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Abstract 

Background: Plasmacytoid and myeloid dendritic cells play a vital role in the protection against viral infections. In 
COVID-19, there is an impairment of dendritic cell (DC) function and interferon secretion which has been correlated 
with disease severity.

Results: In this study, we described the frequency of DC subsets and the plasma levels of Type I (IFNα, IFNβ) and Type 
III Interferons (IFNλ1), IFNλ2) and IFNλ3) in seven groups of COVID-19 individuals, classified based on days since RT-PCR 
confirmation of SARS-CoV2 infection. Our data shows that the frequencies of pDC and mDC increase from Days 15–30 
to Days 61–90 and plateau thereafter. Similarly, the levels of IFNα, IFNβ, IFNλ1, IFNλ2 and IFNλ3 increase from Days 
15–30 to Days 61–90 and plateau thereafter. COVID-19 patients with severe disease exhibit diminished frequencies 
of pDC and mDC and decreased levels of IFNα, IFNβ, IFNλ1, IFNλ2 and IFNλ3. Finally, the percentages of DC subsets 
positively correlated with the levels of Type I and Type III IFNs.

Conclusion: Thus, our study provides evidence of restoration of homeostatic levels in DC subset frequencies and 
circulating levels of Type I and Type III IFNs in convalescent COVID-19 individuals.
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Background
Among innate immune cells which have a critical role 
in the anti-SARS-CoV-2 immune response, one of the 
main players are the dendritic cells (DCs) [1]. SARS-
CoV-2 infection induces an impairment in the functions 

of interferons (IFNs), antigen presentation and decreased 
numbers of DCs in the peripheral blood [2]. Several 
reports indicated that the DC numbers were diminished 
due to infection in peripheral blood and it is associated 
with the severity of this  disease [3, 4]. This decrease 
could be due to the migration of DC subsets to the lung 
and other inflammatory loci [5, 6], enhanced apoptosis 
of DCs and the suppressive consequences of myeloid-
derived suppressor cells [7]. Type I FNs play an important 
role in viral infections [8] and major producers of Type I 
IFNs have a crucial function in COVID-19. Also, various 
studies have shown that severe patients were associated 
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with decreased IFN responses [9, 10]. Several reports 
determined that SARS-CoV-2 affects pDCs by producing 
IFN-I [7]. However, the function of DC subsets and Type 
I and III IFNs in acute and convalescent SARS-CoV-2 
individuals are not completely explored.

Following COVID-19, the restoration of DC impair-
ment might be essential, because the stabilization of the 
innate immune system is required for return to homeo-
stasis. This recovery is essential in terms in terms of 
return to normalcy  of innate immune responses as DCs 
and Type I/III interferons are important in the prolonged 
protection [11]. Hence, we wanted to study the frequen-
cies of DC subsets and circulating levels of Type I and 
Type III IFNs in convalescent COVID-19 individuals 
more than 150  days after infection following RT PCR 
confirmation.

Results
Study population characteristics
Demographics and clinical characteristics of the 
study population are shown in Tables  1 and 2 as previ-
ously described [12–14]. The median age ranges from 
36—45.5 years among the groups. In all the groups, the 
female number was slightly higher than the number of 
male patients. However, they are not statistically differ-
ent among the groups. Individuals with Hypertension 
were 26% in the acute phase group and in the remain-
ing groups i.e., 31–60  days to more than 180  days, the 
percentage ranged from 18 to 30%. Individuals with 
Diabetes Mellitus were 19% in the acute phase and in 
the remaining groups i.e., 31–60  days to more than 
180  days, the percentage ranged from 19 to 30%. Indi-
viduals with Asthma were 5% in the acute phase and in 
the remaining groups i.e., 31–60  days (6%), 61–90  days 
(3%), 91–120 days (3%) and 151–180 days (3%). The other 
clinical symptoms such as fever, cough, chills, sore throat, 
runny nose, loss of taste and smell, muscle aches, joint 
pain, abdominal pain, vomit, and diarrhoea were present 
almost in all the groups. Individuals with seizures were 
3% in 31–60 days alone and Neuro related disorders were 
5% in the 61–90 days group alone. 3% of chronic kidney 
diseases were in 91–120 days and more than 180 groups 
of individuals. 15–30  days (6%), 31–60  days (3%) and 
61–90  days (3%), 7% of the severely infected were with 
heart diseases. Individuals with rheumatic fever were 3% 
in 61–90 days and 151–180 days (3%). Individuals treated 
with corticosteroids were 15–30  days (9%), 31–60  days 
(9%) and 61–90  days (5%), 91–120  days (10%), 121–
150 days (3%) and 151–180 days (3%) and severe (20%). 
Individuals treated with antiviral drugs were 15–30 days 
(9%), 31–60  days (15%) and 61–90  days (5%), and 
91–120 days (13%) and severe (27). Among the severely 
infected group, 40% of them required hospitalization. We 

wanted to examine the Type1 and Type III IFN kinet-
ics  following RT-PCR confirmation from days 15–30 to 
more than 180  days. To this end, we combined all the 
groups irrespective of their disease status (mild, moder-
ate, severe and convalescence) [12–15].

Increased frequencies of dendritic cell subsets 
and circulating levels of Type I and Type III IFNs 
in convalescent COVID‑19 individuals over time
To determine the frequencies and distribution of den-
dritic cell subsets in convalescent COVID-19 individuals 
over time, we assessed the ex-vivo frequencies of den-
dritic cell subsets (pDC and mDC) in the seven groups 
of COVID-19 individuals. As illustrated in Fig.  1A,  and 
the gating strategy was shown in supply.  Fig. S1 (Addi-
tional File 1) the frequencies of pDCs and mDCs started 
increasing from day 15–30 till 91–120  days (first-order 
model polynomial model fit curve, intermediate mono-
cytes R = 0.29, non-classical monocytes R = 0.42 by Akai-
ke’s Information Criterion) and plateaued thereafter.

Next, we wanted to examine the levels of Type I and 
Type III IFNs in convalescent COVID-19 individuals 
over time, we assessed the plasma levels of Type I (IFNα, 
IFNβ), Type III (IFNλ1, IFNλ2 and IFNλ3) in the seven 
groups of COVID-19 individuals. As illustrated in Fig. 1B 
and C, the cross-sectional analysis demonstrated that the 
levels of Type I and Type III started increasing from days 
15–30 (second-order model polynomial model fit curve, 
IFNα, R = 0.28, IFNβ, R = 0.34, IFNλ1, R = 0.39, IFNλ2, 
R = 0.32 and IFNλ3 R = 0.52 by Akaike’s Information Cri-
terion) till 151 days after infection.

As shown in Additonal file 2: Figure 2, the comparative 
analysis also exhibited significant differences between 
seven-time point intervals. Both the DC subsets and the 
circulating levels of Type 1 and III IFNs showed a gradual 
and steady increase from days 15–30 to till 150 days and 
then it started to plateau. The 95% of confidence intervals 
were shown in Additional file  3: Table  1. Thus, plasma 
levels of Type I and Type III IFNs are increased over time.

Severe COVID‑19 disease is associated with decreased 
frequencies of DC subsets and circulating levels of Type I 
and Type III IFNs
Next, we wanted to determine the frequencies of DC sub-
sets in mild and severely diseased COVID-19 individu-
als. As shown in Fig. 2A, the frequencies of pDC (GM of 
0.60% in mild, 0.18% in severe) and mDC (GM of 3.12% 
in mild, 0.1% in severe) were significantly lower in severe 
than the mild COVID-19 individuals. Further, we analysed 
the effect of COVID-19 disease severity on circulating lev-
els of Type I and Type III IFNs. As shown in Fig. 2B, the 
levels of IFNα (GM of 456.4 pg/ml in mild, 196.3 pg/ml in 
severe), IFNβ (GM of 234.7 pg/ml in mild, 47.48 pg/ml in 
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severe), As shown in Fig.  2C, IFNλ1 (GM of 1013  pg/ml 
in mild, 515 pg/ml in severe), IFNλ2 (GM of 961.7 pg/ml 
in mild, 559.1 pg/ml in severe) and IFNλ3 (GM of 382 pg/
ml in mild, 241 pg/ml in severe) were significantly lower in 
severe than the mild COVID-19 individuals. Thus, severe 
COVID-19 disease is associated with decreased frequen-
cies of DC subsets and diminished circulating levels of 
Type I and Type III IFNs.

Association between DC subsets and the levels of Type I 
and Type III IFNs
Next, we wanted to determine the relationship 
between DC subsets and the levels of Type I and Type 
III IFNs in mild and severe groups of COVID-19 indi-
viduals. As shown in Fig.  3A, mild COVID-19 indi-
viduals exhibited a positive correlation between the 
percentages of DC subsets and the levels of Type I and 

Fig. 1 Increased frequencies of dendritic cell subsets and circulating levels of Type I and Type III IFNs in convalescent COVID-19 individuals over 
time. A Analysis of DC subsets from acute and convalescent COVID-19 individuals classified as groups based on days since RT-PCR confirmation. 
The frequencies of DC subsets (pDC and mDC) are shown with a preferred model for the best fit curve. B Analysis of Type I Interferons (IFNα and 
IFNβ) from acute and convalescent COVID-19 individuals classified as groups based on days since RT-PCR confirmation. The circulating levels of 
IFNα and IFNβ are shown with a preferred model for the best fit curve (C). Analysis of Type III Interferons (IFNλ1, IFNλ2 and IFNλ3) from convalescent 
COVID-19 individuals classified as groups based on days since RT-PCR confirmation. The circulating levels of IFNλ1, IFNλ2 and IFNλ3 were shown 
with a preferred model for the best fit curve. The blue colour dot represents mild and the red colour dot represents severely infected individuals. 
Each dot represents a single individual. The thick black line represents the best fit curve
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Type III IFNs. Similarly, severe COVID-19 individuals 
also exhibited a positive correlation between the per-
centages of pDC subsets and the levels of Type I and 
Type III IFNs and the mDCs showed a positive correla-
tion with the levels of IFNβ and IFNλ1 alone (Fig. 3B). 

Thus, mild and severe COVID-19 individuals exhib-
ited a positive correlation among DC subsets and lev-
els of Type I and Type III IFNs.

Fig. 2 Severe COVID-19 disease is associated with decreased frequencies of DC subsets and circulating levels of Type I and Type III IFN. A The 
frequencies of DC (pDC and mDC) subsets in mild (n = 30) and severe (n = 15) COVID-19 individuals sampled between days 15 to 60 following 
RT-PCR confirmation. B Circulating plasma levels of Type I Interferons (IFNα and IFNβ) in mild (n = 30) and severe (n = 15) COVID-19 individuals 
sampled between days 15 to 60 following RT-PCR confirmation. C Circulating plasma levels of Type III Interferons (IFNλ1, IFNλ2 and IFNλ3) in mild 
(n = 30) and severe (n = 15) COVID-19 individuals sampled between days 15 to 60 following RT-PCR confirmation. The data are represented as 
scatter plots with each circle representing a single individual. p values were calculated using the Mann– Whitney U-test



Page 5 of 8Rajamanickam et al. BMC Immunology           (2022) 23:51  

Discussion
DCs play a role in the presentation of antigens, produc-
tion of cytokines, regulation of inflammatory responses, 
stimulation of  tolerance, immune cell enrolment, and 
viral spreading [1]. DC frequency and numbers are 
correlated with the disease severity  in COVID-19 [4]. 
Delayed activation of DC could lead to delayed initia-
tion of adaptive immune response to pathogens. IFN 
is secreted by diverse cell types and capable of regu-
lating the innate and adaptive immune response [8, 
16]. Numerous studies have shown that severe SARS-
CoV-2 patients are correlated with lessened numbers of 
mDCs and pDCs [1, 4, 5]. In our study, both DC sub-
sets started expanding from day 15–30 till 91–120 days 
and plateaued thereafter. Our study corroborates pre-
vious findings that DC subsets were reduced in severe 
COVID-19 than the mild patients. This decrease could 
be due to augmented migration from the blood and 
sequestration in tissues, such as the inflamed lung or 
lymphoid tissues [17]

Numerous reports determined that Type I and III 
IFN responses are suppressed during the early phase 
of the infection in severe COVID-19 patients [2]. pDCs 
are recognized to play a vital function in the first line 
of defence in anti-viral simulation, with the capacity 
to produce IFN-I and III [18, 19]. The reduction of DC 
subsets could be due to the impairment of myeloid cell 
functionality [20] and impaired maturation of the DC 
process that hinders DC homing, and antigen presen-
tation and eventually delay an effective T-cell response 
[21]. Zhou et al. reported that the capability of DCs to 
produce pro-inflammatory cytokines and IFN-I was 
inhibited in COVID-19 patients (Zhou R, Immunity, 
2020). An IFN-I deficit supports SARS-CoV-2 to escape 
leading to the secretion of several ineffective antiviral 
proinflammatory cytokines which could provoke the 
cytokine storm [7]. During COVID-19, Type I and III 
interferon responses were induced in the initial period 
of infection in regulating the COVID-19 sequence 
[22]. Individuals with a deficiency in Type I interferon 

signalling are more susceptible to developing severe 
COVID-19 (coronavirus disease 2019) disease [23, 
24]. Preexisting auto-Abs neutralizing Type I IFNs in 
APS-1 patients renders them more vulnerable to a mas-
sive chance of severe COVID-19 pneumonia across the 
lifespan [25]. Our data exhibited that expansion of Type 
I and Type III IFNs from day 15–30 till 120  days and 
plateaued thereafter. Also, Severe COVID-19 patients 
exhibited decreased Type I and Type III IFNs. Also, 
there was a significant positive correlation between the 
DC subsets and levels of Type I and III IFNs. In this 
study, we perceived a positive correlation between DC 
subsets and IFN levels implying that these cell types 
were the major source of these cytokines as occurs in 
other viral illnesses [26]. These results corroborated 
with earlier studies in the SARS-CoV-1 animal models 
[27] and also with the latest report on the transcrip-
tomic approach [28]. Marongiu et. al. reported that 
SARS-CoV-2 directly interrelates with conventional 
DC2s and devices an effective immune escape mecha-
nism that is associated with the severity of disease via 
downregulating key molecules mandatory for the trig-
gering of T-cells [29]. These data underpin the vital 
function of IFN-1 secretion in the first line of protec-
tion against COVID-19.

Our study has the constraint of not examining the 
functional effect of these modifications in cellular sub-
sets and IFN pathways. Another limitation is the lack of 
a healthy control group in our study and that our study 
was cross-sectional and not longitudinal. We enrolled 
different individuals in each of the seven categories and 
did not perform follow-up of the same patients at vari-
ous time points. However, our study offers an extensive 
interrogation of DC subsets and levels of IFNs from early 
to more than 6 months post-infection and disease sever-
ity. Our study therefore imply vital changes in DC subsets 
and IFNs as one of the major occurrence in COVID-19.

Fig. 3 Association between DC subsets and the levels of Type I and Type III IFNs. A Correlation analysis between DC subsets Vs Type I and III levels in 
mild COVID-19 individuals. B Correlation analysis between DC subsets Vs Type I and III levels in severe COVID-19 individuals
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Conclusions
In summary, our study suggests that DC subsets and the 
levels of Type I and III levels were diminished in the indi-
viduals with SARS-CoV-2 at early time points following 
infection. The DC subsets and the levels of Type I and 
III were gradually restored more than 6 months after the 
infection. These results could support a major effect on 
the type of immune responses in COVID-19. Also, our 
results imply that Type I and III IFN diminution might be 
a characteristic feature of COVID-19 and provide a basis 
for combined therapeutic approaches.

Methods
Study population
Acute COVID-19 (15–30  days from RT-PCR confir-
mation, n = 46) and Convalescent COVID-19 indi-
viduals (classified by days after infection as 31–60, 
n = 33; 61–90, n = 38; 91–120, n = 34; 121–150, n = 32; 

151–180, n = 37 and more than 180, n = 40), residing 
in Chennai and Tiruvallur were enrolled in the study 
between November 2020 and December 2020 after tak-
ing informed consent from the study individuals. This 
was a cross-sectional study and different individuals 
were enrolled in the different categories. Those individ-
uals who did not experience any symptoms during the 
entire course of illness were considered asymptomatic 
and those who required supplemental oxygen support 
therapy or those who were admitted to ICU for oxygen 
support were considered severely ill. Rest were classi-
fied under the mild illness category (11–14).

Haematology
Haematology was performed on all individuals using 
the Act-5 Diff haematology analyzer (Beckman Coul-
ter). Demographic details and other clinical parameters 
were shown in Table 1.

Table 1 Demographics and clinical parameters of the study population

Days after RT‑PCR confirmation 15–30 days 31–60 days 61–90 days 91–120 days 121–150 days 151–180 days More than 180 days

Subjects enrolled n = 46 n = 33 n = 38 n = 34 n = 32 n = 37 n = 40

Median age (range) 41.5 (18–70) 36 (25–68) 45 (19–59) 45 (21–69) 45.5 (27–59) 42 (23–58) 38.5 (21–78)

Gender (M/F) 27/19 17/18 22/15 22/12 14/18 23/16 26/14

Fever, no. (%) 29 (67%) 22 (65%) 28 (74%) 23 (74%) 25 (83%) 23 (72%) 17 (47%)

Chills, no. (%) 9 (21%) 5 (15%) 2 (5%) 7 (22%) 4 (13%) 1 (3%) 3 (8%)

Cough, no. (%) 21 (49%) 20 (59%) 14 (37%) 15 (48%) 14 (47%) 17 (53%) 12 (33%)

Sore throat, no. (%) 21 (49%) 12 (35%) 11 (29%) 12 (38%) 10 (33%) 16 (50%) 13 (36%)

Runny nose, no. (%) 7 (16%) 6 (18%) 5 (13%) 0 3 (10%) 6 (19%) 5 (14%)

Taste loss, no. (%) 24 (55%) 14 (41%) 17 (44%) 12 (39%) 11 (37%) 20 (63%) 12 (33%)

Smell loss, no. (%) 21 (49%) 14 (41%) 21 (55%) 9 (29%) 11 (37%) 16 (50%) 10 (28%)

Muscle aches, no. (%) 23 (53%) 20 (59%) 29 (76%) 15 (48%) 18 (60%) 21 (66%) 13 (36%)

Joint pain, no. (%) 21 (49%) 18 (53%) 20 (53%) 10 (32%) 18 (60%) 14 (44%) 9 (25%)

Abdominal pain, no. (%) 3 (7%) 3 (9%) 4 (11%) 2 (6.5%) 3 (10%) 2 (7%) 3 (8%)

Vomit, no. (%) 3 (7%) 4 (12%) 5 (13%) 4 (13%) 3 (10%) 5 (16%) 3 (8%)

Diarrhea, no. (%) 10 (23%) 5 (15%) 4 (11%) 4 (13%) 6 (30%) 5 (16%) 2 (6%)

Seizures, no. (%) 0 1 (3%) 0 0 0 0 0

Hypertension, no. (%) 11 (26%) 7 (21%) 7 (18%) 7 (23%) 9 (30%) 9 (28%) 8 (22%)

Diabetes, no. (%) 8 (19%) 7 (21%) 11 (30%) 9 (29%) 11 (37%) 8 (25%) 7 (19%)

Asthma, no. (%) 2 (5%) 2 (6%) 1 (3%) 1 ( 3%) 0 1 (3%) 0

Chronic kidney disease, no. (%) 0 0 0 0 1 (3%) 0 1 (3%)

Neuro, no. (%) 0 0 2 (5%) 0 0 0 0

Cancer, no. (%) 0 0 0 0 0 0 0

Heart, no. (%) 1 (6%) 2 (3%) 1 (3%) 0 0 1 (3%) 0

Rheumatic fever, no. (%) 0 0 1 (3%) 0 0 1 (3%) 0

Corticosteroids, no. (%) 4 (9%) 3 ( 9%) 2 (5%) 3 (10%) 1 (3%) 1 (3%) 0

Antiviral drug, no. (%) 4 (9%) 5 (15%) 2 (5%) 4 (13%) 0 0 0

Immunomodulator, no. (%) 0 0 0 0 0 0 0
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Immunophenotyping and measurement of Type I and III 
IFNs
Ex vivo phenotyping was done using whole blood. Briefly, 
to 250 µl aliquots of whole blood, a cocktail of mono-
clonal antibodies specific for DC subsets were added, 
incubated, washed and acquired. The gating was set by 
forward and side scatter, and 500,000 gated events were 
acquired. Compensation and gating boundaries were 
adjusted using unstained, single stained, and Fluores-
cence Minus One (FMO) control. IFNα and IFNβ lev-
els were measured using VeriKine-Human Interferon 
Alpha All Subtype and Beta ELISA kits (PBL Interferon 
sources). IFNλ1, IFNλ2 and IFNλ3 were measured using 
the Duo Set ELISA kit (R&D Systems).

Statistical analysis
Cross-sectional analysis of the frequency of dendritic 
cell subsets and haematology analysis were performed 
using the polynomial model for the best fit curve (either 

first-order or second-order model). By way of mode-
ling analysis,  first-order or second-order model polyno-
mial function was shown to be the best model amongst 
the diverse polynomials examined. Mild versus severe 
statistically significant differences were calculated by the 
non-parametric Mann–Whitney U test. Flowjo 10.8.0, 
GraphPad PRISM version 9 (GraphPad Software, Inc.) 
were used for the data analyses. Correlation analyses 
were performed using JMP 16 (SAS).
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