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Abstract

Background: We have shown previously that acute infection with the respiratory pathogen,
pneumonia virus of mice (PVM), results in local production of the proinflammatory chemokine,
CCL3, and that neutrophil recruitment in response to PVM infection is reduced dramatically in
CCL3 -/- mice.

Results: In this work, we demonstrate that CCL3-mediated neutrophil recruitment is coordinated
by interferon-gamma (IFNy). Neutrophil recruitment in response to PVM infection was diminished
five-fold in IFNy receptor gene-deleted mice, although neutrophils from IFNYR -/- mice expressed
transcripts for the CCL3 receptor, CCRI and responded functionally to CCL3 ex vivo. Similarly, in
the absence of PVM infection, CCL3 overexpression alone could not elicit neutrophil recruitment
in the absence of IFNy. Interestingly, although supplemental IFNy restored neutrophil recruitment
and resulted in a sustained weight loss among CCL3-overexpressing IFNy -/- mice, CCL3-mediated
neutrophil recruitment alone did not result in the pulmonary edema or respiratory failure
characteristic of severe viral infection, suggesting that CCL3 and IFN-y together are sufficient to
promote neutrophil recruitment but not pathologic activation.

Conclusion: Our findings reveal a heretofore unrecognized hierarchical interaction between the
IFNy and CCL3, which demonstrate that IFNy is crucial for CCL3-mediated neutrophil recruitment
in vivo.
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Background

Most respiratory virus infections are relatively benign and
self-limited events. However, infection with highly patho-
genic viruses can result in more severe sequelae, in which
disease progresses to respiratory failure due to uncon-
trolled inflammation, pulmonary edema, and damage to
lung tissue [1-5].

As part of an ongoing effort to understand inflammatory
responses during severe respiratory virus infection, we
have developed an inhalation model using the natural
rodent pathogen, pneumonia virus of mice (PVM). Origi-
nally identified by Horsfall and colleagues [6,7], PVM is a
pneumovirus (family Paramyxoviridae) that is closely
related to respiratory syncytial virus (RSV), and is among
the few characterized mouse models of virus-induced
acute respiratory distress syndrome (ARDS) [7-9]. Among
the prominent features of this infection, a minimal intra-
nasal inoculum (30 - 100 pfu) results in robust virus rep-
lication within bronchial epithelial cells that is
accompanied by profound granulocyte recruitment. In
the absence of pharmacologic intervention, PVM infec-
tion progresses to pulmonary edema and respiratory com-
promise, similar to the more severe forms of RSV infection
experienced by human infants [10,11]. In our earlier stud-
ies, we identified the chemokine CCL3 (MIP-1a.) as a cru-
cial component of this inflammatory response. PVM not
only elicits production of CCL3 by infected bronchial epi-
thelial cells [12], mice devoid of CCL3 or its receptor,
CCR1, recruit dramatically fewer neutrophils to airways
[13]. Blockade of the CCL3/CCR1 proinflammatory sign-
aling pathway in conjunction with antiviral therapy
resulted in improved survival in response to an otherwise
lethal virus inoculum [14,15]. As CCL3 is only one of sev-
eral major pro-inflammatory signaling pathways activated
by PVM infection [12], there is certainly the possibility of
additive, synergistic, or hierarchical means to promote
and to amplify the ongoing inflammatory response.

Although first identified as a component of the antiviral
response to Sindbis virus [16], the role of the Thl
cytokine, interferon-y (IFNy) in pneumovirus infection
remains uncertain. IFNy is readily detected in bronchoal-
veolar lavage fluid and nasal washings from RSV-infected
infants [17,18], and minimal or absent response has been
correlated with poor clinical outcome [19-24]. I[FNy is also
detected in BAL fluid of BALB/c mice in response to chal-
lenge with RSV virions [25,26] and plays a role in limiting
the inflammatory response to secondary challenge and in
generating the allergic histopathology in response to for-
malin-fixed RSV vaccine antigens and virion components
[27,28]. Likewise, local production of IFNy is a prominent
response to PVM infection [12,29,30], although its role in
modulating the primary inflammatory response has not
yet been fully explored.
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In this manuscript, we explore the role of IFNy in modu-
lating the inflammatory response to PVM infection, and
utilize overexpression analysis to begin a dissection of the
independent and interdependent contributions of both
IFN-y and CCL3 to the process of neutrophil recruitment
in vivo.

Results

Microarray profiling of IFN expression in response to PYM
infection

Transcript encoding the cytokine IFNy was detected in
mouse lung tissue at various time points in response to
PVM infection [12]. In response to a non-lethal inoculum
of PVM strain J3666, IFNy mRNA was detected above
baseline levels beginning on day 5. IFN-y mRNA levels
peak at day 7 after inoculation, and fall rapidly to baseline
between days 7 - 14. Shown in Figure 1A are profiles of
the 203 transcripts (of total 45,101 transcripts on the
430_2 mouse chip) that display kinetic expression corre-
lations of 0.900 or greater with the IFN-y profile, as per the
'find similar’ algorithm of Genespring GX 7.3. Selected
transcripts, categorized by function, are listed in Table 1.
Among the transcripts that correlate with the IFNy profile
are 17 characterized interferon-response genes. Most
intriguing is the close correlation (0.965) between the
expression patterns of I[FNy and CCL3 (MIP-1a)). CCL3 is
essential for granulocyte recruitment in response to PVM
infection [13]. As shown in Figure 1B, there is a significant
correlation between levels of immunoreactive IFNy and
CCL3 in lung tissue from individual PVM-infected mice.

Detection IFN * NK and T cells in PVM infected lung tissue
Both total and IFNy+ subsets of NK cells, CD4+and CD8+
T cells were enumerated in single cell suspensions of lung
tissue from PVM-infected BALB/c mice evaluated at day 6
after inoculation with 10 pfu PVM strain J3666 [Figure
1C]. Only a small fraction (<2%) of the CD4+ T cells
detected at this time point stained positively for IFNy, in
contrast to the larger fraction of IFNy*CD8* T cells
detected (9.9 + 0.6 x 103 cells, 11% of total CD8+T cells).
Interestingly, 23% of the total NK cells (3.4 + 0.9 x 103
cells) stained positively for IFNy, an increase from 0.3 +
0.08 x 103 cells, or 4% of the total NK cells detected in a
single lung from uninfected mice (data not shown).

IFN -dependent responses to PYM infection

Wild type and IFNy receptor gene deleted (IFNyR -/-) mice
were infected with PVM and various parameters relating
to the inflammatory response were assessed. Neutrophil
recruitment to the airways was markedly diminished in
IFNYR -/- mice [Figure 2A], reduced from 54 + 11 per 10
hpfs among wild type to 10 + 1.3 hpfs among IFNyR -/-
mice, as determined on cytospin preparations of cells in
BAL fluid (p < 0.001). These findings are consistent with
those of Frey and colleagues [30], who described reduced
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Figure |
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(A) Expression of transcripts in mouse lung tissue in response to PVM infection: IFN-y and IFN-y correlating
profiles. Baseline expression in uninfected mice (day 0) is set at 1.0 and normalized expression (per gene, per chip) is shown
for days | — 7, 10, 14, 21 and 28 after inoculation. Profiles of 203 transcripts with patterns that correlate with that the profile
of IFN-y (0.900 to 0.969) are shown in yellow to red, respectively, and identified by name in Table |. The expression profile of
CCL3 (MIP-1a), a chemokine crucial for neutrophil recruitment in response to PVM infection, is overdrawn with a blue line
(correlation 0.965). (B) Correlation of IFN-y and CCL3 protein levels in individual PVM-infected mice. IFN-y and
CCL3 detected by ELISA in lung tissue homogenates from individual mice days 0 — 28 after inoculation with 30 pfu PYM (n =
43) are as shown. (C) IFNy* NK and T cells detected in lungs of PVM-infected mice. Total and IFNy* NK cells, CD4*
T cells, and CD8* T cells (+ sd) detected per lung on day 6 after inoculation with 10 pfu PVM.
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Table I: Expression profiles that correlate with IFN-y in PVM-infected mouse lung tissue.

Transcript Symbol Acc. No. Correl.
Interferon-y and related transcripts
Interferon-y Ifng K00083 1.000
Interferon inducible protein | Ifil NM_008326 0.961
Interferon-stimulated protein Isg20 BC022751 0.953
Interferon-y induced GTPase Igtp NM 018738 0.953
Interferon-induced transmembrane protein 6 Ifitmé BB193024 0.950
CXC chemokine ligand | | (IP-9) Cxcll NM_019494 0.949
Interferon inducible protein 47 Ifi47 NM_008330 0.940
Interferon activatible protein 203 1fi203 Al607873 0.932
Interferon activated gene 205 Ifi205 Al481797 0.929
Interferon induced protein with tetratricopeptide repeats | Ificl NM_008331 0.929
Interferon consensus sequence binding protein | lesbpll BG069095 0.926
Interferon regulatory factor 7 Irf7 NM_016850 0.922
Interferon activated gene 205 Ifi205 Al481797 0916
Interferon regulatory factor 5 Irf5 NM 012057 0914
Interferon activated gene 203 1fi203 NM 008328 0910
Interferon-induced protein with tetratricopeptide repeats, 3 Ifit3 NM_010501 0.909
Interferon induced protein with tetratricopeptide repeats 2 Ifit2 NM_ 008332 0.901
Other inflammation-associated transcripts
CC Chemokine ligand 3 (MIP-1c) Ccl3 NM_ 011337 0.965
Toll-like receptor 2 Tir2 NM_011905 0.959
Interleukin-13 receptor alpha | I13ral S80963 0.959
Suppressor of cytokine signaling 3 Socs3 NM_007707 0.951
Galectin-9 Lgals9 NM_010708 0.948
Interleukin-| receptor antagonist Ilrn M57525 0.947
Regulator of G-protein signaling 19 interacting protein | Rgs19ipl NM 018771 0.943
Interleukin-6 16 NM 031168 0.937
CD244 natural killer cell receptor 2B4 Cd244 NM 018729 0.928
CSF2 receptor Csf2rb2 NM 007781 0.928
Fc receptor, IgG, high affinity, | Fcgrl AF143181 0.926
CC chemokine receptor | Cerl AV231648 0.926
Pentaxin-related gene Ptx3 NM_008987 0.926
CXC chemokine ligand 13 (BLC) Cxcll3 AF030636 0.921
CXC chemokine ligand 2 (MIP-20) Cxcl2 NM_009140 0919
CXC chemokine ligand 5 (ENA-78) Cxcll BB554288 0914
Arginase || Arg2 NM_009705 0.904
Signal transducer and activator of transcription | Statl AW?214029 0.904
Regulator of G-protein signaling | Rgsl NM 015811 0.903
CC chemokine receptor-like 2 Ccrl2 AJ318863 0.902
Various
Membrane-spanning 4-domains, subfamily A, member 8A Ms4a8a NM_022430 0.969
Chondroitin sulfate proteoglycan 2 Cspg2 BM251152 0.963
Fas death domain-associated protein Daxx NM_ 007829 0.960
O-acyltransferase domain containing | Oactl AV366860 0.960
Mitogen activated protein kinase kinase kinase kinase | Map4k| BB546619 0.960
Lymphocyte cytosolic protein 2 Lep2 BC006948 0.959
Solute carrier family 15, member 3 Slc15a3 NM 023044 0.956
Indoleamine-pyrrole 2,3 dioxygenase Indo NM_008324 0.954
Proteosome subunit beta type 9 Tapl AW048052 0.952
Phospholipase Al member A Plala NM_ 134102 0.949
Methylene tetrahydrofolate dehydrogenase Mthfd2 BG076333 0.949
Pre-B colony enhancing factor | Pbefl AW989410 0.948
Thioredoxin reductase | Txnrdl BB284199 0.948
CGG triplet repeat binding protein | Cggbpl B1080272 0.945
Sphingosine kinase | Sphkl AF068749 0.944
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Table |I: Expression profiles that correlate with IFN-y in PVM-infected mouse lung tissue. (Continued)

Pyrophosphatase

2'-5' oligoadenylate synthetase 1G

Ubiquitin D

Apolipoprotein D

Membrane-spanning 4-domains, subfamily A, member 4C
AT rich interacting domain 5A

Hemopoietic cell kinase

Histocompatibility 2, complement component factor B
ATP binding cassette

Cholesterol 25-hydroxylase

BING 4 protein

Thymidylate kinase, LPS inducible

Tripartite motif protein 30

Tissue specific transplantation antigen 30
Syndecan binding protein
Prostaglandin-endoperoxide synthase 2

Traf binding protein

Two pore segment channel 2

Early growth response 2

GLI pathogenesis-related 2

Cytochrome p450, family 7, subfamily b

Rab20, Ras oncogene

Solute carrier 39

Dual specificity phosphatase 3

Ribosome binding protein |

Spermidine synthase

Ubiquitin-specific protease 18

Lipocalin

Jun-B oncogene

Guanylate nucleotide binding protein 3

Pre-B cell colony-enhancing factor |
Membrane-spanning 4-domains subfamily A, member 6B
SLAM family member 7

Ras and Rab interactor |

Class Il transactivator

Myxovirus resistance |

Chloride channel calcium activated 2

Rap2C, member of RAS oncogene family
Tumor necrosis factor, alpha induced protein 2
SLAM family member 8

Pyp NM_026438 0.944
Oaslg BC018470 0.943
Ubd NM 023137 0.943
Apod NM_007470 0.940
Ms4a4b NM_029499 0.936
Arid5a BC027152 0.935
Hck NM 010407 0.933
H2-Bf NM_008198 0.933
Abcc5 BB436535 0.933
Ch25h NM_ 009890 0.932
Bing4 C78559 0.932
Tyki AK004595 0.930
Trim30 BM240719 0.929
Tsta3 NM 031201 0.929
Sdcbp AV227603 0.928
Ptgs2 M94967 0.926
T2bp BB277065 0.925
Tpen2 BC025890 0.925
Egr2 X06746 0.925
Glipr2 BM208214 0.925
Cyp7bl NM_007825 0.924
Rab20 BG066967 0.923
Slc39al4 BB399837 0.922
Dusp3 BQ266434 0.922
Rrbpl AF273691 0.922
Srm NM_009272 0.921
Uspl8 NM 011909 0.920
Len2 X14607 0.920
Junb NM_008416 0.919
Gbp3 NM_018734 0.919
Pbefl AW989410 0917
Ms4aéb NM_027209 0917
Slamf7 AKOI6183 0915
Rinl BCO11277 0915
C2ta AF042158 0913
Mx| M21039 0.910
Clcal AF108501 0.910
Rap2c AK008416 0.910
Tnfaip2 NM_009396 0.908
Slamf8 BC024587 0.908

The microarray analysis software package, Genespring GX 7.3 'find similar' function was used to inspect all transcript profiles for patterns related to
that displayed by IFN-y. The minimum correlation considered to be similar was set at 0.900 (see Figure |A).

inflammation in association with reduced IFNy produc-
tion in the lungs of PVM infected, T-cell deficient mice.
Given our earlier studies on the essential role of CCL3 in
eliciting neutrophil recruitment, it is interesting to note
that the absence of IFNy signaling had no impact on local
production of this chemokine in response to PVM infec-
tion [Figure 2B]. IFNy was also detected in response to
PVM infection in both wild type and in IFNyR-/- mice,
albeit at higher levels among the latter group, most likely
due to the absence of feedback inhibition (data not
shown). The diminished neutrophil recruitment, while
significant, was not as profound as that observed in mice
subjected to complete blockade of CCL3-mediated signal-
ing, in which we observed 104-105 fold-diminished neu-
trophil recruitment [14,15]. As might be anticipated from
the diminished inflammatory response, we observe a sta-

tistically significant increase in virus titer among the
IFNYR-/- mice [Figure 2C], although this difference is like-
wise not as dramatic as that observed in response to com-
plete blockade of CCL3 signaling.

Receptor expression and responses of neutrophils from
IFN R gene-deleted mice

As part of an initial attempt to determine whether neu-
trophils from IFNyR -/- mice were capable of responding
to CCL3, we explored receptor expression and ligand-
mediated calcium flux in neutrophils isolated from both
gene-deleted and wild type mice. As shown in Figure 3A,
both wild type and IFNyR-/- neutrophils express tran-
scripts encoding CCR1, the major receptor for CCL3; no
significant difference in absolute copy number was deter-
mined. Likewise, CCL3 induced dose-dependent intracel-
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Figure 2

Neutrophil recruitment in response to PVM infection
is diminished in IFN-yR gene-deleted mice. (A) Neu-
trophils detected in BAL fluid 5 days after inoculation; hpf,
high power field; *p < 0.001;(B) Detection of CCL3 in BAL
fluid; *p < 0.001 (C) Virus copy number detected in lung tis-
sue determined by quantitative RT-PCR.

lular calcium flux in both gene-deleted and wild type
neutrophils [Figure 3B], demonstrating that neutrophils
from IFNyR-/- mice have the innate capacity to respond to
this chemoattractant ligand; the EC50s and maximum cal-
cium fluxes detected were indistinguishable between the
wild type and gene-deleted strains.

Overexpression of CCL3

In order to examine the independent and interdependent
contributions of CCL3 and IFNy to the process of neu-
trophil recruitment in vivo, we generated a method for
overexpression of CCL3 in vivo. CCL3 was detected in lung
tissue homogenates [Figure 4A], reaching levels similar to
those detected in lung tissue of mice in response to PVM
infection [12]. Immunoreactive CCL3 was detected in
bronchial epithelial cells [Figure 4B]. No CCL3-positive
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cells were detected in lung tissue from mice challenged
with control vector (vctrl) [Figure 4C]J.

Inflammatory responses to IFN and CCL3

We examined neutrophil recruitment in response to CCL3
overexpression in IFNy gene-deleted mice (IFNy -/-) with
and without IFNy supplementation. As shown in Figure
5A, few neutrophils are detected in BAL fluid at baseline
(vctrl) and no recruitment over baseline is observed in
response to IFNy alone. Likewise, overexpression of CCL3
in the absence of IFNy does not elicit neutrophil recruit-
ment. Neutrophil recruitment (~10 - fold over baseline)
was observed in response to CCL3 expression only in the
presence of IFNy. At the microscopic level, no inflamma-
tion was observed in lung tissue of IFNy -/- mice in
response to CCL3 overexpression alone [Figure 5B]. In
contrast, significant pathology was observed in lung tissue
of IFNYy -/- mice expressing CCL3 and supplemented with
exogenous IFNy. Findings include moderate peribronchi-
olar granulocytic infiltration and substantial parenchymal
involvement but minimal edema fluid within the bron-
chioles and in the parenchymal tissue [Figure 5C]. Inter-
estingly, weight loss is sustained among the mice
overexpressing CCL3 while receiving supplemental IFNy
over the 9 day examination period [Figure 5D], but,
despite the substantial inflammatory response, we
observe no progression to respiratory failure up to and
including t = 14 days.

Discussion

In previous work, we demonstrated that the actions of the
chemokine, CCL3, signaling via its receptor CCR1, were
crucial for granulocyte recruitment to the lungs in
response to PVM infection [13-15]; CCL3 has also been
shown to be a crucial mediator of granulocyte recruitment
in mouse models of influenza [31]. Paradoxically, CCL3
gene-deletion results in augmented neutrophil and eosi-
nophil recruitment in response to Cryptococcus neoformans
infection [32]. Here we show that CCL3-mediated neu-
trophil recruitment depends directly on IFNy signaling,
both in the setting of acute virus infection and in response
to heterologous CCL3 expression in the respiratory epi-
thelium.

Granulocyte recruitment is a primary finding in severe res-
piratory virus infection; activation of granulocytes can
result in the release of proinflammatory cytokines and
proteolytic enzymes that can contribute to the ongoing
lung damage [33-37]. Interestingly, although neutrophils
are recruited to the lung parenchyma in response to CCL3
via coordination by IFNy, these cytokines alone clearly are
not sufficient to induce the inflammatory state that ulti-
mately promotes lung damage and respiratory failure.
Thus, despite our findings demonstrating improved sur-
vival from PVM infection with CCR1 blockade [15], and
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Figure 3

Comparison of wild type and IFNYR gene-deleted neutrophils. (A) Expression of CCRI transcript in wild type and
IFNYR gene-deleted neutrophils (n = 9 and 6 independent samples, respectively) determined by quantitative RT-PCR; horizon-
tal line denotes mean copy number. (B) Calcium flux (RFU) measured in response to increasing concentrations (0 — 500 nM)

of CCL3.
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Figure 4

Heterologous expression of CCL3 in mouse lungs.
(A) Detection of immunoreactive CCL3 in lungs of mice on
day 9 after challenge via intranasal inoculation with the CCL3
overexpression vector (vCCL3) or control vector (vctrl), *p
< 0.01. (B) Lung tissue from mice challenged with vCCL3,
immunohistochemical localization of CCL3 within bronchi-
olar epithelial cells (at arrows), (C) Lung tissue from mice
challenged with vctrl.

those of He and colleagues [38], who likewise demon-
strated that CCR1 antagonism provided protection
against neutrophil-mediated lung injury in a mouse
model of acute pancreatitis, the results presented here, in
which we observe neutrophil recruitment but minimal
clinical disease, suggest that neutrophil recruitment and
neutrophil activation are to some extent distinct and dis-
crete signaling events. It will be crucial to identify the
proinflammatory mediators that activate and well as
those that recruit neutrophils in order to have a complete
picture of the proinflammatory state characteristic of PVM
infection.

The experimental studies performed in this manuscript
utilize both IFNy and IFNYyR gene-deleted mice, which are
in BALB/c and C57BL/6 background strains, respectively.
PVM infection has been explored systematically in several
inbred strains of mice by Anh and colleagues [39] who
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determined that the C57BL/6 strain is somewhat more
resistant to infection than BALB/c, but that both of these
inbred strains can ultimately succumb to the sequelae of
severe disease. We have used both of these strains exten-
sively for our studies (reviewed in [7-9]) and both
respond to PVM infection with robust virus replication in
lung tissue, granulocyte recruitment and local production
of proinflammatory cytokines, including CCL3 and IFNy;
no systematic differences, other than the aforementioned
susceptibility to infection, have been detected.

Both CCL3 and IFNy have been detected in human studies
and in mouse models of other severe respiratory virus
infections, including avian influenza, SARS coronavirus,
and human respiratory syncytial virus [17,18,40-47],
although the potential for interplay between these specific
signaling pathways has not been considered previously.
Our data suggest that that IFNy and CCL3 signaling path-
ways, both crucial features of the response to pneumovi-
rus infection, interact in a hierarchical fashion, as IFNy
does not elicit neutrophil recruitment on its own [Figure
5A], but is crucial for CCL3 to function effectively. Inter-
actions between IFNy and CCL3 may occur at the level of
signal transduction, or via alterations to the neutrophil
itself. As has been documented clearly, CCL3 can function
alone to induce changes in calcium concentration and
chemotactic responses in mouse neutrophils in vitro [48].
The current literature on interactions of IFNy with granu-
locytes was recently reviewed [49]. Among the possibili-
ties that may address our findings, Hansen and Finbloom
[50] reported that human neutrophils express IFNy recep-
tors and Bonecchi and colleagues [51] have shown that
human neutrophils respond to IFNy with increased
expression of a variety of mediators and receptors, includ-
ing the primary CCL3 receptor, CCR1. It is unclear
whether mouse neutrophils respond in a similar fashion,
and whether or not these defined molecular responses
take place in vivo, although we have shown here that neu-
trophils from IFNyR gene-deleted mice express transcripts
for CCR1 and mobilize intracellular calcium in response
to CCL3 when examined ex vivo. We have not yet explored
the possibility that the IFNy coordinates neutrophil
recruitment in response to CCL3 in a more indirect fash-
ion, possibly via one or more intermediary cytokines. An
example of this phenomenon was reported by Khader and
colleagues [52], who demonstrated that Mycobacterium
tuberculosis-infected dendritic cells from IL-12p40 gene-
deleted mice that were unresponsive to a CCL19 gradient
were also overproducing the cytokine IL-10. Most intrigu-
ing, addition of IL-10 to wild-type dendritic cells repro-
duced the inhibited chemotaxis response.

Conclusion

In summary, we demonstrate here that CCL3, a proin-
flammatory mediator produced in response to RSV and
shown to be a crucial in recruiting neutrophils in response
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to the mouse pneumovirus, PVM, functions via a hierar-
chical relationship with IFNy. Specifically, CCL3 recruits
neutrophils to the lung in vivo only in coordination with
IFNy-mediated signaling pathways. The mechanism via
which IFNy modulates neutrophil responses to CCL3 is an
intriguing subject for future exploration.

Methods

Microarray analysis

Generation of gene microrarray data was as described pre-
viously [12]. Data collected were evaluated using the
microarray software analysis package Genespring GX 7.3.
The 'find similar' function was used to inspect all 45,101
transcript profiles in order to detect kinetic profiles similar
to that of IFNy. The minimum correlation to be consid-
ered a similar profile was set at 0.900. The higher the cor-
relation coefficient (maximum 1.000 for complete
overlap), the more similar the gene expression profiles.

Mouse, virus and vector stocks

BALB/c and C57BL/6 mice were purchased from Taconic
Laboratories (Germantown, NY and Rockville, MD).
Homozygous IFNy gene-deleted (IFNy -/-) mice [53] on a
BALB/c background and IFNy receptor gene-deleted
(IFNyR -/-) mice [54] on a C57BL/6 background were pur-
chased from Jackson Laboratories, Bar Harbor, ME. All
animal studies were performed as per approved protocols
CHUA #634 (SUNY Upstate) or LAD 8E (NIAID). PVM
strain J3666 was passaged, stored and quantitated as
described previously [13]. Mice were anaesthetized and
inoculated by intranasal challenge with 30 - 100 plaque
forming units (pfu) PVM also as previously described. For
challenge with recombinant vectors (described as fol-
lows), dilutions of secondary stock aliquots of vCCL3 and
vctrl (described in the section to follow) were prepared in
RPMI cell culture medium. Under brief anaesthesia, mice
were inoculated with 150 pl of stock (50 pl/dose x 3
doses) to achieve challenges of 1.0 - 1.5 x 101! pfu per
mouse. On days indicated, mice in each challenge group
were sacrificed by cervical dislocation and bronchoalveo-
lar lavage (BAL) fluid, total lung protein and total lung
RNA were harvested. For some experiments, mice received
15 pg recombinant murine IFNy (R&D Systems, Minneap-
olis, MN) diluted in tissue culture medium (RPMI + 10%
fetal calf serum) or tissue culture medium (vehicle) via
intraperitoneal injection one day prior to intranasal chal-
lenge with the vCCL3 or vctrl which yielded 323 + 28 pg
IFNy/mg lung on day 4 post-inoculation.

Flow cytometric determination of IFN * NK and T cells in
mouse lung tissue

Whole lungs of BALB/c mice (uninfected or day 6 after
inoculation with 10 pfu PVM, n = 5 per datapoint) were
cut into ~3 mm?3 pieces in HBSS buffer (Invitrogen) and
pressed through a 100 micron cell strainer (BD Bio-
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sciences, San Jose, CA) to obtain single cell suspensions.
Cells were suspended in RPMI-1640 medium supple-
mented with 10% fetal calf serum, 2 mM glutamine, 100
U/mL penicillin, 100 U/mL streptomycin, 50 pM 2-mer-
captoethanol, 1 mM sodium pyruvate, and nonessential
amino acids (all from Invitrogen) and incubated for 6 hrs
at 37°C at a density of 1 x 100 cells/ml with 1 uM iono-
mycin, 20 ng/ml phorbol-12-myristate acetate (EMD Bio-
sciences, San Diego, CA) and 10 pg/ml brefeldin A
(Sigma-Aldrich Co., St. Louis, MO). DNAse I (Sigma) was
added for 5 minutes and then cells were washed once and
stained with violet LIVE/DEAD Fixable Dead Cell stain
(Invitrogen) for 30 minutes on ice, washed in PBS, fixed
in 4% PFA, and stored at -80°C until analysis. Intracellu-
lar cytokine staining was performed as described previ-
ously [55]. Cells were stained with I-Ad FITC, DX5-PE,
CD3-PE-Cy5, CD4 PerCP/Cy5.5, IFNy PE-Cy7, and CD8
APC-Cy7 (BD Biosciences) in PBS with 0.1% BSA, 0.1%
saponin (Sigma) and 5% nonfat dry skim milk. Controls
were stained with isotype matched antibodies. Samples
were acquired with a 4-laser LSR II flow cytometer (BD
Biosciences) and analyzed on FlowJo software (Tree Star,
Inc., San Carlos, CA). Viable lymphocytes were identified
by typical forward and side scatter and negative staining
for LIVE/DEAD violet. T cells were identified as I-A-, CD3+
and either CD4+ or CD8+ as indicated; NK cells were iden-
tified as I-A-, CD3-, DX5+. Quadrant statistical markers
were based on corresponding isotype matched controls.
Samples consisted of a known fraction (typically 1/4) of
the cells obtained from a whole lung, and the entire sam-
ple was analyzed (typically 2 - 4 x 105 events) yielding the
absolute number of cells per lung.

Isolation of neutrophils from wild type and IFN R-/- mice
Neutrophils were isolated from wild type and IFNyR-/-
mice as described [56]. Briefly, 2 mL intraperitoneal injec-
tion of thioglycollate was administered and 4 hours later,
mice were sacrificed and cells were harvested by perito-
neal flush with 10 mL PBS (without calcium or magne-
sium). Cells were washed, red blood cells lysed with
distilled water, and viability determined at >95% by
trypan blue exclusion. Further isolation via Ficoll/
Hypaque density gradient centrifugation yielded neu-
trophil purities of 85 - 99% as determined by modified
Giemsa staining of cytospin preparations.

Absolute quantification of CCRI expression

Total RNA was isolated from neutrophils elicited from
wild type and IFNyR -/- mice using the RT2 qPCR-Grade
RNA Isolation Kit (SuperArray Bioscience Corporation).
The cDNA was prepared using the 1ststrand cDNA Synthe-
sis Kit for RT-PCR (AMV; Roche Applied Science). QPCR
was performed using the TagMan Universal PCR Maser
Mix (Applied BioSystems) with primer-probe pairs for
GAPDH (TagMan Rodent GAPDH Control Reagents VIC
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probe Applied Biosysystems) or CCR1 (chemokine (C-C
motif) receptor 1 Mm00438260_s1 FAM labled, Applied
Biosystems). The standard curve for mouse GAPDH
included serial dilutions of the DECA template GAPDH-
Mouse probe (Ambion); the standard curve for mouse
CCR1 included serial dilutions of the coding sequence
(GenBank Accession # U28404) in pCEP4. Reactions were
run in triplicate in the 7500 RealTime PCR System
(Applied Biosystems); data presented as copies of CCR1
per 10° copies GAPDH.

Intracellular calcium measurements

Intracellular calcium measurements were performed in a
Benchtop Scanning Fluorometer and Integrated Fluid
Transfer Workstation (Flexstation; Molecular Devices) as
described [56]. Briefly, 2.5 x 105 thioglycollate-elicited
neutrophils were suspended in 100 pl of Hank's buffered
saline solution with 20 mM HEPES and 100 pl fluorescent
dye (FLIPPER calcium 3 assay kit component A; Molecular
Devices) in a 96 well plate. The cells were incubated at
37°C for 30 minutes, centrifuged for 5 minutes, and chal-
lenged with various concentrations of CCL3, buffer alone
(negative control) or f-MLF (positive control). Changes in
intracellular calcium concentration were recorded as rela-
tive fluorescence units (RFU).

Construction vCCL3 and control (vctrl) overexpression
vectors

Generation of overexpression vectors was accomplished
using the commercially available AdEasy XL vector system
(Stratgene, La Jolla CA) according to the manufacturer's
instructions. Briefly, murine CCL3 (GenBank Accesion
No. NM 011337) was ligated into the multiple cloning
site of the shuttle vector, pShuttleCMV; the corresponding
control plasmid, containing the -galactosidase gene, was
supplied with the kit. The constructs were linearized with
Pme 1 and transformed into an E. coli strain, (BI5183)
which contains the replication-incompetent pAD-1 back-
bone. Transformants were selected for kanamycin resist-
ance, and recombinants subsequently identified by
restriction digestion. Once recombinants were identified,
they were produced in bulk using the recombination-defi-
cient bacterial strain, XL-10 Gold. Purified recombinant
plasmid DNA was digested with Pac I to expose inverted
terminal repeats and used to transfect AD-293 cells in
which the deleted viral assembly genes are complemented
in vivo. The resulting constructs, vctrl and vCCL3 were har-
vested from the transfected AD-293 cells when more than
90% of the monolayer exhibited cytopathic effects. Sec-
ondary stocks were produced in a similar fashion. Titra-
tion was performed by standard plaque assay. The
concentration of secondary stocks reached titers of ~1012
pfu/ml for each construct. Viral stocks were stored at -
80°C prior to use.
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Bronchoalveolar lavage (BAL) and differential cell counts

At time points indicated, BAL fluids were harvested from
5 mice by trans-tracheal instillation and removal of pre-
chilled phosphate-buffered saline with 0.25% bovine
serum albumin (BSA; 0.80 ml instillation with recovery of
0.5 to 0.6 ml per mouse). Neutrophil counts were deter-
mined by visual inspection of methanol-fixed cytospin
preparations stained with modified Giemsa (DiffQuik,
Fisher Scientific, Pittsburgh PA).

Chemokine and cytokine determinations

Concentrations of CCL3 and IFNy were determined in
BAL fluid (pg/ml) isolated as previously described [13]
from five mice per datapoint, using commercially availa-
ble ELISA kits (R&D Systems, Minneapolis, MN). Total
protein was determined the Bradford colorimetric assay
using bovine serum albumin standards

Gross and microscopic pathology and
immunohistochemical detection of CCL3

Paraffin blocks of formalin-fixed lung tissue from mice
challenged with vctrl or vCCL3 were paraffin-embedded
and sectioned. Standard hematoxylin and eosin staining
of formalin-fixed tissue was performed by American His-
tolabs (Gaithersburg, MD). To detect CCL3 protein
expression in situ, slides were incubated with a 1:50 dilu-
tion of goat anti-CCL3 (R&D Systems, Minneapolis, MN)
followed by a 1:400 dilution of biotinylated rabbit anti-
goat Ig and developing reagents (performed by Histoserv,
Inc., Germantown, MD).

Virus titer

Quantitative reverse transcriptase PCR to document PVM
titer in mouse lung tissue was as described previously
[57]. Datapoints are presented as copies of PVM SH gene
per 10? copies GAPDH.

Statistical analysis

Experimental datapoints were from triplicate samples,
experiments replicated two to three times. Data were eval-
uated by Student's t-test or Mann-Whitney U-test as
appropriate.

Abbreviations

CCL3: CC chemokine ligand 3; IFNy: interferon-gamma;
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