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Abstract 

Background In recent years, research on the pathogenesis of systemic lupus erythematosus (SLE) has made great 
progress. However, the prognosis of the disease remains poor, and high sensitivity and accurate biomarkers are par-
ticularly important for the early diagnosis of SLE.

Methods SLE patient information was acquired from three Gene Expression Omnibus (GEO) databases and used 
for differential gene expression analysis, such as weighted gene coexpression network (WGCNA) and functional 
enrichment analysis. Subsequently, three algorithms, random forest (RF), support vector machine-recursive fea-
ture elimination (SVM-REF) and least absolute shrinkage and selection operation (LASSO), were used to analyze 
the above key genes. Furthermore, the expression levels of the final core genes in peripheral blood from SLE patients 
were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) assay.

Results Five key genes (ABCB1, CD247, DSC1, KIR2DL3 and MX2) were found in this study. Moreover, these key genes 
had good reliability and validity, which were further confirmed by clinical samples from SLE patients. The receiver 
operating characteristic curves (ROC) of the five genes also revealed that they had critical roles in the pathogenesis 
of SLE.

Conclusion In summary, five key genes were obtained and validated through machine-learning analysis, offering 
a new perspective for the molecular mechanism and potential therapeutic targets for SLE.
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Background
Systemic lupus erythematosus (SLE) is an immune-medi-
ated autoimmune disease with clinical manifestations 
of multisystem damage, often causing irreversible dam-
age to multiple organ systems, seriously affecting the life 
span of patients [1]. The pathogenesis is complex and it 

occurs mostly in young women. The abnormal immune 
system mediated by B cells and T cells is a key link in the 
occurrence and development of SLE [2–4]. The clini-
cal manifestations of SLE are very diverse, and differ-
ent individuals exhibit different clinical characteristics 
at different times. This phenotypic heterogeneity makes 
the clinical diagnosis and monitoring of disease activity 
of SLE extremely challenging [5]. Currently, the immu-
nological diagnostic criteria of SLE mainly include anti-
dsDNA antibodies, anti-nuclear antibodies and anti-SM 
antibodies [6]. However, their specificity and sensitivity 
are low, and the diagnosis efficiency of SLE is still not sat-
isfactory. Hence, exploring the feature genes related to 
the pathogenesis and development of SLE is necessary.

In recent years, new technologies including next-gen-
eration sequencing and mass spectrometry have made 
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great advances in discovering novel biomarkers for the 
assessment of disease activity and diagnosing of SLE 
[7, 8]. With the improvements in bioinformatics, vari-
ous methods are also emerged for the prediction of SLE. 
However, several bioinformatic methods with accuracy 
and low efficiency may not enough for screening and 
early detection of SLE. For example, the traditional dif-
ferentially expressed genes (DEGs) analysis may result in 
the loss of intrinsic biological information. At present, 
machine learning algorithms, combined with other bioin-
formatics methods, are widely used to screen biomarkers 
with more diagnostic value.

In this study, we processed DEGs and WGCNA anal-
ysis to identify candidate genes associated with SLE. 
Then, a variety of machine learning algorithms includ-
ing LASSO, RF and SVM-REF, were combined to obtain 
the five optimal key genes. Furthermore, ROC was used 
to evaluate the predictive performance of these genes. 
Subsequently, GO, KEGG, DO, and GSEA analyses were 
used to investigate the mechanism of their contribution 
to SLE. In addition, ssGSEA, an immune-related algo-
rithm, was applied to assess the infiltration levels of dif-
ferent immune cell types. To verify the bioinformatic 

results, RT-qPCR was used to analyze the relative expres-
sion of the five optimal key genes in SLE and healthy 
control samples. Overall, we found five genes with poten-
tially strong diagnostic effects in SLE patients, suggesting 
that they might be the new targets for studying SLE.

Materials and methods
Download and processing of data
The flowchart is shown in Fig. 1. The raw gene expression 
data were obtained from the GEO database (https:// www. 
ncbi. nlm. nih. gov/ geo/) [9]. Three datasets, GSE121239 
(GPL13158, normal: 20, SLE: 292), GSE81622 (GPL10558, 
normal: 25, SLE: 30) and GSE11907 (GPL96, normal: 12, 
SLE: 103), were incorporated in the subsequent bioin-
formatic analysis. Two datasets, GSE65391 (GPL10558, 
normal: 72, SLE: 924) and GSE49454 (GPL10558, normal: 
20, SLE: 157), were used as independent validation sets. 
The information on these datasets is presented in Sup-
plementary Table 1. The microarray data were converted 
into log2 values, and the combat algorithm implemented 
in the R package “sva (version 3.40.0)” [10] was used for 
integration to remove the batch effect and form a com-
bined dataset [11].

Fig. 1 The flowchart of this study

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Differential gene expression analysis
DEGs were identified by differential expression analysis 
between SLE and control samples through the R pack-
age “limma (version 3.50.3)” [12] (criteria: | logFC| > 0.75, 
adj.p.value < 0.05). Volcano plot and heatmap showing 
the significantly upregulated and downregulated genes.

Weighted gene coexpression network analysis
The potential functional modules of SLE samples were 
identified through the R package “WGCNA (version 
1.72-1)” [11, 13]. According to the weighted correla-
tion adjacency matrices and cluster analyses, genes with 
similar expression patterns were allocated to coexpres-
sion modules. The topological overlap matrix (TOM) 
was derived from the adjacency matrix, and genes were 
assigned into different modules on the basis of the differ-
ence between them in the TOM. Notably, the cut height 
was set to 0.25, the minimal module size was set to 50, 
and the soft-thresholding power was set as 25 (scale-free 
R2 = 0.9). Furthermore, both gene importance (GS) and 
module membership (MM) were analyzed. The Spear-
man correlation coefficients and the corresponding P val-
ues were also analyzed. Finally, the corresponding genes 
extracted from the hub module were obtained for further 
analysis.

GSEA and correlation analysis
GSEA was used to identify the biological significance 
of optimal key genes [14, 15]. To obtain a normalized 
enrichment score, each analysis required the gene set 
permutations with 1000 times. And FDR < 0.05 was con-
sidered as a significant enrichment. Additionally, Pearson 
correlation analysis was utilized to analyze the correla-
tions between optimal key gene expression levels.

Functional enrichment analysis
Through the above analysis, the overlapping genes 
between DEGs and module genes were further obtained. 
A Venn diagram was constructed to show the overlap-
ping genes. The “clusterProfiler (version 4.0.5)” [16] and 
“DOSE (version 3.20.1)” [17] R packages were used to 
perform Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and Disease Ontology 
(DO) enrichment analyses to explore the function and 
pathways of these genes [18]. Additionally, a protein-
protein interaction (PPI) network was created to study 
the interaction of overlapping candidate genes through 
“STRING” (https:// string- db. org/). The coexpression 
network was also obtained with the R package “igraph 
(version 1.4.2)” [19] to study the correlation among these 
candidate genes. Additionally, the appropriate copyright 
permission of these KEGG image was obtained and used 
in this study.

Further screening of optimal key genes
A total of three machine learning algorithms including 
LASSO, SVM-REF and RF, were applied to explore the 
disease status [20–22]. The LASSO algorithm was used 
to select variables and adjust complexity [23]. The SVM-
RFE algorithm was used to analyze the most appropriate 
key genes [24, 25]. For the RF algorithm, the principle is 
to find the most reliable results from a large number of 
underlying tree models [26, 27]. Since the importance of 
genes greater than 2 in the RF algorithm is a commonly 
used screening criterion, the top 10 key genes were 
selected as new gene markers to predict the prognosis of 
SLE. Finally, the common genes obtained from the inter-
section of these several algorithms were the optimal key 
genes.

The expression and predictive value of optimal key genes
The Wilcoxon rank-sum test was used to analyze the 
expression levels of optimal key genes. The ROC curve 
was used to verify the predictive value of the optimal key 
genes [28, 29].

Analysis of hallmark gene sets and immune cell infiltration
The CIBERSORT algorithm is a tool that uses a deconvo-
lution algorithm to predict cell proportions, which helps 
to calculate the cell composition of complex immune 
tissues based on standardized gene expression data and 
quantify the abundance of specific cell types [30]. In this 
study, the CIBERSORT algorithm was used to analyze 
the infiltration of 22 immune cells in SLE and normal 
samples. The difference in immune cell proportions was 
analyzed by the Wilcoxon rank-sum test, and P < 0.05 
was considered statistically significant. In addition, the 
ssGSEA algorithm was used to quantify the relative levels 
of 50 marker gene sets [31]. In addition, Spearman’s cor-
relation between 50 hallmark gene sets and the optimal 
key genes was also obtained.

Isolation of human PBMCs
A total of 13 samples were collected from the First Affili-
ated Hospital, Zhejiang University School of Medicine, 
including 6 SLE samples and 7 healthy controls. Human 
peripheral blood mononuclear cells (PBMCs) were iso-
lated by FicollPaque density gradient centrifugation with 
EDTA anticoagulant blood.

Real‑time quantitative PCR
Total RNA from the PBMCs of SLE patients and healthy 
controls was extracted with TRIzol reagent, and cDNA 
was synthesized by reverse transcription with the Prime-
Script™ RT Reagent Kit (TaKaRa, China). β-Actin was 
used as an internal reference. RT-qPCR was performed 
with the SYBR Green PCR Kit (TaKaRa, China) based 

https://string-db.org/


Page 4 of 19Zhao et al. BMC Immunology           (2023) 24:44 

on the manufacturer’s protocol [32, 33]. Furthermore, 
the relative expression was calculated by the  2−△△CT 
method. All reactions were repeated in triplicate. The 
primers are displayed in Supplementary Table 2.

Statistical analysis
R software (version 4.1.1) and GraphPad Prism (version 
7.0) were used for data processing, statistical analysis 
and mapping. The Wilcoxon rank-sum test or Student’s 
t test identified the differences between two groups. The 
correlations were analyzed with Pearson’s or Spearman’s 
correlation tests. P < 0.05 was considered statistically 
significant.

Results
DEGs between SLE and control samples
From the GEO database, three microarray datasets, 
including the GSE121239, GSE81622 and GSE11907 
datasets, were combined to obtain a total of 57 control 
and 425 SLE samples. After the batch effect was removed 
(Fig.  2A), 242 DEGs (Supplementary Table  3) were 
identified, including 87 downregulated genes and 155 
upregulated genes (Fig.  2B). As shown in Fig.  2C, some 
genes, such as KIR2DL3, EIF1AY, CD247, ABCB1, DSC1, 
RPS4Y1, GJC1, ZNF674, SHCBP1, SPCS2, and RPLP2, 
were significantly upregulated, while some genes were 
significantly downregulated, such as MX2, SIGLEC1, 
IFIT3, RSAD2, IFI27, and PI3. Next, GSEA of KEGG 
was performed to select the enriched signaling path-
ways (Supplementary Table  4). The changes in metabo-
lism-related genes in SLE, such as pyruvate metabolism, 
DNA replication and RNA degradation were displayed 
(Fig.  2D). Notably, mucin type O-glycan biosynthe-
sis, microRNAs in cancer, and tight junctions were sig-
nificantly enriched in the SLE group (Fig. 2E). However, 
DNA replication, aminoacyl-tRNA biosynthesis and mis-
match repair were significantly enriched in the control 
group (Fig. 2F).

Application of WGCNA
The coexpression network was established by WGCNA. 
A total of 11,256 genes were selected for clustering, and 
obviously abnormal samples were excluded by setting 
thresholds (Fig. 3A). Then, when R2 = 0.9 and the average 
connectivity was high, the soft power threshold was set 
to 25 (Fig.  3B). After the associated modules were inte-
grated, five modules were obtained. The initialized and 
integrated modules were finally shown under the cluster-
ing tree (Fig. 3C). No significant correlation between the 
modules was observed (Fig.  3D). In addition, the tran-
scriptional correlation analysis revealed that there was 
also no relationship between them (Fig.  3E). The fron-
tal correlation was applied to examine the correlation 

between clinical features and ME values, and the results 
showed that yellow and blue modules were significantly 
correlated with SLE (R = 0.46, P < 3e-67; R = 0.23, P < 2.7e-
38) (Fig.  3F-H). In the yellow and turquoise modules, a 
total of 4348 candidate genes were obtained in the subse-
quent analysis (Supplementary Table 5).

Functional enrichment analysis of overlapping genes
A total of 214 candidate key genes were selected from 
the DEGs, yellow and turquoise modules (Supplemen-
tary Tables 6 and Fig. 4A). To explore the potential bio-
logical function and enrichment pathways, GO, KEGG, 
and DO analyses were performed on these candidate 
key genes. In the GO analysis, the candidate key genes 
were significantly enriched in the mRNA catabolic pro-
cess, RNA catabolic process and nuclear-transcribed 
mRNA catabolic process for the biological process (BP) 
category. For the cellular component (CC) category, the 
genes were significantly enriched in cytosolic ribosome, 
secretory granule membrane and ribosome. The molecu-
lar function (MF) category was significantly enriched in 
poly-pyrimidine tract binding, endopeptidase inhibitor 
activity and enzyme inhibitor activity (Fig. 4B). In addi-
tion, the KEGG enrichment analysis showed that these 
overlapping genes were particularly related to ribosomes, 
ubiquitin-mediated proteolysis, leishmaniasis, malaria 
and cytokine-cytokine receptor interactions (Fig.  4C-E). 
The DO analysis showed that they were mainly enriched 
in hepatitis, systemic lupus erythematosus and malaria 
(Fig. 4F).

The results of these functional enrichment analyses 
indicated that SLE patients may share common immune 
processes with other diseases. To further reveal protein-
protein interactions in SLE, PPI networks of candidate 
key genes were also analyzed (Fig.  4G, H). In general, 
these candidate key genes are closely related to each 
other and play pivotal roles in the pathogenesis of SLE.

Further identification of optimal key genes 
through machine‑learning algorithms
To further explore the key genes, three machine-learning 
algorithms were performed. According to the 214 candi-
date key genes obtained above, 34 key genes were further 
selected as diagnostic markers of SLE by the LASSO algo-
rithm (Fig. 5A and Supplementary Table 7). In addition, 
58 key genes were screened after fivefold cross-validation 
of 214 genes using the SVM-REF algorithm (Fig. 5B and 
Supplementary Table 8). For the RF algorithm, the top 10 
key genes with importance > 2 were identified, consist-
ing of MX2, SQRDL, RFTN1, KIR2DL3, ABCB1, RPS14, 
CD247, CHST11, CD6 and DSC1 (Fig. 5C, D). Finally, all 
the key genes obtained by these machine-learning algo-
rithms overlapped again, and the 5 optimal key genes 
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Fig. 2  Identification of DEGs between SLE and control samples. A The expression level of genes from these datasets after the batch effect 
removed. B The heatmap of SLE-related DEGs expression: blue means low gene expression; red means high gene expression. C The volcano plot 
of SLE-related DEGs expression. D The ridgeline map of gene metabolism in SLE. E, F The main signaling pathways that are significantly enriched 
in the SLE group (E), and in the control group (F)
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were screened out, consisting of ABCB1, CD247, DSC1, 
KIR2DL3 and MX2, which were regarded as potential 
targets of SLE (Fig. 5E).

Evaluation of the expression and diagnostic value 
of optimal key genes
The expression of five optimal key genes was further 
analyzed in 425 SLE samples and 57 normal samples. 
In Fig.  6A-E, the expression of ABCB1, CD247, DSC1 
and KIR2DL3 was significantly downregulated in SLE 
samples, while the expression of MX2 was significantly 
upregulated, indicating that they might have critical roles 
in the development of SLE (all P < 0.01). In addition, ROC 
curve analysis was performed to assess the diagnostic 
value of the optimal key genes (Fig. 6F). The AUC values 
of the ROC curves were 0.848 for ABCB1 (Fig. 6G), 0.859 
for CD247 (Fig. 6H), 0.843 for DSC1 (Fig. 6I), 0.807 for 
KIR2DL3 (Fig. 6J), and 0.907 for MX2 (Fig. 6K), indicat-
ing that the five key genes have high diagnostic value in 
evaluating the progression of SLE.

To obtain more reliable results, the optimal key genes 
were further verified in an external validation dataset 
consisting of 1081 SLE samples and 92 control samples. 
Before analysis, the GSE65391 and GSE49454 datasets 
were normalized (Supplementary Fig. 1). Fortunately, the 
expression of 5 optimal key genes in SLE samples was 
consistent with the above results (Fig. 7A-E, all P < 0.05). 
The diagnostic value of these genes was assessed by ROC 
curve analysis (Fig. 7F). The AUC values of the external 
validation datasets were also high: ABCB1 (AUC: 0.825), 
CD247 (AUC: 0.862), DSC1 (AUC: 0.780), KIR2DL3 
(AUC: 0.694), MX2 (AUC: 0.898) (Fig. 7G–K). Therefore, 
these results again prove that all the optimal key genes 
are related to SLE.

Identification of the biological function of five key genes
To clarify the biological functions of the five optimal key 
genes, GSEA was employed. According to the median 
expression levels of these genes, SLE samples were seg-
mented into two groups. In addition, immune-related 
pathways such as allograft rejection, mismatch repair, 
and protein export were significantly enriched in the high 
ABCB1 subgroup (Fig. 8A), but pathways such as osteo-
clast differentiation and type II diabetes mellitus were 
enriched in the low ABCB1 subgroup (Supplementary 

Fig.  2A). DNA replication, fatty acid elongation, mis-
match repair, and protein export were significantly 
enriched in the high CD247 subgroup (Fig.  8B), but 
arachidonic acid metabolism and type II diabetes mel-
litus were significantly enriched in the low CD247 sub-
group (Supplementary Fig. 2B). Allograft rejection, DNA 
replication, mismatch repair, protein export and ribo-
some were significantly enriched in the high DSC1 sub-
group (Fig.  8C), but glycerophospholipid metabolism, 
notch signaling pathway, and viral protein interaction 
with cytokine and cytokine receptor were significantly 
enriched in the low DSC1 subgroup (Supplementary 
Fig.  2C). Allograft rejection, fatty acid elongation, and 
mismatch repair were significantly enriched in the high 
KIR2DL3 subgroup (Fig. 8D), but measles, type II diabe-
tes mellitus, and viral protein interaction with cytokine 
and cytokine receptor were significantly enriched in the 
low KIR2DL3 subgroup (Supplementary Fig.  2D). The 
NOD-like receptor signaling pathway, notch signaling 
pathway and osteoclast differentiation were significantly 
enriched in the high MX2 subgroup (Fig.  8E), but fatty 
acid elongation, mismatch repair and protein export 
were enriched in the low MX2 subgroup (Supplementary 
Fig. 2E).

Immune cell infiltration analysis
The CIBERSORT algorithm was used to evaluate the dif-
ferences in immune cell infiltration and hallmark gene 
sets between the SLE and control groups. As shown in 
Fig.  9A, B, the proportions of naive B cells, regulatory 
T cells (Treg cells), monocytes, M0/M1 macrophages, 
eosinophils and neutrophils in SLE samples were signifi-
cantly increased compared with those in control samples, 
while the percentages of CD8 T cells, NK cells, dendritic 
cells and resting mast cells were significantly decreased.

Furthermore, correlation analysis revealed that 
four optimal key genes (ABCB1, CD247, DSC1, and 
KIR2DL3) were significantly positively related to the 
infiltration of monocytes, M0/M1 macrophages, Treg 
cells, CD8 T cells, resting dendritic cells and rest-
ing mast cells but negatively related to the infiltration 
of activated memory CD4 T cells, activated dendritic 
cells, eosinophils and neutrophils (Fig.  9C-F). How-
ever, the MX2 gene is roughly the opposite of the above 
four genes (Fig.  9G). For instance, the ABCB1 gene 

(See figure on next page.)
Fig. 3  Weighted gene co-expression network analysis. A Sample clustering dendrogram with tree leaves corresponding to individual samples. B 
The scale-free fitting index (R2) and average connectivity at different soft threshold power were analyzed. C The initialized and integrated modules 
under the clustering tree. D Collinear heat map of module key genes. Red means a high correlation, blue means a low correlation. E Clustering 
dendrogram of module key genes. F Heat map of module–trait correlations. Red indicates a positive correlation and blue indicates a negative 
correlation. G, H The frontal correlation between clinical features and yellow module (G), and turquoise module (H)
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Fig. 3 (See legend on previous page.)
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Fig. 4  Functional enrichment analysis of overlapping genes. A Venn diagram showed the intersection of DEGs and module genes of WGCNA. B–F 
GO (B), KEGG (C–E), and DO (F) enrichment analysis of the overlapping genes. G Protein-Protein Interaction (PPI) network of overlapping genes. 
H The co-expression network showed the strength of correlation of hub genes from overlapping genes. Additionally, the appropriate copyright 
permission of these KEGG image was obtained and used in this study
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was positively related to M1 macrophages (R = 0.58, 
P < 2.2e-16) but negatively related to neutrophils 
(R = − 0.74, P < 2.2e-10) (Supplementary Fig.  3). In 
Fig. 9H, I, gene correlations were also performed. These 
five optimal key genes displayed significant correla-
tions. For example, the correlation coefficient between 
ABCB1 and CD247 was 0.88, but the correlation coef-
ficient between ABCB1 and MX2 was − 0.74, indicating 
that four optimal key genes (ABCB1, CD247, DSC1 and 
KIR2DL3) had a significant functional similarity, while 
the function of MX2 gene was opposite to the remain-
ing four genes.

To explore whether there were differences in the hall-
mark gene sets between the SLE and control groups, 
the ssGSEA algorithm was used to identify the signifi-
cance of differences in 50 hallmark gene sets between 
the two groups according to the enrichment score. The 
distribution between the SLE and control groups is 
shown in Fig. 10A.

The gene sets showed significant differences, such 
as allograft rejection, coagulation, heme metabolism, 
angiogenesis, P53 pathway, inflammatory response 
and hypoxia. Hence, compared with the control group, 
these hallmark gene sets might be overactivated in 
the SLE group. In addition, four optimal key genes 
except for MX2 were generally consistent. For exam-
ple, the four optimal key genes (ABCB1, CD247, DSC1, 
KIR2DL3) were positively related to the oxidative phos-
phorylation hallmark gene set, while MX2 was nega-
tively related to it (Fig. 10B). Therefore, the role of the 
above genes should be further explored in SLE. 

Validation of the five optimal key genes
The relative expression of five optimal key genes was 
verified with RT-qPCR in SLE patients and healthy con-
trols. Compared with the control group, the expression 
of ABCB1 (Fig. 11A), CD247 (Fig. 11B), and KIR2DL3 
(Fig. 11D) was significantly downregulated, while MX2 
(Fig. 11E) was significantly upregulated in SLE patients 
(all P < 0.05), which was consistent with the results of 
this bioinformatic analysis. However, the expression 
of DSC1 (Fig.  11C) was also downregulated in SLE 

samples, although there was no statistical significance 
(P >0.05).

Discussion
SLE is an autoimmune-mediated diffuse connective tis-
sue disease characterized by immune inflammation that 
involves multiple systems and organs of the whole body. 
The main clinical characteristics are immune disorder 
and systemic inflammation, leading to progressive and 
irreversible multiorgan damage [34]. The clinical mani-
festations are extensive, including kidney, dermatologi-
cal, neuropsychiatric, and cardiovascular symptoms. For 
many years, the pathogenesis of SLE has been the focus 
of international research. The current medical consensus 
is that the pathogenesis of SLE is the result of the inter-
action of genetic, environmental and random factors. 
Autoantibodies, including anti-dsDNA antibodies and 
anti-SM antibodies, are of great significance for the diag-
nosis of SLE, but the sensitivity is low. The existing SLE 
immune serological indices cannot reach high sensitivity 
and specificity at the same time, resulting in difficulties 
in the diagnosis of SLE. Therefore, it is urgent to explore 
new biological markers to improve the diagnostic rate of 
SLE.

In recent years, bioinformatic technology has been 
increasingly developed in the fields of medical research, 
such as the search for pathogenic genes and the screen-
ing of effective drug targets. In this study, three datasets 
were downloaded from GEO databases for the subse-
quent bioinformatic analysis, and 214 candidate genes 
were obtained after overlapping the genes analyzed by 
the DEG and WGCNA. Then, functional enrichment 
analysis was performed to explore the potential biological 
function and enrichment signaling pathways. As shown 
in Fig. 4, these candidate genes are related to the PI3K-
Akt signaling pathway. Previous studies have shown that 
the occurrence of SLE may be related to the up-regula-
tion of the PI3K-Akt-mTOR pathway [35]. The DO anal-
ysis revealed the candidate genes were mainly enriched 
in systemic lupus erythematosus. Moreover, the PPI net-
work of candidate key genes displayed these candidate 
key genes are closely related to each other, and previous 
studies suggested that these genes are involved in the 
occurrence and development of SLE [36, 37]. Therefore, 

(See figure on next page.)
Fig. 5  Three machine learning algorithms were applied to further explore the optimal key genes. A The LASSO algorithm determined 
the candidate optimal feature genes and the optimal lambda. Each coefficient curve in the left picture represents a single gene. The dashed vertical 
lines in the right picture represent the partial likelihood deviance. B The SVM-RFE algorithm was performed to further candidate optimal feature 
genes with the highest accuracy and lowest error obtained in the curves. C Top 10 key genes with importance > 2 were identified in the Random 
Forest algorithm. D Random forest for the relationships between the number of trees and error rate. E Venn diagram displayed the five optimal key 
genes overlapped by LASSO, Random Forest, and SVM-REF algorithms
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Fig. 5 (See legend on previous page.)
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Fig. 6  Verification of expression and diagnostic efficacy of optimal key genes in predicting SLE progression. A–G Box plots showing the expression 
of ABCB1 (A), CD247 (B), DSC1 (C), KIR2DL3 (D) and MX2 (E) in control and SLE samples. Statistic tests: Wilcoxon rank-sum test. F–K Roc curves (F) 
estimating the diagnostic performance of ABCB1 (G), CD247 (H), DSC1 (I), KIR2DL3 (J) and MX2 (K)
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Fig. 7  Verification of expression and diagnostic efficacy of optimal feature genes using external validation datasets. A–G Box plots showing 
the expression of ABCB1 (A), CD247 (B), DSC1 (C), KIR2DL3 (D) and MX2 (E) in control and SLE samples. Statistic tests: Wilcoxon rank-sum test. F–K 
Roc curves (F) estimating the diagnostic performance of ABCB1 (G), CD247 (H), DSC1 (I), KIR2DL3 (J) and MX2 (K)
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further analysis of these candidate genes is significant. To 
further explore the feature genes, three machine-learn-
ing algorithms were performed, including the LASSO, 
RF and SVM-REF. Finally, the five optimal feature genes 
were screened out, consisting of ABCB1, CD247, DSC1, 
KIR2DL3 and MX2. Subsequently, the expression and 
diagnostic value of these genes were evaluated. The 
expression of ABCB1, CD247, DSC1 and KIR2DL3 was 
significantly downregulated in SLE samples, while the 
expression of MX2 was significantly upregulated. The 
ROC curve analysis confirmed that these genes were 
highly expressed in SLE samples in the above datasets. 
Furthermore, GO, KEGG, DO and GSEA analyses were 
used to study the biological functions of these genes. 
ssGSEA was carried out to assess differences in immune 
cell infiltration and hallmark gene sets between SLE and 
control samples.

To obtain more reliable results, the expression and 
diagnostic value of the five optimal feature genes were 

further verified in an external validation dataset which 
was also obtained from the GEO database, and the results 
confirmed by this method were consistent with the pre-
vious results. In addition, RT-qPCR was performed to 
analyze the relative expression of the five optimal key 
genes in SLE and healthy control samples, and the results 
showed that except for DSC1, the expressions of other 
genes (ABCB1, CD247, KIR2DL3 and MX2) were con-
sistent with the results of biological information analysis. 
This deviation may be related to the number of samples, 
we will expand the sample size in follow-up studies to 
further confirm these findings based on the gene and 
protein levels.

At present, several studies have discussed the rela-
tionship between these genes and the pathogenesis of 
SLE [38–43]. ABCB1 is a multidrug resistant protein 
mainly expressed in the brain, liver and skin, as well 
as in other organs [44]. Recently, ABCB1 has been 
reported to be expressed in a variety of immune cells, 

Fig. 8  The GSEA analysis identifies signaling pathways in the five optimal key genes. A–E Top five signaling pathways that are significantly enriched 
in the high expression of ABCB1 (A), CD247 (B), DSC1 (C), KIR2DL3 (D) and MX2 (E)



Page 14 of 19Zhao et al. BMC Immunology           (2023) 24:44 

Fig. 9  Analysis of immune cell infiltration. A The relative percent of 22 immune cells types between control samples and SLE samples. B Boxplot 
shows the differences of infiltrated immune cells between control samples and SLE samples. Statistic tests: Wilcoxon rank-sum test. (P < 0.05*; 
P < 0.01**; P < 0.001***; ns, no significance). C–G Correlation between immune cells and optimal key genes ABCB1 (C), CD247 (D), DSC1 (E), KIR2DL3 
(F) and MX2 (G). H, I Correlation analysis of five optimal key genes in SLE samples
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Fig. 10  Analysis of hallmark gene sets. A The specific distribution of the 50 hallmark gene sets in SLE and control samples. B Correlation analysis 
of the 50 hallmark gene sets with five optimal key genes. Statistic tests: Wilcoxon rank-sum test (P < 0.05*; P < 0.01**; P < 0.001***; ns, no significance)
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Fig. 11  The relative expressions of optimal key genes were validated by RT-qPCR. A–E The expressions of ABCB1 (A), CD247 (B), DSC1 (C), KIR2DL3 
(D) and MX2 (E) between SLE patients and healthy control. Statistic tests: Student’s t-test (P < 0.01**; P < 0.001***; P < 0.0001****; ns, no significance)
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such as monocytes, antigen-presenting dendritic cells, 
T cells, and B cells, and is involved in the expulsion of 
inflammatory molecules [45, 46]. The expression level 
of ABCB1 is reported to be significantly lower in SLE 
patients than in controls [40]. CD247, also known as 
the T-cell surface glycoprotein CD3 zeta chain, is one 
part of the T-cell antigen receptor (TCR) complex and 
plays a critical role in receptor expression and signaling. 
Studies have shown that low CD247 expression due to 
chronic inflammation is related to the decreased T-cell 
activity [47]. Accordingly, the expression of CD247 
is significantly lower in SLE patients than in healthy 
controls [41]. Killer cell immunoglobulin-like recep-
tor (KIR) is expressed on the surface of human natural 
killer cells (NK cells) and T cells and is associated with 
viral infection and tumor and autoimmune diseases. 
KIR2DL3 plays an important role in some immune-
related diseases [48, 49]. Meanwhile, the KIR2DL3 
gene was also significantly lower in SLE patients than 
in healthy subjects [42]. MX2 is an interferon induc-
ible gene that is mostly known for its antiviral activ-
ity [50]. MX2 exerts immune effects by mediating the 
effects of multiple immune cells, including neutrophils, 
macrophages and T cells [51]. In addition, significantly 
high expression of MX2 was also found in SLE samples 
[43]. However, studies on DSC1 and SLE have not been 
found. To make them more credible, RT-qPCR results 
showed that the relative expression of ABCB1, CD247, 
and KIR2DL3 was significantly downregulated, while 
MX2 was significantly upregulated in SLE patients. 
Notably, DSC1 was also lower in SLE samples, but 
without statistical significance. In general, the valida-
tion results were in line with the bioinformatic analysis 
and previous studies.

In the analysis of immune cell infiltration, different 
types of immune cells, including naive B cells, regula-
tory T cells (Treg cells), monocytes, plasma cells and NK 
cells, were significantly regulated in SLE samples. Subse-
quently, the correlations between immune cells and the 
five optimal key genes were performed. Four optimal key 
genes (ABCB1, CD247, DSC1, and KIR2DL3) were found 
to have roughly the opposite correlation to MX2 with 
infiltration of several immune cells. Meanwhile, in GSEA 
analysis, the four optimal key genes (ABCB1, CD247, 
DSC1 and KIR2DL3) have the opposite effects on many 
signaling pathways as MX2. For instance, the four opti-
mal key genes (ABCB1, CD247, DSC1, KIR2DL3) were 
positively related to the PI3K-Akt-mTOR signaling path-
way, while MX2 was negatively related to it. This char-
acteristic is consistent with the relationship between the 
five feature genes and immune cells, which means that 
these genes might affect the signaling pathways by acting 
on these immune cells.

This study relies on bioinformatics analysis, and there 
are some inconsistencies in the results. More in vivo and 
in  vitro experiments should be provided to verify the 
results.

Conclusion
In this study, a total of five optimal key genes were 
screened, providing new targets for the pathogenesis of 
SLE. Additionally, more machine learning algorithms 
were applied to improve the accuracy of genetic screen-
ing. Moreover, this study not only used external dataset 
verification but also carried out RT-qPCR experiment 
verification, making the screening results more reliable. 
In conclusion, the purpose of this study is to provide a 
new direction for the clinical diagnosis and precise treat-
ment of SLE by machine-learning analysis.
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