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Abstract
Background Immune cells and cytokines have been linked to viremia dynamic and immune status during HIV 
infection. They may serve as useful biomarkers in the monitoring of people living with HIV-1 (PLHIV-1). The present 
work was aimed to assess whether cytokines and immune cell profiles may help in the therapeutic follow-up of 
PLHIV-1.

Methods Forty PLHIV-1 in treatment success (PLHIV-1s) and fifty PLHIV-1 in treatment failure (PLHIV-1f ) followed at 
the University Hospital of Abomey-Calavi/Sô-Ava in Benin were enrolled. Twenty healthy persons were also recruited 
as control group. Circulating cytokines and immune cells were quantified respectively by ELISA and flow cytometry.

Results PLHIV-1 exhibited low proportions of CD4 + T cells, NK, NKT, granulocytes, classical and non-classical 
monocytes, and high proportions of CD8 + T cells, particularly in the PLHIV-1f group, compared to control subjects. 
Eosinophils, neutrophils and B cell frequencies did not change between the study groups. Circulating IFN-γ decreased 
whereas IL-4 significantly increased in PLHIV-1s compared to PLHIV-1f and control subjects even though the HIV 
infection in PLHIV-1s downregulated the high Th1 phenotype observed in control subjects. However, Th1/Th2 ratio 
remained biased to a Th1 phenotype in PLHIV-1f, suggesting that high viral load may have maintained a potential pro-
inflammatory status in these patients. Data on inflammatory cytokines showed that IL-6 and TNF-α concentrations 
were significantly higher in PLHIV-1s and PLHIV-1f groups than in control subjects. Significant high levels of IL-5 and 
IL-7 were observed in PLHIV-1f compared to controls whereas PLHIV-1s presented only a high level of IL-5. No change 
was observed in IL-13 levels between the study groups.

Conclusion Our study shows that, in addition to CD4/CD8 T cell ratio, NK and NKT cells along with IL-6, TNF-α, IL-5 
and IL-7 cytokines could serve as valuable immunological biomarkers in the therapeutic monitoring of PLHIV-1 
although a larger number of patients would be necessary to confirm these results.
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Background
Antiretroviral (ARV) drugs block viral replication and 
are associated with reduced rates of HIV-1-related mor-
bidity and mortality [1]. Several countries with limited 
resources have made efforts to increase the accessibility 
of ARVs to people living with HIV-1 (PLHIV-1) by fol-
lowing standardized treatment regimens [2, 3]. Currently, 
the plasma viral load and the number of CD4 + T lympho-
cytes are the conventional biological markers that allow 
for assessing the effectiveness of antiretroviral treatment 
in PLHIV-1. However, quantification of plasma viral load 
is the best way to assess disease progression and viral 
replication in the body responsible for the destruction of 
CD4 + T [4, 5]. The World Health Organization recom-
mended these biological parameters as standard mark-
ers for monitoring PLHIV-1 on antiretroviral therapy [6]. 
However, these parameters remained difficult to access 
for the populations of countries with limited resources, 
for several reasons, in particular the high cost, the non-
functionality of the measuring equipment and the cen-
tralization of these in the reference laboratories [7]. The 
advent of so-called “points of care” equipment has made 
it possible to overcome this difficulty by facilitating 
access to CD4 + T lymphocytes count for patients in the 
most remote regions of countries [8]. However, CD4 + T 
cell count is not always correlated with plasma viral load 
[7].

In the pathophysiology of HIV-1 infection, charac-
teristic complex mechanisms result in a disturbance of 
immune cell the function, in particular that of CD4 + T 
helper lymphocytes and CD8 + cytotoxic T cells [9]. 
These immune-pathological events also contribute to the 
increased production of cytokines that may play central 
role in the pathogenesis of HIV-1 infection and modu-
late viral replication control and then the progression of 
HIV-1 pathology [10].

While some studies have established a negative corre-
lation between CD4 + T cells, IL-2, IFN-γ lymphocytes 
and plasma viral load in PLHIV-1 on ART [11], other 
studies have shown that high plasma levels of IL-4 and 
IL-10 were correlated with a high plasma viral load con-
comitant with low levels of CD4 + T cells [12]. Study have 
highlighted the effect of plasma viral load on the extent 
of cytokine disruption showing that when cytokines 
were less affected, plasma viral load remained lowered 
in PLHIV-1 on antiretroviral therapy [13]. A strong posi-
tive correlation has been found between pro-and anti-
inflammatory cytokines and plasma viral load in Africans 
infected with HIV-1 [14]. Plasma viral load offers a bet-
ter predictive value of cytokine levels [14]. The kinetics of 
cytokines seems to be related to the dynamics of the viral 
and immune status of PLHIV-1. All these results suggest 
that cytokines along with immune cells may contribute as 

valuable additional parameters for the effective monitor-
ing of viral progression in PLHIV-1.

Indeed, several studies have reported that Th1/Th2 
cytokine balance may modulate HIV infection and may 
affect viral replication [15, 16]. Decreases in IL-2 and 
IFN-γ and concomitant increases in IL-4 and IL-10 would 
be associated with a decrease of antigen-specific immune 
response to HIV-1 infection [17]. Thus, cytokines may be 
considered as valuable markers of progression of AIDS. 
Therefore, the aim of this study was to assess whether 
immune cells and cytokines in PLHIV-1 would be helpful 
in the therapeutic monitoring of PLHIV-1.

Subjects and methods
Study population
The present study was conducted at the University Hos-
pital of Abomey-Calavi/Sô-Ava in Benin. A total of ninety 
PLHIV-1 under two therapeutic lines were recruited 
including forty persons with viral load < 40 copies/ml 
(successful treatment group) and fifty persons with viral 
load ≥ 1000 copies/ml (treatment failure group). They 
are all under the medical monitoring of specialist clini-
cians for at least 06 months and under the first line treat-
ment (TDF + 3TC + EFV or TDF + 3TC + DTG). Twenty 
healthy participants negative for HIV infection were 
also recruited and considered as control group. The later 
were not on any anti-inflammatory drug treatment and 
their blood count appeared normal and showed no signs 
of common infections (syphilis, hepatitis B and C) or 
abnormality. The other general inclusion criteria were as 
follow: participants should be at least 18 years old. Sub-
jects should not be infected with HIV-2 or co-infected 
with HIV-1 and 2 or not having a history of diabetes mel-
litus, or not suffering from opportunistic infections such 
as toxoplasmosis, pneumocystosis, cryptococcosis, cyto-
megalovirus and Kaposi’s sarcoma, or in a state of preg-
nancy or under anti-inflammatory drugs.

Sample collection and storage
At inclusion, 2.5 ml of venous whole blood was collected 
in both EDTA and dry tubes at the study sites and trans-
ported to the laboratory in refrigerated coolers. 300 µl of 
whole blood was systematically used for cell phenotyp-
ing. Plasma, isolated after centrifugation at 3500 rpm for 
20 min, was frozen, stored at -80 °C until used for deter-
mination of plasma viral load at the Reference Labora-
tory of the National AIDS Health Program. Serum was 
obtained from blood collected in dry tube and used for 
cytokines quantification.

Plasma viral load measurement
Plasma HIV-1 RNA viral load (VL) was performed 
using Cobas® TaqMan® 96/Cobas® Ampliprep® (CAP/
CAP-CTM) HIV-1 quantitative assay (Roche Molecular 
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Diagnostics, Basel, Switzerland), according to the manu-
facturer’s instructions and as previously described [18]. 
All samples from patients with viral load greater than 3 
log were laboratory confirmed after patients received 
adherence counseling from physicians.

Cell immunophenotyping
The immune cells were stained as described elsewhere 
[19]. Briefly, immune cell phenotyping was carried out 
with monoclonal antibodies added into the EDTA-tube 
containing whole blood. Indeed, freshly collected whole 
blood (300 µl) was incubated with a mixture of monoclo-
nal antibodies (5  µl per each) for 30  min at 4  °C in the 
dark. Then red blood cells were lysed using 2 mL Facs-
Lysing buffer-1X added to each tube and the mixture was 
incubated for 10  min at room temperature in the dark 
and washed twice with PBS-1 × (3 mL of 1X PBS was 
added and centrifuged for 8  min at 1000  rpm at 4  °C). 
Optimal combinations of antibodies were used to iden-
tify specific immune cell subpopulations: CD3-PerCP, 
CD4-FITC, CD8-PE, CD-56APC monoclonal antibodies 
were used for identification of lymphocytes’ subpopula-
tions (CD4 + T, CD8 + T, NK and NKT cells); CD3-PerCP, 
CD14-FITC, CD16-APC/Cy7 and CD19-PE monoclonal 
antibodies were used to label monocytes subpopulations, 
B cells lymphocytes and polymorphonuclear neutrophils 
and eosinophils. Stained cells were then suspended in 
300 µl of PBS 1X and 100,000 cells from each tube were 
acquired with the BDFACSCanto II flow cytometer (BD 
Pharmingen, France). Flow cytometry data were analyzed 
using (FlowJo 7.6 software version 10.8.1, BD Pharmin-
gen, France). The Fig. 1 shows the gating strategy for dif-
ferent cell subpopulation identification.

Serum cytokine measurements
Serum concentrations of a set of cytokines were deter-
mined as we described elsewhere [20] by ELISA using 
Human Peprotech Elisa Kits (Rocky Hill, NJ 08553 USA) 
according to the manufacturer’ instructions. We deter-
mined T helper cell differentiation cytokines classified as 
Th1 (IFN-γ) and Th2 (IL-4) cytokines. TNF-α, IL-6 and 
IL-7 (as pro-inflammatory cytokines) and IL-5 and IL-13 
(as anti-inflammatory cytokines) were also determined.

Data analysis
Statistical analyzes were performed using R software 
(version 4.1.2). The graphs were made using the Graph-
Pad software (version 8.3.0). The comparison of cytokine 
concentrations and cell frequencies, the IFN-γ/IL4 ratio 
between the different groups was made by the Kruskal-
Wallis test with Dunn’s multiple comparison tests.

Results
Characteristics of the study population
As shown in Table  1, the median age of participants 
was 41 [35.75- 48.00] years. No significant difference 
was observed in the median age between different study 
groups (p = 0.21). The median viral load in PLHIV-1 with 
treatment failure was 4.56 [3.9–5.1] Log, the therapeutic 
lines were TDF + 3TC + EFV or TDF + 3TC + DTG. At the 
inclusion date, the highest rate of treatment failure was 
observed in patients under TDF + 3TC + EFV (70.83%). 
The average CD4 + T cells count was 301 [205–508.5] 
cells/µl in PLHIV-1 with successful treatment whereas 
it was 269 [176.3–433] cells/µl among patients with 
therapeutic failure. The average treatment duration with 
ARV was 60 [23–196] months in PLHIV-1 with success-
ful treatment whereas it was 62 [14–192] months among 
patients with therapeutic failure (Table 1).

Lymphocytes’ frequencies in the study groups
As expected, the frequencies of CD4 + T cells were lower 
in both PLHIV-1s (p = 0.01) and PLHIV-1f (p < 0.0001) 
groups compared to the control subjects. Likewise, the 
frequency of CD4 + T cells was significantly lower in 
the PLHIV-1f group compared to the PLHIV-1s group 
(p = 0.0002) (Fig. 2A).

In opposite to CD4 + T cell profile, the frequencies of 
CD8 + T cells were higher in PLHIV-1s (p = 0.01) and in 
PLHIV-1f (p < 0.0001) as compared to the control sub-
jects. Besides, the frequency of CD8 + T cells was higher 
in PLHIV-1f compared to PLHIV-1s (p = 0.01), (Fig. 2B). 
When comparing the CD4/CD8 ratio in the study 
groups, the results showed a significantly low CD4/CD8 
ratio in PLHIV-1s and PLHIV-1f compared to control 
subjects (p = 0.01, p < 0, 0001, respectively). Specifically, 
the CD4/CD8 ratio was lower in PLHIV-1f compared to 
the PLHIV-1s group (p = 0.0004), Fig. 2C.

As shown in Fig.  2D, the frequency of NK cells was 
lower in PLHIV-1f compared to the control group 
(p < 0.0001) and to the PLHIV-1s group (p = 0.01). Same 
observation was made with NKT cells (Fig.  2E), with 
significant low frequencies in PLHIV-1s and PLHIV-1f 
compared to the control subjects (p = 0.002, p < 0.0001 
respectively). No significant difference was observed 
in the frequencies of B cells between the study groups 
(Fig. 2F).

Frequencies of monocytes’ subpopulations in the study 
groups
No significant difference was observed in the frequen-
cies of total CD14 + monocytes (Fig.  3A) and interme-
diate monocytes between the study groups (Fig.  3C). 
However, the results showed significant low frequen-
cies of classical monocytes (Fig.  3B, p = 0.008) and 
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non-classical monocytes (Fig. 3D, p = 0.002) in therapeu-
tic failure group compared to the control group.

Frequencies of polymorphonuclear cells in the study 
groups
The frequencies of granulocytes cells significantly 
decreased in PLHIV-1s (p = 0.02) and PLHIV-1f 
(p = 0.0002) (Fig. 4A) compared to the control groups. No 
significant difference was observed on eosinophils and 
neutrophils frequencies (Fig. 4B and C).

Cytokine levels in study groups
We observed a significant low concentration of IFN-γ in 
PLHIV-1s compared to the control subjects (p < 0.0001) 
and to PLHIV-1f (p < 0.0001). TNF-α concentration was 
higher in both HIV-1 infected groups but remained sta-
tistically significant in PLHIV-1f group compared to the 
control subjects (p = 0.0007). The concentration of IL-6 
in PLHIV-1s and PLHIV-1f groups were higher than that 
in the control group (p = 0.006, p < 0.0001 respectively). 
Indeed, IL-6 level was higher in PLHIV-1f compared to 
PLHIV-1s (p = 0.0003). On the other hand, we observed 
that PLHIV-1s exhibited a high concentration of IL-4 

Fig. 1 Cytometry-based gating strategies for leukoocytes’ subpopulations: T cells, B cells, monocytes, granulocytes and NK cells. A (1): Total lymphocytes’ 
population obtained based on SSC and FSC parameters. A (2): NK cells (CD3-CD56+) and NKT cells (CD3+CD56+) obtained by gating from A (1). A (3): 
CD4+ and CD8+ T cells obtained from CD3+CD56- T cells. B (1): Lymphocyte, monocyte and granulocyte populations were gated based on FSC-A and 
SSC-A in blood cells. B (2): Total B cells (CD19+) were gated from total lymphocytes using CD3 and CD19 monoclonal antibodies. B (3): Non-classical 
monocytes (CD16++CD14+), intermediate monocytes (CD14++CD16+), and classical monocytes (CD14++CD16-) were gated from total monocytes 
using CD14 and CD16 monoclonal antibodies. B (4): Neutrophil and eosinophil cells were identified based on CD16 in polymorphonuclear cells. SSC: Side 
scatter; FSC: Forward scatter; APC = allophycocyanin, PerCP = peridinin chlorophyll a protein; CD: Cluster of differentiation

 



Page 5 of 11Assogba et al. BMC Immunology           (2024) 25:22 

compared to the control subjects and PLHIV-1f (p = 0.02, 
p = 0.006 respectively). IL-5 cytokine concentration was 
higher in PLHIV-1s and PLHIV-1f compared to the con-
trol (p = 0.0006, p < 0.0001) whereas IL-7 levels signifi-
cantly increased in only PLHIV-1f group compared to the 
control (p = 0.001). No significant difference was observed 
in the levels IL-13 between the study groups (Table 2).

Discussion
Therapeutic monitoring of PLHIV-1 constitutes a major 
challenge in the success of the fight against HIV infection. 
Any easy to access biological parameter that can help 
to improve this monitoring would be beneficial for this 
issue. In this context, we undertook this study to assess 
whether immune cells and cytokine would contribute to 
facilitate the therapeutic monitoring of PLHIV-1.

CD8 + T cells are known as cytotoxic cells promoted by 
cytokines mediated by CD4 + T type Th1 lymphocytes. In 
the present study, a significant increase in the percent-
age of CD8 + T lymphocytes was respectively observed 
in subjects with treatment failure. This observation could 
be explained by chronic immune activation and persis-
tence of inflammation in subjects who failed treatment 
[21]. CD4 + T lymphocytes being the target of HIV, the 
replication of the latter obviously leads to the depletion 
of CD4 + T cells. This clearly justifies the negative correla-
tion observed between the values of CD4 + T cells and the 
viral load reported in many studies [22, 23].

It has been proven that the number of NK and NKT 
cells could serve as predictor of HIV-1 disease progres-
sion [24, 25]. NK cells play an important role in the 
control of viral infections. They can indirectly eliminate 
infected cells through antibodies or directly by cellu-
lar cytotoxicity [26]. However, data are controversial on 
NK cell proportion in HIV infection. One study reported 
that even after partial restoration of NKs following ART, 
disturbances in their distribution and function persist 
[27]. Other studies revealed that during chronic HIV-1 
infection, NK cells decreased significantly [28, 29]. NKT 
cells are at the frontier of innate and adaptive immune 
responses, and play a crucial role in HIV infection [30]. 
In the present study, the observed decrease of NKT cells 
in PLHIV-1f could be easily explained by the cell lysis 
[30]. In fact, it has been reported that under the action of 
the Nef gene, the truncated CD1d protein expressed on 
the surface of the APCs is eliminated by the NKT cells 
which then bind to the CD1d glycoproteins thanks to 
their receptor, thus causing their own lyses [30].

Human blood monocytes are classified into 
three subpopulations namely classical monocytes 
(CD14 + + CD16–), intermediates (CD14 + + CD16+) and 
non-classical (CD14 + CD16++) [31, 32]. CD16 + mono-
cytes have mainly been reported in HIV-1 infected 
patients with high viremia [33, 34]. In our study classical 
and non-classical monocyte frequencies were decreased 

Table 1 Sociodemographic and clinical data of the control subjects (n = 20), people living with HIV-1 with therapeutic success 
(PLHIV-1s, n = 40) and people living with HIV-1 with therapeutic failure (PLHIV-1f, n = 50). Healthy control subjects and PLHIV-1 under 
ARV treatment for at least 6 months were recruited at the University hospital of Abomey-Calavi/Sô-Ava between October 2021 and 
April 2022
Characteristics Healthy controls PLHIV-1s PLHIV-1f Total number

or median for all PLHIV-1
p-value

Number 20 40 50 110 -
Sex
Female, n (%) 9 (45) 28 (70) 37 (74) 74 -
Male, n (%) 11 (55) 12 (30) 13 (26) 36 -
Median age
[IQR]

39.5
[35.25–43]

45
[36.25–50.50]

40
[32.75–45.25]

41
[35.75–48.00]

ap = 0.21

Median viral load (Log)
[IQR]

ND U 4.56
[3.9–5.1]

4.56
[3.9–5.1]

-

ARV treatment
TDF + 3TC + EFV,
n (%)

- 15 (37.5) 37 (74) 52 -

TDF + 3TC + DTG,
n (%)

- 25 (62.5) 13 (26) 38 -

Median CD4 + T cell count (cells/µl) [IQR] ND 301
[205–508.5]

269
[148–417.5]

283
[176.3–433]

bp = 0.21

ARV Treatment duration (months) [IQR] - 60
[23–196]

62
[14–192]

- −

ND: Not determinated, U: Undetectable. TDF: Tenofovir, 3TC: lamivudine, EFV: Efavirenz, DTG: Dolutegravir, PLHIV-1: People living with HIV-1, IQR: Interquartile, 
ART: Antiretroviral. The statistical differences were determined using the nonparametric Kruskal-Wallis test and Mann-Whitney test. Differences were considered 
significant when p values are less than 0.05
aKruskal-Wallis test between healthy controls, PLHIV-1s and PLHIV-1f groups. bMann-Whitney test between PLHIV-1s and PLHIV-1f groups
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in PLHIV-1f probably linked to the destruction of these 
cells by HIV-1 [35, 36].

Granulocytes secrete biologically active compounds 
when they accumulate at sites of inflammation. These 
lysosomal substances are delivered to the tissues both 
by exocytosis of cytoplasmic granules and by metabolic 
reactions [37]. HIV causes granulocyte apoptosis in the 
bone marrow like ARVs, leading to granulocyte deple-
tion [38, 39], as in the case of our study. On the contrary, 
ART would inhibit neutrophil apoptosis by promot-
ing their recovery. This would explain the results of our 
study where no significant difference was observed in the 
subjects in failure and success compared to the control 
subjects [40]. Granulocytes in their terminal stage of dif-
ferentiation transform into eosinophils. The latter are not 
uncommon in PLHIV-1 and are often observed early in 
the disease or at an advanced stage of the disease [41, 42]. 
The most common clinical manifestation associated with 

eosinophilia in PLHIV is a skin rash [42]. The fact that 
no difference was observed between the study groups 
showed that HIV infection did not influence the eosino-
phil frequencies in patients.

Like cells that already serve as biomarkers for moni-
toring treatment efficacy in PLHIV-1 under ART, we 
assessed plasma cytokine levels in PLHIV-1. It has been 
reported that persistent viral replication of HIV-1 in the 
tissues such as lymph nodes could lead to this increased 
level of IL-6 [43]. In the present study, we found that 
PLHIV-1 exhibited high levels of plasma IL-6 as com-
pared to the control subjects. Moreover, the concentra-
tions of this cytokine were elevated in failure compared 
success HIV-1 patients. These observations supported 
previous findings suggesting that elevated plasma lev-
els of IL-6 that dramatically decrease during effective 
antiretroviral therapy may be a biological indicator 
of high viremia in PLHIV-1 on ARVs [44]. The other 

Fig. 2 Frequencies of lymphocytes’ subpopulations and CD4/CD8 T cell ratios. The Figure shows the frequencies of CD4 T cells (2A), CD8 T cells (2B), 
ratio CD4/CD8 (2C), NK cells (2D), NKT cells (2E) and B cells (2F) in the control subjects (n=20), therapeutic success (n=40) and therapeutic failure (n=50) 
groups. Healthy control subjects and PLHIV-1 under ARV treatment for at least 6 months were recruited at the University hospital of Abomey-Calavi/Sô-
Ava between October 2021 and April 2022. Data shown as box plots representing medians (with 25th and 75th percentiles). The statistical differences 
were determined using the nonparametric Kruskal-Wallis test with Dunn’s multiple comparisons. Differences were considered significant when p values 
are less than 0.05. NK: natural Killer, NKT: Natural Killer T, CD: Cluster of differentiation
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pro-inflammatory cytokine is TNF-α which hinders the 
entry of the virus into mononuclear phagocytes by pre-
venting its interaction with the CCR5 coreceptor through 
the increase in the expression of chemokines that bind 

the CCR5 coreceptor such as RANTES [45]. The elevated 
levels of TNF-alpha in our study likely reflect protein 
stimulation of the gene encoding gp120, as evidenced by 
the ability of cycloheximide, a protein synthesis inhibitor, 

Fig. 4 Frequencies of polymorphonuclear cells in the study groups. The Fig. 4 shows the frequencies of total granulocytes (4A), eosinophils (4B) and 
neutrophils (4C) in the control subjects (n=20), PLHIV-1 with therapeutic success (n=40) and PLHIV-1 with therapeutic failure (n=50). Healthy control 
subjects and PLHIV-1 under ARV treatment for at least 6 months were recruited at the University hospital of Abomey-Calavi/Sô-Ava between October 
2021 and April 2022. Data were shown as box plots representing medians (with 25th and 75th percentiles). The statistical differences were determined 
using the nonparametric Kruskal-Wallis test with Dunn’s multiple comparisons. Differences were considered significant when p values are less than 0.05

 

Fig. 3 Frequencies of monocytes’ subpopulations in the study groups. The Fig. 3 shows the frequencies of total CD14+ monocytes (3A), classical (3B), 
intermediate (3C) and non-classical (3D) monocytes, in the control subjects (n=20), PLHIV-1 with therapeutic success (n=40) and PLHIV-1 with thera-
peutic failure (n=50) groups. Healthy control subjects and PLHIV-1 under ARV treatment for at least 6 months were recruited at the University hospital 
of Abomey-Calavi/Sô-Ava between October 2021 and April 2022. Data were shown as box plots representing medians (with 25th and 75th percentiles). 
The statistical differences were determined using the nonparametric Kruskal-Wallis test with Dunn’s multiple comparisons. Differences were considered 
significant when p values are less than 0.05
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to block the secretion of TNF-α and IL-10 [46]. Besides, 
we observed that both pro-inflammatory cytokines, IL-6 
and TNF-α, exhibited similar profiles in PLHIV-1. The 
levels of both cytokines increased in PLHIV-1 and their 
increases were more pronounced in PLHIV-1 in thera-
peutic failure. Therefore, the profile of both cytokines, in 
the present study, did not allow to decide on therapeu-
tic outcome. However, their increase can testify to HIV 
infection.

Evidence from human studies have suggested that 
a shift between Th1 and Th2 cells may modulate the 
severity of AIDS [15, 16]. IFN-gamma is produced by 
Th1 cells which support cell-mediated immunity and 
as a consequence promote inflammation, cytotoxicity 
and delayed type hypersensitivity [47, 48]. IL-4 is pro-
duced by Th2 cells which promote humoral immunity 
and downregulate the inflammatory actions of Th1 cells 
[49]. Th1 cells also secrete IL-2, IFN-g and TNF-b, while 
Th2 cells secrete IL-4, IL-5, IL-6, IL-10 and IL-13 [50]. 
In the present study, IL-4 and IFN-γ exhibited opposite 
behaviors when we compared PVVIH-1s and PVVIH-1f 
to the control subjects. The first cytokine IL-4 increases 
while the second decreases in PVVIH-1. The observed 
low level of plasma IFN-γ could be explained by ART that 
blocking viral replication which would inhibit the syn-
thesis of mRNA responsible for the production of IFN-γ 
as reported in Kenya [12]. However, other authors have 

reported elevated IFN- γ levels in HIV-1 infected patients 
as reported in USA [51, 52]. This observation could 
be explained by the fact that the CD4 + T lymphocytes 
infected by the viruses using the CXCR5 coreceptors do 
not fuse so well that each lymphocyte produces its inter-
feron gamma [53].

In the present study, IL-4 secreted by activated CD4 + T 
cells would inhibit the spread of non-syncytium viruses 
using CCR5 coreceptors and increase the spread of 
HIV-1 isolates using CXCR4 and inducing syncytia. 
This may result in the low production of IL-4 observed 
in our study and an acceleration of the disease towards 
the AIDS phase [54]. Reduced levels of IL-4 have been 
reported in supernatants of cultured PBMCs and purified 
CD4 + T cells obtained from HIV-1 infected individuals 
[55].

To better appreciate the shift between Th1 and Th2 
phenotype in PLHIV-1 under ART, we calculated the 
Th1/Th2 ratios between IFN-γ (Th1) and IL-4 (Th2) lev-
els (Table  2). We found that Th1/Th2 ratio was highly 
polarized towards Th1 phenotype in the control subjects 
(13.13 time-fold) decreased sharply in PLHIV-1s in ther-
apeutic success, suggesting that HIV infection strongly 
downregulated Th1 phenotype. However, in PLHIV-1f, 
the ratio remained biased to Th1 phenotype (7.31 time-
fold), suggesting that high viral load may have maintained 
a potential pro-inflammatory status in these patients [51, 
52].

HIV replication in the presence of ARVs is a sign of the 
presence of resistance mutations in which elevated lev-
els of IL-5 have been reported [56] as in the case of our 
study. IL-7 is essential for T cell homeostasis. Its produc-
tion increases as in our study as part of a homeostatic 
response due to T cell depletion [57]. IL-13 is produced 
by T cells and dendritic cells and inhibits virus infectiv-
ity by down-modulating CCR5 expression on monocyte-
derived macrophages. A negative association between 
viral load and IL-13 secretion has been reported in 
PLVIH-1s [58]. But, IL-13 expression has been reported 
to be increased in infected patients and improve B cell 
growth and survival [59]. This observation could be in 
favor of the result reported in our study where non-sig-
nificant difference has been observed.

Conclusion
In summary, the present study contributes to enrich 
data on the immunological monitoring parameters of 
PLHIV-1. As commonly demonstrated, an increase in 
CD8 + T cells and a decrease CD4 + T cells were observed 
in PLHIV-1 with treatment failure. We also observed 
marked low frequencies of NK, NKT cells, classical and 
non-classical monocytes and total granulocytes in treat-
ment failure group who also exhibited a high concen-
tration of TNF-α, IL-5, IL-6 and IL-7. Interestingly, we 

Table 2 Plasma cytokine concentrations in study groups
Cytokines,
Median, (IQR)

Healthy controls
N = 20

PLHIV-1s
N = 40

PLHIV-1f
N = 50

TNF-α (pg/ml) 1085
(1047–1306)

1204
(1112–2211)

1511a

(1323–2627)
IL-6 (pg/ml) 121.5

(0,000–211.3)
524.7a

(162.2–918.5)
1364a, b

(820.5–2549)
IL-5 (pg/ml) 19.82

(11.08–29.66)
194.7a

(124.3–266.4)
176.9a

(21.3–250.2)
IL-13 (pg/ml) 932.3

(817.6–1224)
845.1
(583.9–1348)

955.8
(205.7–1768)

IL-7 (pg/ml) 209.2
(197.4–389.1)

295.3
(243.8–415.1)

547.6a

(311.5–1174)
IFN-γ (pg/ml) 1363

(1152–1813)
422.8a

(226.9–834.1)
1126b

(599.4–1625)
IL-4 (pg/ml) 135.3

(33.78–139.6)
365.5a

(101.5–492.7)
106.5b

(78–144.7)
IFN-γ/IL-4
(Th1/Th2)

13.13
(8.25–47.53)

1.44a

(0.48–4.08)
7.31b

(1.50–22.43)
Plasma cytokine concentrations in study groups were assessed in the control 
subjects (n = 20), people living with HIV-1 with therapeutic success (PLHIV-1s, 
n = 40) and people living with HIV-1 with therapeutic failure (PLHIV-1f, n = 50). 
n = number of participants in each group. Healthy control subjects and PLHIV-
1 under ARV treatment for at least 6 months were recruited at the University 
hospital of Abomey-Calavi/Sô-Ava between October 2021 and April 2022. IL: 
Interleukin. The statistical differences were performed using the nonparametric 
Kruskal-Wallis test with Dunn’s multiple comparison tests. IQR = interquartile 
range, pg/ml = picogram per milliliter. Differences were considered significant 
when p values are less than 0.05
ap < 0.05 PLHIV-1 group vs. healthy controls; bp < 0.05 PLHIV-1s vs. PLHIV-1f
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noted that the low frequencies of NK and NKT cells and 
high levels of IL-6 and TNF-α were perfectly correlated 
with high viremia in PLHIV-1f under ARV in treatment 
failure. As the ratio of CD4/CD8 T cells has always been 
so far, the present study shows that NK and NKT cells 
as well as IL-6, TNF-α, IL-5 and IL-7 cytokines could 
be valuable additional immunological biomarkers in the 
therapeutic monitoring of PLHIV-1. Prospective stud-
ies including a larger number of HIV-1 infected patients 
would be necessary and recommended to confirm these 
results.

Limitations
Our study did not lack limitations. Firstly, the declara-
tions of the state of health of the control patients did not 
benefit from verification elements. Secondly, the sample 
size was small and did not allow definitive conclusions. 
Additionally, an intracellular cytokine staining which we 
did not perform would have been more informative and 
helpful to identify the cellular sources of cytokines.
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