we developed and validated an immune gene signature with good prognostic performance.

Conclusions: Our results provide a conceptual framework for understanding the immunological heterogeneity of 
sarcomas. The identification of immune-related subtypes may facilitate optimal selection of sarcoma patients who will 
respond to appropriate therapeutic strategies.
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Background
Sarcomas, which account for less than 1% of primary 
malignancies, comprise a heterogeneous group of tumors 
derived from mesenchymal tissues. Sarcomas can be 

further divided into more than 100 subtypes, as defined 
by the World Health Organization based on distinct 
morphological and genetic changes [1]. Although most 
sarcomas are detected as local tumors and treated with 
surgery and radiation, the heterogeneity of their cel-
lular composition results in a complicated prognosis. 
Indeed, different histologic types have different presen-
tations, behaviors, and outcomes, with 50% being fully 
malignant and often metastatic and 50% being locally 
aggressive with some but limited metastatic potential [2]. 
According to European Society for Medical Oncology 
(ESMO) and National Comprehensive Cancer Network 
(NCCN) guidelines, chemotherapy is the cornerstone of 
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traditional treatment for advanced and metastatic sar-
coma [3–6]. However, even front-line chemotherapy is 
associated with limited objective response rates (ORRs, 
averaging ~ 18%) [7, 8]. Given that an increased cure rate 
due to specific systemic therapies have been achieved for 
only a few sarcoma subtypes [9, 10], effective systemic 
treatment for advanced sarcoma is still an unmet need.

Considering the rapid advancements and remarkable 
survival benefits in patients with various tumors, immu-
notherapy is now considered to be the fifth pillar of anti-
tumor therapy, after surgery, chemotherapy, radiation 
and targeted therapy [11, 12]. Although sarcomas are 
generally considered immune “cold” tumors, with a low 
level of immune infiltration, numerous attempts have 
been made to use immunotherapy to treat sarcomas [13–
15]. Nevertheless, immunotherapy is only a viable treat-
ment approach for certain subsets of sarcomas. A recent 
systematic review and meta-analysis reported that treat-
ment with immune checkpoint inhibitors (ICIs) led to 
significantly higher response rates in classic Kaposi sar-
coma (CKS), alveolar soft part sarcoma (ASPS) and undif-
ferentiated pleomorphic sarcoma (UPS). Conversely, 
low or no response has been found for gastrointestinal 
stromal tumors (GISTs), desmoplastic small round cell 
tumors (DSRCTs), endometrial stromal sarcomas, epi-
thelioid hemangioendotheliomas, malignant peripheral 
nerve sheath tumors (MPNSTs), myxoid liposarcomas 
(MLPSs) and spindle cell sarcomas. Therefore, the clini-
cal activity of ICIs in sarcomas is highly variable [16]. 
Overall, the positive response of a substantial propor-
tion of sarcoma patients to immunotherapy suggests that 
more efforts should be made to determine which patients 
are most likely to respond. Manipulation of immune 
regulatory pathways has been proven to be effective in 
different subsets of sarcomas with paradigmatic immune-
sensitive/“hot” tumors, which harbor high levels of tumor 
mutational burden (TMB),  CD8+ lymphocytes and pro-
grammed death-ligand 1 (PD-L1) expression [17–19] 
and are thus sensitive to ICIs. Scientists have also applied 
various approaches, such as messenger RNA vaccines, 
to reprogram the tumor microenvironment to increase 
immune-mediated responses, aiming to switch “cold” 
tumors to “hot” tumors [20]. Attempts to manipulate the 
microenvironment of sarcomas are also underway. Sarco-
mas are traditionally considered immunologically quiet 
tumors because of the low immunosuppressive tumor 
environment (TME) and TMB (< 10 mutations/Mb) in 
the majority of cases [17], with dMMR/MSI-H only found 
in 0–4% of sarcomas [21]. Interestingly, there is evidence 
that antigen presentation in sarcomas can be altered. For 
example, destruction of tumor cells by local injection of 
oncolytic viruses promotes release of tumor-associated 
antigens (TAAs) that prime the immune system, thereby 

promoting a more effective systemic antitumor immune 
response in locally advanced or metastatic sarcoma [22]. 
Several recent clinical studies have provided solid evi-
dence that the ORR can be improved by enhancing anti-
tumor immunity with combination approaches such as 
ICIs together with radiotherapy or systemic therapy [23]. 
Given the TME of sarcoma, most histological subtypes 
may require a multipronged approach to manipulate the 
microenvironment and thus induce effective antitumor 
immunity. Regardless, which kind of TME in sarcoma 
accounts for the response rate to immunosuppressant’s 
remains largely unknown.

Genetically, human sarcomas are classified based on 
the abnormalities that drive their pathogenesis, and sar-
comas can be categorized into two main groups: (1) sar-
comas with simple and specific chromosomal changes 
(often translocations) and a low mutational burden and 
(2) karyotypically complex sarcomas with numerous copy 
number aberrations and a moderate mutational burden 
[24]. Among these copy number-driven tumors, UPS, 
dedifferentiated liposarcoma (DDLPS) and—to a lesser 
extent—leiomyosarcoma (LMS) can exhibit durable 
responses to immune checkpoint inhibitors, possibly due 
to heterogeneity within the tumors [25, 26]. However, 
translocation-associated subtypes, synovial sarcoma (SS), 
and MLPS tend to show mixed results [24]. The biological 
features of these two groups have suggested the possibil-
ity of distinct immune subtypes that cause differences in 
overall clinical outcomes. It should be noted that the cat-
egory is broadly based on location and morphology and 
does not reflect the immune microenvironment of a par-
ticular sarcoma and therefore does not provide molecular 
evidence for which specific types of sarcomas may benefit 
from immunotherapy.

Here, we present a multicohort retrospective study 
and classify sarcomas into three distinct immune sub-
types (IMSs) based on consensus clustering of immune-
related gene expression profiles. We further demonstrate 
the stability and reproducibility of this classification in an 
independent cohort. Each of the three immune subtypes 
was found to be associated with distinct molecular and 
cellular features and clinical outcomes. Identification of 
immune-related subtypes may facilitate optimal selec-
tion of sarcoma patients responsive to immunotherapy. 
Finally, we identified six immune gene modules and 
selected five genes from the most prognosis-related mod-
ule to develop and validate an individualized gene set-
based prognostic signature for sarcoma.

Results
Immune subtypes in sarcoma
By performing consensus clustering for 251 sarcoma 
samples using the gene expression profile of 1914 
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annotated immune-related genes (IRGs) extracted from 
The Cancer Genome Atlas (TCGA ), we identified three 
robust IMSs in the SARC cohort from the database 
(Fig.  1A, Additional file  1: Fig. S1). Of these identified 
ISs, IMS3 was associated with the best progression-free 
survival (PFS), whereas IMS1 was associated with the 
worst (Fig. 1B). In addition, we observed significant dif-
ferences in the distribution of sex and histological sub-
type among the three IMSs. For example, male patients 
were preferentially in IMS1 and female patients in IMS3, 
and most LMSs and SSs were in IMS3 (Fig. 1C, D). We 
then assessed the reproducibility of the immune sub-
types in the GSE21050 cohort to validate our findings in 
the SARC cohort from TCGA . Samples in the GSE21050 
cohort were also assigned to three IMSs according to 
the same method. The obtained IMSs for the GSE21050 
cohort displayed similar survival patterns (Fig. 1E), with 
significant differences in the distribution of histology 
among them (Fig.  1F). Nevertheless, the same IMS dis-
played the opposite distribution between DDLPS and 
LMS in the cohorts TCGA  and GSE21050, indicating 
significant heterogeneity in these tumor types (Fig. 1G). 
Furthermore, we analyzed the relationship between IMSs 
and Complexity Index in SARComa (CINSARC) sub-
types proposed by Frédéric Chibon and colleagues, which 
stratifies sarcoma prognosis into two subtypes (“low-risk, 
C1” and “high-risk, C2”) by using a 67-gene expression 
signature [27]. Consistent with the prognostic difference 
among the IMSs, the GSE21050 cohort results showed 
that IMS1 was strongly related to the high-risk C2 sub-
type and that IMS3 was associated with the low-risk C1 
subtype (Fig. 1H). These data suggest that sarcoma can be 
classified into three IMSs with distinct characteristics.

The relationship between IMS and TMB and common gene 
mutations
The TMB in the IMS2 group was significantly higher than 
that in the IMS3 group, whereas no significant difference 
was observed between IMS1 and IMS2 or between IMS1 
and IMS3 (Fig. 2A). In addition, we counted the number 
of gene mutations in samples within each subtype and 
observed 549 genes with mutation frequency > 3 in all 
subtypes (Additional file  5: Table  S2), and we identified 
86 genes with significantly high mutation frequency in 
each subtype by using the chi-square test (P < 0.05, Addi-
tional file 6: Table S3). The number of gene mutations in 

the IMS2 group was significantly higher than that in the 
IMS3 group (Fig.  2B). The top 10 mutation characteris-
tics with the highest mutation frequency in each subtype 
are shown in Fig.  2C. The proportion of CSMD3 muta-
tions in the IMS1 group was significantly higher than 
that in the IMS2 and IMS3 groups, whereas the propor-
tion of HMCN1 and LAMA2 mutations in the IMS1 
group was significantly lower than that in the IMS2 
and IMS3 groups; IMS2 had the highest proportion of 
HMCN1 mutation; and the proportion of MDN1 muta-
tions in the IMS3 group was significantly higher than 
that in the IMS1 and IMS1 groups (Fig.  2C, Additional 
file 6: Table S3). The three IMSs showed different profile 
on gene amplification and deletion that GUSBP1 ampli-
fication was most common in IMS1 and IMS3, SLC35E3 
amplification was most common in IMS2. Overall, IMS2 
harbored the highest frequency of gene amplification and 
deletion (Fig. 2C). These data suggest that sarcoma sam-
ples in each IMS have distinct TMB and gene mutation 
characteristics.

Expression of classic chemotherapy‑induced immune 
response‑related markers and immune checkpoint genes 
in each IMS
There were 21 chemotherapy-induced immune response-
related classic genes expressed in the SARC cohort from 
TCGA . Among them, 17 (81%) genes showed significant 
differences between each subtype (Fig.  3A). In total, 26 
genes were expressed in the GSE21050 cohort, with 14 
showing significant differences between each subtype 
(Fig. 3B). The expression tendency of HMGB1, TLR3 and 
EIF2AK2 among the three IMSs was consistent between 
the cohorts TCGA -SARC and GSE21050, and all of them 
showed higher levels in IMS3 than in IMS1 and IMS2. 
Regarding the expression profile of 47 immune check-
point-related genes, 41 (87.2%) genes showed significant 
differences among the three IMSs in the SARC cohort 
from TCGA  (Fig.  3C); 23 of 45 immune checkpoint-
related genes that could be detected in the GSE21050 
cohort showed significant differences among the three 
IMSs (Fig.  3D). Of them, 21 genes displayed significant 
differences in both cohorts. Although their differences 
exhibited heterogeneity, IMS1 showed the lowest expres-
sion of IDO1, TNFRSF14 and TNFRSF25, IMS2 had the 
highest level of CD48, and IMS3 had the highest level of 
TNFSF9 in both cohorts (Fig. 3).

(See figure on next page.)
Fig. 1 Identification of potential immune subtypes of sarcoma. A Sample clustering heatmap of the 251 samples in the cohort from TCGA . 
B Sample clustering heatmap of the 287 samples in the cohort from GEO. C Kaplan–Meier curves with log-rank test showing the PFS of the sarcoma 
IMS in TCGA . D, E Distribution of IMS1-IMS3 across sarcoma (D) sex and (E) histological subtypes in TCGA . *P < 0.05. F Kaplan–Meier curves with 
log-rank test showing the PFS of sarcoma IMS in GSE21050. G, H Distribution ratio of IMS1-IMS3 across sarcoma (G) histological subtypes and (H) 
CINSARC subtypes in GSE21050. *P < 0.05. NA corresponds to data for which the chi-square test cannot be applied, such as a group of samples is 
0. DDLPS, dedifferentiated liposarcoma; DT, desmoid tumor; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MPNST, malignant peripheral nerve 
sheath tumor; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma
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Expression of tumor biomarkers in each IMS
We extracted the expression profiles of four sarcoma-
related tumor biomarkers, MDM2, CDK4, CD34, and 
TLE1, from the cohorts TCGA -SARC and GSE21050 
and analyzed their expression profile in each IMS. 
CDK4, CD34, and TLE1 were significantly different 
among the three IMSs in the two cohorts, but only 
TLE1 showed consistent expression differences: its 
expression level in IMS3 was significantly higher than 
that in IMS1 and IMS2 (P < 0.0001, P < 0.05, respec-
tively; Fig. 4). In addition, the CD34 expression level in 
IMS2 was significantly higher than that in IMS1 in both 
cohorts (both P < 0.05; Fig.  4). These results suggest a 
limited prediction accuracy of tumor biomarkers for 
sarcoma immunotype.

Immune characteristics of IMSs
The immune characteristics of the IMSs in sarcoma 
could be represented by the distribution of 28 immune 
cell components (Fig. 5A–D). In the SARC cohort from 
TCGA , these immune cells were mainly divided into four 
immune categories (Fig. 5A). We also found the distribu-
tion of most of these immune cell components to differ 
among the three IMSs. For example, memory B cells, 
CD56dim natural killer cells and type 17T helper cells 
were significantly higher in IMS1 than in IMS3 (Fig. 5B), 
and this tendency also existed in the GSE21050 cohort 
(Fig.  5C, D), which suggests that the poor prognosis of 
IMS1 sarcoma may be related to activation of these cell 
types. We further compared the present results of IMSs 
with the previous six immune subtypes defined by TCGA  
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pancancer study [28] and discovered that the identified 
IMS1 subtype mainly exhibited tendencies toward the C1, 
C4, and C6 subtypes; whereas the percentage of C6 sub-
types in IMS3 was lowest among all six clusters (Fig. 5E). 
When assessing the correlation between IMS and 56 pre-
viously defined immune molecular characteristics [28], 
we identified the 18 most significant immune-related 

features using a false discovery rate (FDR) < 0.01 (Fig. 5F). 
Notably, IMS1 showed the highest macrophage infiltra-
tion among the three IMSs. However, the percentage of 
protumor M2 macrophages tended to be highest in IMS1 
compared with the other two IMSs. Additionally, IMS1 
showed the highest transforming growth factor beta 
(TGF-β) response score (Fig.  5F). IMS3 tumors tended 
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Fig. 3 Association between immune subtypes and chemotherapy-induced immune response-related classic markers and immune checkpoint 
genes. A, B Differential expression of immune subtypes and classic chemotherapy-induced immune response-related markers among the sarcoma 
immune subtypes in the cohorts from TCGA  (A) and GSE21050 (B). C, D Differential expression of immune checkpoint-related genes among the 
sarcoma immune subtypes in TCGA  (C) and GSE21050 (D). The top and bottom of the box are the upper quartile (Q3) and the lower quartile (Q1) of 
the data, respectively. The solid line in the box represents the median. The whiskers represent the maximum and minimum values of this group of 
data. The Kruskal–Wallis test was used to assess significant differences. ns, not significant, *P < 0.01, **P < 0.001, ***P < 0.0001, and ****P < 0.00001

Fig. 4 Association between immune subtypes and sarcoma-related tumor biomarkers. A, B MDM2, CDK4, CD34, and TLE1 expression in sarcoma 
immune subtypes in TCGA  (A) and GSE21050 (B) cohorts. The solid black line in the box represents the median, and the black box in the violin plot 
represents the quartile range. The dots show the distribution of each sample, and the black vertical line running through the violin chart represents 
the interval from the minimum value to the maximum value. The Kruskal–Wallis test and Wilcox test were used to assess significant differences 
among the three groups and pairwise comparisons between groups, respectively. ns, not significant, *P < 0.01, **P < 0.001, ***P < 0.0001, and 
****P < 0.00001

(See figure on next page.)
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to have higher levels of resting mast cells and mast cells 
than IMS1 and IMS2 tumors, yet IMS2 had the highest 
interferon-gamma (IFN-γ) response among the three 
IMSs. These results suggest that immune subtypes reflect 
the immune status of sarcoma.

Immune landscape of sarcoma
Next, we gained insight into immune features in sar-
comas by performing dimension reduction based on a 
graph-based learning approach. According to the results, 
all individual patients in the SARC cohort from TCGA  
were grouped into a manifold with sparse tree struc-
tures that defined the immune landscape of sarcoma 
(Fig.  6A). The location of individual patients in the five 
tree structures signified the comprehensive charac-
terization of the tumor immune microenvironment in 
each distinct immune subtype. In fact, the horizontal 
coordinate (defined as principal component 1, PCA1) 
correlated highly with multiple immune cell modules, 
including MDSCs, regulatory T cells, type 1T helper 
cells, effector  CD8+ T cells, T follicular helper cells, 
activated  CD8+ T cells, activated dendritic cells, central 
memory  CD4+ T cells, macrophages, and natural killer 
cells (r > 0.80), though the ordinate (defined as PCA2) 
was most relevant to macrophages and central memory 
 CD8+ T cells (Fig. 6B). The integral distribution of each 
IMS was opposite to each other (Fig.  6A). Interestingly, 
we found that samples in IMS1 were distributed at the 
two horizontal opposite ends of the immune landscape; 
the same subtype also displayed an opposite distribution 
in IMS2 and IMS3, which suggests significant intracluster 
heterogeneity in IMS1. Consistently, we further divided 
IMS1 and IMS3 into three subtypes and IMS2 into two 
subtypes based on the location of immune cell popula-
tions (Fig.  6C); these subtypes showed different enrich-
ment scores of immune cell characteristics (Fig. 6D). For 
example, IMS1A showed the lowest counts of B-cell and 
 CD8+ T-cell proportions, regulatory T cells and MDSCs; 
IMS2B scored lower in terms of activated and immature 
B cells and activated  CD4+ T cells, and IMS3B showed 
the highest counts of B-cell,  CD4+ and  CD8+ T-cell pro-
portions (Fig. 6D).

Notably, IMS1A showed the lowest leukocyte and stro-
mal fraction, macrophage regulation and lymphocyte 

infiltration signature score, and Th1 cell percentage 
among the three IMS1 subgroups. Although IMS1B had 
the highest macrophages regulation score, the percent-
age of protumor M2 macrophages tended to be highest 
in IMS1C compared with the other two IMS1 subgroups; 
and IMS1C had the highest wound healing score among 
the three subcategories of IMS1 (Additional file  2: Fig. 
S2A). Additionally, IMS2A showed higher  CD8+ T 
cell percentage, while IMS2B showed the higher mac-
rophages and macrophages M2 score (Additional file  2: 
Fig. S2B). Similar to IMS1A, IMS3A also showed the low-
est leukocyte and stromal fraction, macrophage regula-
tion and lymphocyte infiltration signature score, and Th1 
cell percentage among the three IMS3 subgroups; IMS3B 
had the highest macrophages regulation score and 
tumor-suppressive M1 macrophages (Additional file  2: 
Fig. S2C).

Moreover, given that tumors under specific spatiotem-
poral conditions may have different prognostic character-
istics, we performed prognostic comparison on samples 
in different distributional positions of the landscape and 
obtained 7 subgroups with different survival probabili-
ties. Patients in IMS1A had the worst survival probability 
(Fig.  6E, F). Taken together, the immune landscape can 
be used to define the immune components of each sar-
coma patient and predict their prognosis. Moreover, the 
immune landscape may help in selecting targeted regi-
mens for different subtypes of patients and even facilitat-
ing selection of individualized therapeutic regimens for 
mRNA vaccines.

Identification of immune gene coexpression modules 
and prognostic immune hub genes of sarcoma
We clustered the 251 samples in the dataset from TCGA  
based on expression of 1914 immune-related genes 
(Additional file  3: Fig. S3A) and screened the coexpres-
sion gene module by setting the soft thresholding power 
to 3 (Additional file 3: Fig. S3B). To ensure that the coex-
pression network is a scale-free network, coexpression 
modules were screened by setting soft threshold power 
β to 10 (Additional file  3: Fig. S3C). A total of 7 coex-
pression modules (gray modules represent gene sets that 
could not be merged) were obtained after module fusion 
(Fig.  7A, B, Additional file  7: Table  S4); among them, 

(See figure on next page.)
Fig. 5 Cellular and molecular characteristics of immune subtypes. A, C Heatmap for the estimated enrichment scores of 28 immune cell signatures 
among sarcoma immune subtypes in TCGA  (A) and GSE21050 (C) cohorts. Memory B cells, CD56dim natural killer cells and type 17T helper cells 
are highlighted in red. B, D Differential enrichment scores of memory B cells, CD56dim natural killer cells and type 17T helper cells in TCGA  (B) and 
GSE21050 (D). E Distribution of sarcoma immune subtypes among 6 TCGA  pancancer immune subtypes. IMS1 was mainly associated with to the C1 
subtype, and the C2 subtype was mainly distributed within IMS2; the percentages of C3 and C4 subtypes in IMS3 were higher than those in IMS1 
and IMS2. The percentage of the C6 subtype in IMS3 was lower than those in IMS1 and IMS2. **P < 0.01. F The estimated proportion of 18 significant 
immune-related features among immune subtypes with FDR < 0.01. The top and bottom of the box are the upper quartile (Q3) and the lower 
quartile (Q1) of the data, respectively. The solid black line in the box represents the median. The whiskers represent the maximum and minimum 
values of this group of data. The Kruskal–Wallis test was used to assess significant differences. **P < 0.001, *** P < 0.0001, and **** P < 0.00001
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the turquoise modules had the highest number of genes 
(Fig. 7B). We further evaluated the distribution of the fea-
ture vectors of these 6 modules in each IMS and detected 

significantly different distributions in the 6 modules. 
The eigengenes of IMS1 in the yellow and blue modules 
were significantly lower than those of IMS3, whereas 
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the eigengenes of IMS1 in the turquoise, green and red 
modules were significantly higher than those of IMS3 
(Fig. 7C).

In survival analysis, we found that the blue and red gene 
modules correlated significantly with the prognosis of 
sarcoma in the dataset from TCGA  (Fig. 7D). A low score 
in the blue module indicated a good prognosis, whereas 
a high score in the red module indicated a poor progno-
sis. Functional enrichment analysis of the blue and red 
modules showed that the blue module correlated with 
immune processes such as T-cell activation, regulation of 
leukocyte activation, and regulation of lymphocyte acti-
vation. (Fig. 7E) and that the red module correlated with 
the function of nonimmune cells, such as extracellular 
matrix organization and structure organization (Fig. 7F). 
The blue module correlated highly negatively with PC1 
in the immune landscape (Fig. 7G); the red module cor-
related slightly negatively with PC1 in the immune land-
scape (Fig. 7H). Then, we extracted genes correlating with 
the module feature vector (coefficient greater than 0.75) 
in the blue module from the SARC dataset from TCGA . 
By univariate Cox proportional hazard regression analy-
sis, six genes (C16orf54, CCR8, CXCR3, CYTIP, SAMD3 
and TBX21) were found to be significantly associated 
with patient PFS (P < 0.05) (Additional file  8: Table  S5). 
Furthermore, we performed stepwise regression analysis 
by using the stepAIC method in the MASS package based 
on the AIC Akaike information criterion and reduced 
the six genes to five (C16orf54, CCR8, CYTIP, SAMD3 
and TBX21). Thus, we obtained a five-gene prognostic 
signature by multivariate survival analysis, and the for-
mula was as follows: RiskScore = − 0.4270407 × expres-
sion C16orf54 + 0.4710490 × expression CCR8 + 0.3464125 
× expression CYTIP + 0.4734728 × expression 
SAMD3 − 0.5144081 × expression TBX21.

We calculated the risk score of each sample and calcu-
lated the Z score for the risk score. After Z score trans-
formation, samples with risk scores greater than zero 
were classified into a high-risk group (n = 119) and, 
samples less than zero into a low-risk group (n = 130). 
Kaplan–Meier curves showed an extremely significant 
difference between the two groups in TCGA  dataset 
(P < 0.0001, Fig. 7I), and a consistent tendency was found 
in the GSE21050 dataset (P = 0.015, Fig. 7J). We selected 

these five genes as the final module feature genes; these 
hub genes can act as biomarkers for screening high-risk 
SARC populations and for identifying suitable popula-
tions for immunotherapy.

Discussion
Sarcomas are very heterogeneous tumors, with more 
than 100 histologic subtypes characterized by the evolv-
ing recognition of distinct morphological and genetic 
features [1]. It is reported that the incidence of sar-
coma has been increasing over time, but the efficacy of 
current systemic treatment options is limited [29, 30]. 
Nearly 40–50% of patients develop locally recurrent 
or metastatic disease within 5  years, and the median 
5-years survival rate of patients with metastatic disease 
has remained low [31, 32]. It is thus critical to investi-
gate novel therapeutic targets to apply new treatments 
with improved clinical efficacy. Immunomodulation 
in different forms, such as checkpoint blockers, tumor 
vaccines, and CAR-T cells, has become an area of inter-
est for many tumors, and sarcoma is no exception [23]. 
However, sarcomas are thought to be “cold” tumors that 
show initial resistance to ICIs due to the lack or paucity 
of tumor T-cell infiltration [23]. Furthermore, sarcomas 
tend to show frequent overexpression of major suppres-
sive cytokines such as vascular endothelial growth factor 
(VEGF) [33] or TGF-β1 [34], constituting hostile TME 
resistance to immune therapies. Due to the vast molecu-
lar heterogeneity of sarcomas and their immunologically 
quiet character, early studies based on clinical practice or 
ongoing trials with immunotherapies have shown lim-
ited effectiveness in of sarcoma treatment [13, 14, 25]. 
In general, sarcomas are not sufficiently immunogenic 
to trigger or sustain an immune response to generate 
tumor-specific immune effector cells. However, recently 
emerging evidence of ICI-based clinical trials is shedding 
new light on immunotherapies for sarcoma. For example, 
the SARC 028 trial in advanced sarcoma (NCT02301039) 
suggests that a B-cell rich feature and the presence of ter-
tiary lymphoid structures are the TME basis for response 
to pembrolizumab in patients with UPS [35]. Patients 
who respond to ICIs had significantly higher infiltra-
tion of T-cells (CD8+, CD3+, PD-1+) and an increased 

Fig. 6 Immune landscape of sarcoma. A Immune landscape of sarcoma. Each point represents a patient, and the immune subtypes are 
color-coded. The horizontal axis represents the first principal component (PC1), and the vertical axis represents the second principal component 
(PC2). B Heatmap for the estimated enrichment scores of 28 immune cell signatures in two principal components. The lower part of each cell 
represents the R value of the correlation, the upper part represents the P value of the correlation, and significant cells have a significant mark 
(asterisk). Positive and negative correlations are located to the left and right of the 0 axis, respectively. For the P value, the median value of the 
division is 1.3 (i.e., − log10(0.05)). If the P value < 0.05, the corresponding color gradient is purple, and the green gradient represents a P value > 0.05. 
C Immune landscape of the subsets of each sarcoma immune subtype. D The estimated enrichment scores of 28 immune cell signatures in the 
above subsets. E Immune landscape of samples from three extreme locations and their prognostic status. F Kaplan–Meier curves showing the PFS 
of sarcoma immune subtypes in the SARC cohort from TCGA  

(See figure on next page.)
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percentage of tumor-associated macrophages express-
ing PD-L1 at baseline compared to nonresponders [19]. 
We are beginning to realize that the response of sarcoma 
to ICIs is more dependent on complex tumor-immune 
interactions than on tumor histology. For example, CKS 
lesions are characterized by variable proportions of 
spindle-shaped tumor cells, vessels, chronic inflamma-
tory cells, and extravasated red blood cells. In general, 
they lack significant mitotic activity, cytologic pleomor-
phism, and necrosis, while the spindle cells often stain 
positively with vascular marker, CD31, CD34, and FLI-1, 
as well as lymphatic endothelial markers, such as D2-40, 
by immunohistochemical staining [36]. Early lesions 
(plaque or patch) often appear as a granulation type reac-
tion with immune cell infiltration, intense angiogenesis, 
and proliferating “spindle”-shaped cells of endothelial 
and macrophagic cell origin, which are the tumor cells of 
Kaposi sarcoma [37]. UPS, used as a synonym for malig-
nant fibrous histiocytoma (MFH), may still represent a 
heterogeneous group of lesions with variable outcomes, 
but differing progenitor cells and complex karyotypes, 
modern genomic analysis and immunohistochemical 
staining techniques have allowed for the term to be more 
narrowly defined [38]. Of note, T-cell infiltration and 
PD-L1 expression were found to be higher in sarcomas 
with complex genomics and particularly in UPS than in 
other soft tissue sarcomas [39]. DSRCT shows a poorly 
differentiated histologic appearance. On the basis of the 
poorly differentiated morphology, desmoplastic stroma, 
and desmin and cytokeratin immunoreactivity, as well as 
a positive EWSR1-WT1 rearrangement study, DSRCT is 
diagnosed. Interestingly, DSRCT showed PD-1 on tumor 
cells instead of on tumor infiltrating lymphocytes [40, 
41]. Hence, a better understanding of the sarcoma-spe-
cific immune microenvironment is essential for develop-
ing effective immunotherapies to improve the response 
and prognosis of patients.

In the current study, we performed comprehensive 
characterization of the immunological profile of sar-
comas. We found that sarcomas could be stratified into 
three IMSs based on consensus clustering of immune-
related gene expression profiles in TCGA -SARC data, 
and the reproducibility of this classification was demon-
strated in the GSE21050 cohort as the validation cohort. 
Each of the three IMSs was associated with distinct 

genetic aberrations, tumor-infiltrating immune cell com-
position and functional orientation (immune “hot” and 
immune “cold”), and cytokine profiles, as well as differ-
ent clinical outcomes. Among these four genes, CSMD3 
mutation has been reported in DDLPS [42] and SS [43], 
and its mutation was identified as deleterious in DDLPS 
[42]. Although MDN1, HMCN1 and LAMA2 mutation 
were universally present and significantly different among 
the three groups, up until now there was no study had 
reported the mutation of these three genes in any kind 
of sarcoma. Our results suggest a need for individualized 
exploration on the clinical correlation of these mutations 
with each kind of sarcoma. Furthermore, given that the 
four biomarkers, MDM2, CDK4, CD34, and TLE1, are 
very helpful in the differential diagnosis of the histologi-
cal types of sarcomas in clinical work, we analyzed the 
expression of the four molecules in the three IMSs to 
identify whether the four molecules also have differential 
diagnosis value for the immune subtypes of sarcoma. Our 
results show that from the perspective of immunopheno-
typing, these four commonly used biomarkers showed a 
limited prediction accuracy for sarcoma immunotype.

The IMS1 subtype was associated with the worst out-
come while showing composite signatures reflecting a 
high immune cell component, such as memory B cells, 
CD56dim natural killer cells and type 17T helper cells, 
which suggests that the poor prognosis of sarcoma may 
be related to activation of these cell types. In addition, 
IMS1 showed the lowest IFN-γ response and  CD8+ T 
cell and lymphocyte components among the three IMSs. 
These data suggest that the TME of IMS1 is immune 
“hot” but inflammation suppressive. Compared with the 
other two IMSs, IMS3 had the lowest TMB load and 
lowest immune cell component, two characteristics of 
immunologically quiet tumors. Moreover, IMS3 had 
the lowest lymphocyte infiltration and the lowest pro-
portions of leukocytes, stromal cells, and macrophages. 
Thus, IMS3 corresponds to an immunologically “cold” 
tumor. Nevertheless, IMS3 has the lowest macrophage 
M2 component compared with the other IMSs, which 
may be attributed to the prolonged survival of patients in 
the IMS3 group [44–46]. The IMS2 group showed a rela-
tively moderate immune microenvironment and clinical 
outcome. In addition, these immune subtypes may have 
intraclass heterogeneity. Further graph learning-based 

(See figure on next page.)
Fig. 7 Identification of immune gene coexpression modules and prognostic immune hub genes of sarcoma. A Dendrogram of all differentially 
expressed genes clustered based on a dissimilarity measure (1-TOM). B Gene numbers in each module. C Differential distribution of feature vectors 
of each module in sarcoma subtypes. ns, not significant, *P < 0.01 and ****P < 0.00001. D Forest maps of univariate Cox regression survival analysis 
on the PFS of 6 modules in sarcoma. E, F Dot plot showing the top 10 GO terms in the blue (E) and red (F) modules. The dot size and color intensity 
represent the gene count and enrichment level, respectively. G, H Correlation between the blue (G) and red (H) module feature vectors and PC1 in 
the immune landscape. I, J Kaplan–Meier curves with log-rank test showing the differential PFS in the 5-gene signature with high and low risk in 
the datasets TCGA  (I) and GSE21050 (J)
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dimensionality reduction revealed intracluster hetero-
geneity in IMS1. A fraction of patients in IMS1 (IMS1A) 
showed significantly worse survival than others, which 
may mainly be attributed to the relative immune-sup-
pressive TME with the least immune cell infiltration 
among all subclusters. Thus, mRNA vaccines may be 
relatively viable and more effective in IMS1A. In these 
IMS1A patients, combining immunotherapy with other 
local or systemic chemotherapy regimens to convert 
“cold” tumors to “hot” tumors might modulate both the 
host immune response and tumor microenvironment 
toward a state that is more conducive to therapy. Indeed, 
patients with the IMS2 and IMS3 subtypes had very simi-
lar prognoses. Overall, patients in IMS3B had the highest 
number of B cells, which may be the main contributor to 
their significantly better survival [47]. Notably, integrat-
ing the results of both immune subtypes and the immune 
landscape of sarcoma is important. From the perspec-
tive of mRNA vaccine application, patients with IMS1 
tumors with higher TMB and somatic mutation rates 
may be more responsive to mRNA vaccines. In addition, 
the intracluster heterogeneity of each IMS and individual 
patients is informative for narrowing down the appropri-
ate population for mRNA vaccines.

Compared with the previously defined pancancer 
immune subtypes based on data compiled by TCGA  [28], 
IMS3 demonstrated the highest percentage of the C3 
(inflammatory) subtype, which also had the best survival 
in the cohort from TCGA . Overall, the IMS1 subtype was 
mainly associated with the C1 (wound healing), C4 (lym-
phocyte depleted), and C6 (TGF-β dominant) subtypes, 
associated with a controversial phenotype with increased 
immune cell infiltration and a relatively better progno-
sis (C1), as well as an immunologically suppressed fea-
ture with a poorer prognosis (C4 and C6). Nevertheless, 
IMS1 can be further divided into three subcategories, in 
which immune cell infiltration in IMS1A tumors, which 
have the worst prognosis, is significantly lower than that 
in IMS1B and IMS1C tumors. In addition, IMS1A has 
the lowest lymphocyte infiltration signature score among 
the three subcategories of IMS1. Therefore, the C4 sub-
type of TCGA  appear to mainly correspond to IMS1A. 
Moreover, IMS1C has the highest wound healing score 
among the three subcategories of IMS1, indicated that 
IMS1C was mainly composed of TCGA  C1-like sam-
ples. To some extent, our immune landscape analysis 
results explain the contradiction between the IMS and 
TCGA  pancancer immune subtypes and provide a more 
accurate subtyping method from the perspective of the 
immune TME. C2 is a subtype showing enrichment in 
many immune-evasion-related genes and high  CD8+ 
T-cell infiltration, and our data demonstrate the C2 sub-
type was one of the mainly clusters distributed in IMS2. 

Consistently, both C2 and IMS2 exhibited intermediate 
survival. The C6 subtype, with an immunologically sup-
pressed feature and the poorest prognosis of all six sub-
types, displays the highest TGF-β signature and a high 
CD4 + T-cell infiltrate and is minimally distributed in 
IMS3. These results indicate that the three COAD IMSs 
map to different TCGA  pancancer categories with similar 
immune microenvironments and that sarcoma is asso-
ciated with immune subtypes different from the previ-
ously identified pancancer categories. Overall, our results 
may provide a useful and additional complement for the 
classification of the tumor immune microenvironment. 
Moreover, we observed that IMS3 is highly enriched in 
the low-risk C1 subtype of the CINSARC classification 
[27], suggesting that IMS3 is a highly conserved molecu-
lar subgroup in CINSARC C1. In addition, we observed a 
high proportion of CINSARC C2 samples in IMS1. This 
suggests the IMS1 samples to be mainly composed of 
conserved samples from CINSARC C2 and C2-like sam-
ples from CINSARC C1. The CINSARC C1 and C2 ratios 
were also similar in IMS2, suggesting an intermediate 
morphological molecular characteristic in addition to the 
two CINSARC subtypes. These results suggest that the 
IMS signature can be used as a complement to CINSARC 
classification.

In addition to prognostic prediction, immunotyp-
ing is indicative of therapeutic response to immuno-
therapies, and patients with different IMS phenotypes 
should respond differently to different treatment strat-
egies. Theoretically, the immune “cold” phenotype 
(IMS3) may be related to many possible issues at dif-
ferent steps of the antitumor immune cycle, such as 
lack of tumor antigens, defect in antigen-presenting 
cells (APCs), absence of T-cell activation and deficit 
of homing into the tumor bed, leading to the absence 
of T-cell infiltration [48]. Therapeutic strategies such 
as demethylating agents [49], chemo-/radiotherapy 
inducing immunogenic cell death (ICD) [50], and 
tumor vaccines [51] might induce immune infiltration 
to reinvigorate the immune system in these patients. 
Newman and colleagues [20] recently demonstrated 
that application of the seasonal influenza vaccine to 
a cold tumor facilitates a shift toward a warm tumor. 
These findings are highly instructive for algorithms for 
the treatment of patients with IMS3 tumors. Inflamed 
phenotypes (IMS1 and IMS2) with higher TMB and 
somatic mutation rates are supposed to have greater 
responsiveness to immunotherapy and better progno-
sis. Nevertheless, given that the datasets we applied in 
the present study were not stratified by prior chemo-
therapy exposure and that there are no data suggest-
ing that these signatures ultimately correlate with the 
response to immune therapy, there is some bias in our 
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results, and the specific immunotherapy response of 
each IMS has yet to be confirmed in real-world clini-
cal trials. However, the prognosis of patients with IMS1 
was significantly poorer than that of patients with the 
other subtypes, suggesting that patients with this sub-
type are at high risk and require early intervention 
in postoperative immunotherapy. The critical factor 
determining prognosis might be the dominance of the 
immune-suppressive environment or the stimulatory 
environment. Smolle et  al. [26] investigated relation-
ships between tumor-infiltrating immune cells and 
patient/tumor-related factors in soft tissue sarcomas 
and assessed their prognostic value. They found that 
high macrophage levels were associated with increased 
local recurrence risk, irrespective of margins, age, sex 
or B-cell level.

We further performed weighted gene correla-
tion network analysis (WGCNA), which stratified 
immune‐related genes into 7 modules. The distribu-
tion of the feature vectors of these modules was dis-
tinct among the IMSs. The feature vectors of IMS1 
were found to be significantly lower in the blue mod-
ule but significantly higher in the red module. Further 
analysis revealed that the immune gene coexpression 
modules were closely with the prognosis and cellular 
function of sarcoma. Furthermore, we reveal five targ-
etable antigens (C16orf54, CCR8, CYTIP, SAMD3 and 
TBX21) by identifying modules associated with the sar-
coma immune landscape. These five genes are promis-
ing mRNA vaccine candidates. Their dysregulation is 
related not only to survival but also to activation of T 
cells and regulation of leukocyte and lymphocyte acti-
vation. Hence, these antigens play a critical role in the 
occurrence and development of sarcoma and can be 
directly processed to the T-cell activation pathway to 
induce immune attack. Although further clinical evalu-
ation is needed, the potential of these tumor antigens to 
serve as targets for sarcomas has been consolidated in 
previous reports. For instance, expression of CCR8 and 
TBX21 is proven to serve as immunotherapeutic tar-
gets and prognostic biomarkers in various solid tumors, 
respectively [52–54].

In general, infiltration and activation of T cells and 
other immune cells in tumor tissues, as well as inhibition 
of immune-suppressive cells, largely determine the thera-
peutic potential of mRNA vaccines in cancer patients 
with specific immune subtypes. Accordingly, mRNA vac-
cines might not be suitable for patients with high expres-
sion of genes clustered into blue and green modules. 
Finally, three hub genes with > 90% relevance in the blue 
module were identified, including MAP4 K1, TBC1D10C 
and TRAF3IP3, which are potential targets for mRNA 
vaccines.

Conclusion
In conclusion, this study provides a conceptual frame-
work for a better understanding of the tumor-specific 
immune microenvironment of sarcoma. Our findings 
demonstrate the immunological heterogeneity within 
sarcomas and provide a theoretical basis for predicting 
patient prognosis. In addition, stratification of patients 
according to the IMS system is needed to identify suit-
able patients and design adequate therapeutic strategies 
to improve the efficacy of immunotherapy. Furthermore, 
this study identified specific molecules (C16orf54, CCR8, 
CYTIP, SAMD3 and TBX21) that can be used as predic-
tors of the risk of progression and therapeutic targets for 
patients with sarcomas.

Materials and methods
Patients and datasets
We collected 538 primary sarcoma samples from two 
databases: The Cancer Genome Atlas (TCGA ) data-
base and the Gene Expression Omnibus (GEO) data-
base (dataset GSE21050). The RNA‐seq data, somatic 
mutation data, and corresponding clinical information 
of patients with follow-up information were obtained 
from the SARC dataset of TCGA  (n = 251) using the 
GDC-client tool (https:// portal. gdc. cancer. gov/). Gene 
IDs were converted to official gene symbols according 
to the Genome Reference Consortium Human Build 38 
(GRCh38) assembly. Only genes with transcripts per 
kilobase of exon model per million mapped reads (TPM) 
values greater than zero in more than 50% of the samples 
were included for analysis. The microarray gene expres-
sion profiles and clinical information of patients in the 
GSE21050 dataset (n = 287) were downloaded from the 
GEO database (https:// www. ncbi. nlm. nih. gov/ geo/). 
Patient informed consent exists in these two public data-
sets, and this study was conducted in accordance with 
the Helsinki Declaration.

Discovery and validation of immune subtypes
We applied consensus clustering [55] to identify IMS 
clusters of patients in the cohort from TCGA  based on 
expression of 2006 IRGs (Additional file  4: Table  S1). A 
total of 1914 genes were found in the SARC dataset from 
TCGA . Five hundred bootstraps with 80% item resa-
mpling were calculated based on the partition around 
medoids (PAM) classifier and Euclidean distance. The 
evaluated K selected for clustering was set as between 
2 and 10, and the optimal classification was determined 
by calculating the consistency matrix and consistency 
cumulative distribution function. Then, we validated the 
IMS in the GSE21050 dataset. The in-group proportion 
(IGP) [56] and Pearson correlation among centroids of 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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gene module scores were used to quantitatively measure 
the consistency and reproducibility of the acquired IMS 
in the cohorts from TCGA  and GSE21050. Progression-
free survival was calculated from the date of surgery to 
the date of disease progression (local and/or distal tumor 
recurrence/metastasis) or to the date of death.

Evaluation of clinicopathological, molecular, and cellular 
characteristics associated with IMSs
The PFS period of each sarcoma patient from the two 
datasets was calculated by using the Kaplan–Meier 
method with the log-rank test and multivariable Cox 
regression; samples with survival times less than 30 days 
were excluded from the analysis. Relationships between 
the IMS and clinicopathological features, as well as the 
CINSARC classification, a 67-gene expression signa-
ture that stratifies sarcoma prognosis into two subtypes 
(“low-risk, C1” and “high-risk, C2”) [27], were analyzed 
by nonparametric (Fisher’s exact) assessments, as appro-
priate. TCGA  pancancer study stratifies cancer into six 
immune subtypes: C1 (wound healing), C2 (IFN-γ domi-
nant), C3 (inflammatory), C4 (lymphocyte depleted), C5 
(immunologically quiet), and C6 (TGF-β dominant) [28]. 
We analyzed relationships between IMSs and TCGA  
classification systems by nonparametric (Fisher’s exact) 
assessments. To observe the expression profile of chemo-
therapy-induced immune response-related classic mark-
ers [57, 58] and 47 immune checkpoint-related genes 
from a previous study [59] in the three immune subtypes, 
we calculated gene expression of the genes in the TCGA 
-SARC and GSE21050 cohorts. To analyze distributions 
of immune cell components in each IMS, we determined 
the scores of 28 immune cell types in each patient in the 
cohorts by analyzing 782 immune cell marker genes [60] 
using the Single-sample gene set enrichment analysis 
(ssGSEA) method.

Defining the immune landscape
Considering the dynamic nature of the immune sys-
tem, we conducted dimensionality reduction analy-
sis using a graph learning-based method to reveal the 
intrinsic structure and visualize the distribution of indi-
vidual patients. Briefly, this analysis projects the high-
dimensional gene expression data to a tree structure 
in a low-dimensional space, where the local geometric 
information is preserved [61]. This discriminative dimen-
sionality reduction with trees (DDRTree) approach was 
previously used to model cancer progression and define 
developmental trajectory using bulk and single-cell gene 
expression data [62, 63]. Here, we extend the analysis to 
immune gene expression profiles. This immune landscape 
reflects the relationship among patients in a nonlinear 
manifold, which may complement the discrete immune 

subtypes defined in the linear Euclidean space. The intra-
cluster heterogeneity within each IMS was assessed in 
terms of gene module expression with ANOVA.

Analysis of the immune‑related gene coexpression module
The WGCNA coexpression algorithm was used to detect 
coexpressed gene modules in the R package WGCNA 
[64]. It has been shown that when the logarithm of the 
connectivity degree node log(k) is negatively related to 
the logarithm of the probability of emergence of the node 
log(P(k)) and the correlation coefficient is greater than 
0.85, the coexpression network can be a scale-free net-
work [65]. To ensure that the coexpression network was a 
scale-free network, coexpression modules were screened 
by setting soft threshold power β to 10 (Additional file 2: 
Fig. S2C). The topology overlap matrix (TOM) was then 
constructed from the adjacency matrix to avoid influ-
ences of noise and spurious associations. Based on TOM, 
average-linkage hierarchical clustering using the dynamic 
shear tree method was subsequently conducted to define 
coexpression modules, and the minimum gene size of 
each module was set as 60. The feature vector values 
(eigengenes) of each module were calculated in turn to 
explore the relationship among modules, and then mod-
ules with highly correlating eigengenes were merged into 
new modules by performing cluster analysis with the 
following thresholds: height = 0.25, DeepSplit = 4, and 
minModuleSize = 60.

Identification of an immune‐related prognostic signature
Univariate Cox regression analysis was performed to 
determine immune-related gene coexpression modules 
with prognostic significance. Then, the Cox proportional 
hazards model, which was suitable for high‐dimensional 
regression analysis, was used to construct an optimal 
and prognostic gene set in immune-related modules 
(package glmnet) [66–68]. Multivariate Cox regression 
survival analysis was performed to construct the prog-
nostic risk model. The risk score of each patient in the 
training set was calculated with the linear combination 
of the gene expression signature weighted by the regres-
sion coefficients as follows: Risk score = (exprgene1 × 
coefficientgene1) + (exprgene2 × coefficientgene2) +· · ·
+ (exprgenen × coefficientgenen).

Bioinformatics analysis
The proportions of six tumor-infiltrating immune cell 
types (B cells,  CD4+ T cells,  CD8+ T cells, neutrophils, 
macrophages, neutrophils and dendritic cells) were esti-
mated using the “Tumor Immune Estimation Resource” 
(TIMER, https:// cistr ome. shiny apps. io/ timer/) tool [69]. 
Gene Ontology (GO) enrichment analysis was performed 

https://cistrome.shinyapps.io/timer/


Page 17 of 19Weng et al. BMC Immunology           (2022) 23:46  

with the R package clusterProfiler. An FDR cutoff value of 
0.05 was applied in this test.

Statistical analysis
All statistical analyses were performed using R 3.6.0 
(https:// mirro rs. tuna. tsing hua. edu. cn/ CRAN/) with 
default software parameters. A P value < 0.05 was con-
sidered statistically significant. The biological functions 
of IRGs in each immune gene coexpression module were 
annotated in GO using the Tool Database for Annota-
tion, Visualization and Integrated Discovery (DAVID, 
V6.8). The association between the IMS and all kinds of 
immune-related molecular and cellular characteristics 
was assessed using one-way ANOVA.
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