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Abstract
Background: The cleavage of recombination signals (RS) at the boundaries of immunoglobulin V,
D, and J gene segments initiates the somatic generation of the antigen receptor genes expressed
by B lymphocytes. RS contain a conserved heptamer and nonamer motif separated by non-
conserved spacers of 12 or 23 nucleotides. Under physiologic conditions, V(D)J recombination
follows the "12/23 rule" to assemble functional antigen-receptor genes, i.e., cleavage and
recombination occur only between RS with dissimilar spacer types. Functional, cryptic RS (cRS)
have been identified in VH gene segments; these VH cRS were hypothesized to facilitate self-
tolerance by mediating VH  VHDJH replacements. At the Ig  locus, however, secondary, de novo
rearrangements can delete autoreactive V J  joins. Thus, under the hypothesis that V-embedded
cRS are conserved to facilitate self-tolerance by mediating V-replacement rearrangements, there
would be little selection for V  cRS. Recent studies have demonstrated that VH cRS cleavage is only
modestly more efficient than V(D)J recombination in violation of the 12/23 rule and first occurs in
pro-B cells unable to interact with exogenous antigens. These results are inconsistent with a model
of cRS cleavage during autoreactivity-induced VH gene replacement.

Results: To test the hypothesis that cRS are absent from V  gene segments, a corollary of the
hypothesis that the need for tolerizing VH replacements is responsible for the selection pressure
to maintain VH cRS, we searched for cRS in mouse V  gene segments using a statistical model of
RS. Scans of 135 mouse V  gene segments revealed highly conserved cRS that were shown to be
cleaved in the 103/BCL2 cell line and mouse bone marrow B cells. Analogous to results for VH cRS,
we find that V  cRS are conserved at multiple locations in V  gene segments and are cleaved in
pre-B cells.

Conclusion: Our results, together with those for VH cRS, support a model of cRS cleavage in
which cleavage is independent of BCR-specificity. Our results are inconsistent with the hypothesis
that cRS are conserved solely to support receptor editing. The extent to which these sequences
are conserved, and their pattern of conservation, suggest that they may serve an as yet unidentified
purpose.
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Background
The ability to mount specific immune responses depends
on a highly diverse repertoire of T- and B-cell antigen-
receptor molecules. The genetic diversity required for mil-
lions of distinct antigen-receptors is created by the
somatic recombination and fusion of individual variable
(V), diversity (D), and joining (J) gene segments in a proc-
ess known as V(D)J recombination. During V(D)J recom-
bination, genomic DNA is cleaved at the boundaries of
individual V, D, and J gene segments and the intervening
DNA removed or inverted; subsequently, the newly
apposed gene segments are ligated to form the variable
region exon of one of the four types of antigen-receptor
genes (reviewed in [1]). These recombination events are
mediated by RAG-1 and RAG-2 in the form of a V(D)J
recombinase holoenzyme that is directed to proper sites
of cleavage by DNA motifs known as recombination sig-
nals (RS). RS are located at the boundaries of V, D, and J
gene segments and defined by highly conserved hep-
tamer- and less-well conserved nonamer sequences that
are separated by non-conserved spacer regions 12- or 23-
base pairs (bp) in length [2-5]. Under physiologic condi-
tions, V(D)J recombination follows the "12/23 rule" to
assemble functional antigen-receptor genes, i.e., cleavage
and recombination occur only between RS with dissimilar
spacer types.

RS-like sequences that are unassociated with V, D, or J
gene segments have been identified in the genomes of
mice and humans [4,6-18]. A subset of these cryptic RS
(cRS) are located within the Igh and Ig  loci [7-17]. cRS in
the Igh locus are embedded at the 3' end of VH gene seg-
ments where they mediate VH  VHDJH replacement reac-
tions [7-10,13,15,19]. cRS in the Ig  locus are located
within introns where they mediate inactivation of Ig  alle-
les [11,17,20-22]. With the exception of [8], previous
studies of V-embedded cRS have focused on the Igh locus.
VH gene replacement mediated by V-embedded cRS can
rescue the development of B cells bearing autoreactive
receptors and has been described as a mechanism for the
maintenance of self-tolerance [7,9,22-24]. In fact, it has
been argued that VH cRS are conserved specifically to pro-
vide a mechanism for secondary rearrangements at the
IgH locus, as "secondary VH to JH [recombination] cannot
work because VH and JH [RS] do not meet the [12/23]
requirement for recombination and because D segments,
the guardians of this rule, are deleted by the primary
V(D)J recombination" [7].

Previously, we conducted a global analysis of cRS across
mouse VH gene segments using a computational algo-
rithm to predict the location and functional activity of VH
cRS; these predictions were then tested using a ligation-
mediated PCR (LM-PCR) to detect VH cRS cleavage in puri-
fied populations of mouse B-lineage cells recovered from

murine bone marrow [4,25]. We discovered that not only
are cRS conserved at sites distributed throughout VH gene
segments but also that VH cRS are cleaved only during the
pro-B cell stage of development [25]. Both results are
inconsistent with the paradigmatic view that functional
VH cRS are maintained to facilitate the rescue of autoreac-
tive B cells that would otherwise be lost to the mecha-
nisms of self tolerance [7,9,22-24]. Our results suggested
to us that VH cRS may be conserved for other reasons [25].

In contrast to receptor editing via VH replacement, recep-
tor editing at the Ig  locus, takes the form of either sec-
ondary, de novo V   J  rearrangements that replace or
invert primary V J  joins [26-30], or more rarely, inacti-
vating rearrangement with cRS that flank the C  exon
[21]. Secondary, de novo rearrangements are not only
possible at the Ig  locus, but highly efficient because of
the locus' organization: V  gene segments are associated
with 12-RS while J  gene segments are associated with 23-
RS, removing the need for a D gene segment and allowing
repeated, direct V J  rearrangements; V  genes are present
in both orientations, resulting in many inversion rear-
rangements and conserving V  gene segments that lie
between the rearranging V  and J  gene segments for sub-
sequent rearrangements; The possibility for rearrange-
ment at the Ig  locus further increases the opportunity for
editing.

A corollary of the argument that VH cRS are conserved to
provide a mechanism for secondary rearrangement at the
Igh locus [7,9] is that cRS would not be conserved within
V  gene segments. Thus far, however, there have been no
systematic attempts to search for cRS within V  gene seg-
ments, to determine the extent of V  cRS conservation, or
to determine whether they are functional. Previous work
searched V  sequence alignments for partial heptamer
motifs (CACA) at a location within V  orthologous to the
location of the 3' VH cRS [8,9]. It was noted that 10% of
the V  gene segments examined contain this partial hep-
tamer motif [8]. We extend this study using a computa-
tional algorithm that allows for systematic scanning of the
full length of V  gene segments for complete cRS [4,6] and
by showing that conserved V  cRS are cleaved.

To test the hypothesis that functional cRS are not con-
served in V  gene segments, we conducted a global exam-
ination of mouse V  segments using the computational
and experimental methods of our earlier study of VH cRS
[25]. As in our study of VH cRS, we find that V  cRS are
present and cleaved at multiple, conserved locations in V
gene segments. These cRS are conserved across V  gene
families and are cleaved during the small pre-B cell stage
of B-cell development. This study is the first to show that
cRS are conserved within V  gene segments, and that these
cRS are cleaved in vivo. Our findings support the hypoth-
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esis [25] that cRS are conserved in Ig V gene segments for
a purpose(s) unassociated with the maintenance of self-
tolerance.

Results and Discussion
Identification of cRS embedded in V  gene segments
To identify cRS in V  gene segments, we applied a statisti-
cal model of mouse RS to the 135 mouse V  gene seg-
ments and alleles listed in the Immunogenetics
Information System (IMGT) reference directory set
[4,6,31]. We previously used this analytic method to iden-
tify cRS in mouse VH gene segments and in a 212-kb con-
trol region of mouse chromosome 8 (accession
AC084823) not subject to physiologic V(D)J recombina-
tion [6]. Our statistical model assigns a recombination
information content (RIC) score to any RS-length DNA
sequence beginning with the nucleotides CA; such
sequences are referred to as potential cRS. DNA sequences
of length 28-bp are assigned RIC scores based on the RIC12
model for RS with 12-bp spacers, while 39-bp sequences
are assigned RIC scores based on the RIC23 model. Higher
RIC scores indicate higher sequence similarities to mouse
RS and are predictive of higher recombination efficiencies
[1,4,6,25].

We have previously determined a threshold for 28-bp cRS
of RIC12  -45 using the RIC score of the functional cRS
embedded in the 3H9 VH transgene [6,9,25]. 39-bp RS
have a lower RIC score than 28-bp RS (RIC23 = -60 vs RIC12
= -40, respectively), thus we set a correspondingly lower
threshold for the detection of 39-bp cRS of RIC23  -65
[25].

We scanned for potential cRS on both DNA strands of
each V  gene segment. Potential cRS found on the sense
strand, and thus in the orientation of physiologic RS, are
referred to as being in orientation 1 (O1). Potential cRS
found on the antisense strand, and thus opposite in orien-
tation to physiologic RS, are defined to be in orientation
2 (O2). Both strands of sequence AC084823 were also

scanned. cRS in the strand listed in NCBI were arbitrarily
assigned the O1 orientation, and cRS in the inverse com-
plement sequence assigned to the O2 orientation.

The analyzed V  gene segments contained 6317 potential
cRS with 12-bp spacers (12-cRS) (3729 in the O1 orienta-
tion and 2588 in O2) and 5995 potential 23-cRS (3628 in
O1 and 2367 in O2) (Table 1). Of the potential 12-cRS
identified, 75 (O1) and 81 (O2) had a RIC12 > -45, while
131 (O1) and 215 (O2) of the potential 23-cRS had a
RIC23 >-65 (Table 1).

V  cRS are conserved in O2
We compared the relative frequencies of 12- and 23-cRS in
V  gene segments with those present in control sequence
AC84823 [25] and found that the relative frequencies of
12- and 23- V  cRS in the O2 orientation are significantly
higher than in the AC84823 control (0.031 vs. 0.018; P =
10-5 and 0.091 vs. 0.048; P = 10-19). In contrast, the fre-
quencies of V  cRS in O1 do not differ from those in
AC84823 (0.02 vs. 0.017; P = 0.17 and 0.036 vs. 0.046; P
= 0.013, 12-cRS and 23-cRS, respectively) (Table 1). These
biases for cRS in V  gene segments are unlike those of VH
cRS, which contain significantly more O1 and O2 12-cRS
and significantly fewer O1 and O2 23-cRS than AC84823
[25].

To examine further the differences between V  and VH
cRS, we compared the distributions and orientations of V
cRS with those of the cRS present in VH gene segments
[25]. V  gene segments exhibit significantly higher rela-
tive frequencies of 23-cRS in either O1 or O2 than do VH
gene segments (0.036 vs. 0.016; P = 10-11 and 0.091 vs.
0.037; P = 10-26, O1 and O2, respectively), whereas the
relative frequencies of O1 and O2 12-cRS are not different
between V  and VH gene segments (Table 1).

Even though V  and VH gene segments and the AC084823
sequence exhibit similar relative frequencies of potential
cRS, these frequencies diverge as RIC scores increase

Table 1: The relative frequencies of 12- and 23-cRS in VH, V , and control DNA.

12-cRS 23-cRS
Orientation 1 Orientation 2 Orientation 1 Orientation 2

Potential 12-cRS RIC12
 -45

Potential 12-cRS RIC12
 -45

Potential 23-cRS RIC23
 -65

Potential 23-cRS RIC23
 -65

V  gene segments 3729 75
(.020)

2588 81
(.031)

3628 131
(.036)

2367 215
(.091)

VH gene segments 8647 223
(.026)

8976 299
(.033)

8312 135
(.016)

8109 302
(.037)

Ch. 8 (AC084823) 15401 259
(.017)

17480 321
(.018)

15401 701
(.046)

17478 831
(.048)

RIC12 and RIC23were computed for all 28-bp and 39-bp sequences beginning with a CA-dinucleotide in both O1 and O2 in VH and V  gene segments, 
and in a 212-kb portion of chromosome 8 (accession number AC084823). The number of sequences with RIC above -45 and above -65 are shown 
with the relative frequencies shown in parentheses.
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towards the threshold values associated with RS activity
(Figure 1). O1 and O2 potential 12-cRS with RIC12  -50
are more common in VH gene segments than in the
AC084823 control (Figure 1A), while O1 and O2 poten-
tial 23-cRS with RIC23 > -70 are less common in VH gene
segments than in the AC084823 control (Figure 1B) [25].
In contrast, of V  potential 12-cRS with RIC12  -50, only
those in O2 are more common than in AC084823 (Figure
1A), and O2 potential 23-cRS with RIC23 > -70 are more
common in V  gene segments than in the control
sequence (Figure 1B). As described above, at cRS RIC score
thresholds, these differences are statistically significant.

Thus, while both VH and V  gene segments are signifi-
cantly enriched for O2 12-cRS relative to the AC084823
control, VH gene segments appear to be selected for
increased frequencies of 12-cRS and the suppression of
23-cRS, regardless of orientation, and V  gene segments
appear to be under selection for O2 cRS, regardless of
spacer length. These patterns of bias indicate that, relative
to VH gene segments, V  segments are enriched for O2 23-
cRS.

Given that the relative frequency of the 215 O2 23-cRS
embedded within V  gene segments (0.091, Table 1) is
much higher than the relative frequency of O2 23-cRS in
VH gene segments or in AC84823, we examine the extent
of V  O2 23-cRS conservation, explore whether their con-
servation can be explained by conservation of the
encoded amino acid sequence, and determine whether
they are cleaved.

V  23-cRS in O2 are conserved at multiple locations within 
V  genes and across V  gene families
We first examined whether the locations of the 215 O2
23-cRS within V  gene segments were conserved across V
gene families. Indeed, a third (73/215; 33.95%) are
located at nucleotide position 282 and one-fourth (53/
215; 24.65%) at nucleotide position 238 in framework 3
(Figure 2). About 10% (22/215; 10.23%) of O2 23-cRS
are located at nucleotide position 39 in framework 1, and
the remaining 67 O2 23-cRS are distributed across 16
other locations (Figure 2). Importantly, only 3 cRS are
located at nucleotide position 313, the position of the
most highly conserved cRS in VH segments and of the cRS
that mediates VH gene replacement [9,25].

V  23-cRS in O2 are distributed across V  gene families.
We found  1 cRS in 102 of the 135 V  gene segments ana-
lyzed, and most of these (66/102; 65%) contained multi-
ple cRS. Further, cRS-containing V  gene segments were
identified in 15 of the 19 V  gene families: 44 of the 215
O2 23-cRS are present in 27 of 31 V 4 gene segments; 34
are present in the 13 V 6 gene segments; 31 in the 10 V 3
gene segments; 25 in the 12 V 8 segments; 17 in the 5 V 2

gene segments; 17 in 5 of the 6 V 5 gene segments; 16 in
9 of the 11 V 12 gene segments; and, 13 are present in 11
of the 13 V 1 gene segments. The remaining 18 O2 23-
cRS are found in families V 7 (4 cRS), V 10 (2 cRS), V 11
(2 cRS), V 13 (3 cRS), V 14 (3 cRS), V 15 (3 cRS), and
V 16 (1 cRS).

V  cRS are conserved independently of amino acid 
sequence
The overrepresentation of O2 23-cRS at three conserved
locations in V  gene segments and the wide distribution
of these cRS across V  families, suggested that V  cRS are
maintained by natural selection. Such selection might act
directly on the cRS DNA sequences or indirectly, by selec-
tion for specific protein motifs encoded by cRS. To illumi-
nate how cRS sequences might be conserved, we
estimated the DNA sequence diversity in the 112 func-
tional V  alleles contained in the IMGT reference direc-
tory (HO) and compared HO with the maximum diversity
possible (HM) for a set of 112 nucleotide sequences with
amino acid sequences identical to the observed (Figure 3).

HO was estimated by computing the Shannon entropy
[32] at each nucleotide position employing the observed
relative abundances of the four nucleotides. The maxi-
mum possible diversity HM was calculated by assuming,
for each amino acid observed, a uniform distribution of
codons for that amino acid among the subset of V
sequences with that amino acid at the relevant amino acid
position. Thus, HM is calculated on the set of 112 simu-
lated V  nucleotide sequences with amino acid sequences
identical to the 112 observed V  sequences but with
nucleotide sequences as diverse as possible, given the
amino acid sequences. This calculation corresponds to the
assumption that there is no constraint on evolution of V
DNA sequences beyond maintenance of the amino acid
sequences. HO <HM suggests selection acting directly on
DNA.

To determine whether the difference between HO and HM

is greater for nucleotide positions within cRS than for
other framework region (FR) nucleotide positions, we
compared the average difference HM - HO for the 117

nucleotide positions in codons that overlap the three con-

served cRS ( ) with the average difference at all other

FR nucleotide positions ( ).  was computed

using nucleotide positions 1–39, 196–238, and 238–282,
corresponding to amino acid residues 1–13, 66–80, and
80–94 (IMGT numbering). The average difference
between HO and HM for the nucleotide positions within

cRS (  = 0.198) was higher than that for the other FR

nucleotide positions (  = 0.126). To determine

HcRS

HFR HcRS

HcRS

HFR
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The proportion of RS-length sequences with RIC scores above a given thresholdFigure 1
The proportion of RS-length sequences with RIC scores above a given threshold. For increasing RIC score thresh-
olds, the number of RS-length sequences beginning with a CA-dinucleotide and with a RIC score above the threshold was 
divided by the total number of RS-length sequences beginning with a CA-dinucleotide. Thresholds are shown on the X-axis, 
and the corresponding proportions are shown on the Y-axis. The proportions of above-threshold sequences are plotted for 
both RIC12 (Figure 1A) and RIC23 (Figure 1B). Proportions from V  sequences are denoted by filled circles, those from VH 
sequences are denoted by an unfilled square, and those from chromosome 8 are denoted by an X. A dashed line indicates pro-
portions of sequences in O1, while a solid line indicates those in O2.
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whether the difference between the two averages (  -

 = 0.073) was statistically significant, we randomly

assigned each codon the label 'cRS' or 'FR', preserving the
observed relative abundances of FR codons in and not in

cRS, and computed  -  5000 times. Only 3 of

5000 permutations resulted in an  -   0.073 (P

= 0.0006) indicating that the observed difference  -

 is statistically significant (Figure 3).

 is significantly greater than  because the differ-

ence between HO and HM is greater within cRS than for

other FR nucleotide positions. Thus, the observed DNA
sequence diversity (HO) for nucleotide positions within

FR but not within cRS is relatively close to the maximum
possible DNA sequence diversity (HM) that could be

attained while conserving the amino acid sequences for

the set of 112 functional V  gene segments. In contrast,
the observed DNA sequence diversity for nucleotide posi-
tions within cRS is much less than the maximum possible
diversity that could be attained while conserving the

amino acid sequences, indicating selection on the DNA to
a greater extent within cRS than within FR and beyond
that required to maintain the necessary amino acid
sequence. Thus, we conclude that the O2 23-cRS embed-

ded within V  gene segments are not present as an artifact
of amino acid conservation.

V  cRS are cleaved in vivo
To determine if the V  O2 23-cRS identified by RIC scores
are cleaved in vivo, we performed ligation-mediated PCR
(LM-PCR) [33] to amplify V  cRS signal ends (SE) recov-
ered from 103/BCL2 cells and small pre-B cells from the
bone marrow of C57BL/6 mice (Figure 4). LM-PCR is a
standard assay used to demonstrate RAG-mediated cleav-
age at RS and cRS heptamers [33]. RAG expression in 103/
BCL2 cells is temperature dependent. At 34°C, 103/BCL2
cells proliferate, RAG1 and RAG2 proteins are minimally
expressed, and Ig  rearrangements are undetectable [34].
At 39°C, 103/BCL2 cells enter growth arrest, RAG1 and
RAG2 expression is upregulated, and Ig  rearrangements
are induced [34]. To control for potential LM-PCR arti-
facts, we used genomic DNA from 103/BCL2 cells cul-
tured at 34°C and 39°C as LM-PCR templates, in addition
to DNA from sorted pre-B cells (Figure 4). To determine
the extent of functional O2 cRS in gene segments from the
V 2, V 5, V 6, V 8, and V 17 families, we designed a
series of V  family-specific PCR primers and used a stand-
ard intronic LM-PCR [25] to detect primary J  SE as a pos-
itive control. The V  primers are designed such that only
O2 cRS are detected.

LM-PCR amplicands representing RAG- and ligase-
dependent V  cRS SE cleavage products were readily
detected in both 103/BCL2 and small pre-B cells (Figure
4A). The dual products recovered from both 103/BCL2
and bone marrow cells using V 6 and V 8 family primers
represent cleavage at nucleotide positions 282 (220-bp
fragment) and 342 (280-bp fragment) in V 6 gene seg-
ments (Figure 4A) and at positions 288 and 327 in V 8
gene segments (data not shown). Similarly, LM-PCR
amplifications of genomic DNA from 103/BCL2 cells
using five sets of V  family-specific primers indicated that

 1 cRS is present and cleaved in V gene segments belong-
ing to the V 2, -5, -6, -8, and -17 gene families (Figure 4B),
all of the families for which cleavage was assayed.

To ensure that these LM-PCR amplification products rep-
resented bona fide V  cRS SE, the LM-PCR amplicands
were gel-purified, cloned, and sequenced (Tables 2 and
3). Of 101 sequences obtained, 82 represent V  gene seg-
ments ending precisely at blunt, double-strand ends
(Tables 2 and 3). Almost one quarter of the 82 V  LM-PCR
products (19/82, 23%) have unique nucleotide sequences
or were obtained from independent PCR reactions and

HcRS

H FR

HcRS H FR

HcRS H FR

HcRS

H FR

HcRS H FR

O2 cRS are found at multiple locations within mouse V  gene segmentsFigure 2
O2 cRS are found at multiple locations within mouse 
V  gene segments. RIC23 was computed for all 39-bp 
sequences beginning with a CA-dinucleotide in 135 mouse 
V  gene segments. RIC23scores are plotted for those 39-bp 
sequences in O2 and with RIC23>-65. RIC23 is shown on the 
Y-axis, and nucleotide position (IMGT numbering) within the 
gene segment is shown on the X-axis. Complementarity 
determining regions (CDR) are demarcated by vertical lines. 
The red rectangles indicate RIC scores located at the sites of 
cRS cleaved in vivo. The horizontal lines in FR1 indicate the 
location of the LM-PCR primers. Note that, because of the 
primer locations, cleavage events in FR1 are unlikely to be 
detected in our assay.
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V  cRS are conserved at the DNA levelFigure 3
V  cRS are conserved at the DNA level. Using the Shannon entropy, the observed and maximum possible nucleotide 
diversity was calculated for each V  nucleotide position. Results for nucleotide positions occupying codon position 3 in FR1 
and CDR1 are shown in panel A. Observed diversities are represented as bars, and maximum predicted diversities are repre-
sented by asterisks. The FR1-CDR1 boundary is marked by a vertical line. We computed the average difference between the 
observed and maximum possible DNA diversities for all nucleotide positions within codons that overlap one of the three con-

served cRS ( ) and for all nucleotide positions in FR codons not overlapping a cRS ( ). We simulated the null distribu-

tion for  - ; a histogram of 5000 simulated differences is shown in B. Difference is shown on the X-axis, and 

frequency is shown on the Y axis. The observed difference (0.073) is indicated by the vertical line.
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were therefore determined to be the product of independ-
ent cleavage events. The 39 nucleotides immediately 5' of
the cleaved ends are shown for these 19 LM-PCR products
in Table 2. The two sequences from V 8 gene segments
indicate cleavage at non-CA nucleotides (Table 2). The
remaining 17 sequences represent unique cleavage events
precisely at V  cRS heptamers (Table 2). The 17 unique
cRS cleavage events occurred at 5 different V  nucleotide
positions (232, 238, 282, 313, and 342) from 6 distinct
V  gene families (V 2, V 5, V 6, V 11, V 14, and V 17;

Table 2). Although no primer set was used to amplify gene
segments of the V 11 and V 14 families, the V 8 primer
set matches to both V 11 (17 of 18 nucleotides) and V 14
(15 of 18 nucleotides) genes and resulted in the amplifi-
cation of a single V 11 cRS SE product and two V 14 cRS
SE products (Table 2).

Three of the 5 positions at which V  cRS cleavage was
detected (nucleotide positions 238, 282, and 313) are cRS
predicted by RIC, and two of these (positions 238 and
282) are the most frequent sites for V  O2 23-cRS (Figure
2). Position 342 is downstream of the coding region of V
gene segments (IMGT database) and was not considered
in our computational analysis. Interestingly, cRS SE at
position 342 were observed in pre-B and 103/BCL-2 cells
(Figure 4, Table 2). Cleavage occurred at the 3' end of the
physiologic RS heptamer such that the last 3 nucleotides
(GTG) of the physiologic heptamer are the first 3 nucle-
otides (CAC) of the cRS heptamer. Seven of 17 unique V
cRS cleavage events were at position 342; the remaining
10 were at cRS embedded within the V  gene segment.
Thus, 17 of the 19 cleavage events we observe (89%) rep-

Table 2: V -embedded cRS cleaved in 103/BCL2 cells and pre-B 
cells from RAG2:GFP and C57BL/6 mice.

Total Number of Sequences 101
Number of Sequences from V  Gene Segments 82
Number of Sequences from Independent Cleavage Events 19
Number of Sequences from Cleavage at V cRS 17
Number of Sequences from Cleavage at V -embedded cRS 10

LM-PCR products from 103/BCL2 cells and from pre-B cells isolated 
from RAG2:GFP knock-in mice and C57BL/6 mice were sequenced 
and aligned to sequences from the IMGT reference directory set to 
identify products from cleavage at V -embedded cRS.

V  cRS cleavage is detected in C57BL/6 bone marrow pre-B cells and 103/BCL2 cellsFigure 4
V  cRS cleavage is detected in C57BL/6 bone marrow pre-B cells and 103/BCL2 cells. LM-PCR was conducted with 
and without ligase on DNA extracted from pre-B cells of C57BL/6 mice or from 103/BCL2 cells after 0 and 3 days at 39°C 
(panel A) or from 103/BCL2 cells after 0, 1, 3, and/or 5 days at 39°C (panel B). V  6 cRS SE (expected product size: 217 bp and 
277 bp) were detected in 103/BCL2 cells and C57BL/6 bone marrow pre-B cells (panel A). LM-PCR product from primary J  
rearrangements demonstrates that 103/BCL2 cells are rearranging their  loci (panel B). V  cRS SEs were detected in V 2, 
V 5, V 6, V 11, and V 17 gene segments in 103/BCL2 cells (panel B). CD14 PCR demonstrates the equivalence of genomic 
template.
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resent cleavage at cRS, and 59% of these represent cleav-
age at V -embedded cRS (Tables 2 and 3).

Six of the 10 V -embedded cRS cleavage events were at
nucleotide position 282 (Table 2), the most conserved

location for O2 23-cRS identified by RIC. Cleavage at this
cRS was identified in the V 6–32, V 5–39, and V 5–45
gene segments. The remaining 4 V -embedded cRS cleav-
age events were distributed as follows: 1 at V  nucleotide
position 232 in V 2–116, 1 at position 238 in V 17–127,
and 2 at position 313 in the V 2–109 and V 2–116 gene
segments (Table 2). Thus, we observe cleavage events
occurring both at the same location across different V
gene families, and at different locations within the same
gene family.

V 6 cRS SE and J 4 SE are approximately equally abun-
dant in recombinationally active 103/BCL2 cells (Figure 4
and data not shown). Given that the V 6 family com-
prises eight or nine gene segments (IMGT database) and
that each of these likely contain at least two functional cRS
(Table 2), we estimate the rate of V 6 cRS cleavage to be
5% – 13% of J 4 RS.

V  cRS SE are detected only in pre-B cells
To identify the developmental stages in which V  cRS are
cleaved, we isolated genomic DNA from highly enriched
(>95%) populations of pro-B, pre-B, and immature B cells
sorted from the bone marrow of C57BL/6 mice and con-
genic RAG2:GFP animals [25]. We previously demon-
strated that VH cRS SE are present in pro-B cells but not in
pre-B or immature B cells from the bone marrow of
RAG2:GFP mice [25]. In this study, JH RS SE were detected
only in pro-B cells, J  RS SE only in pre-B cells, and TCR
D  RS SE were not detected in any B-cell population [25].

V  cRS cleavage is detected only in pre–B cells from RAG2:GFP knock-in miceFigure 5
V  cRS cleavage is detected only in pre–B cells from 
RAG2:GFP knock-in mice. LM-PCR was conducted on 
pro-, pre-, and immature B cells from RAG2:GFP knock-in 
mice [25]. These sorted cells were shown in [25] to have the 
appropriate lineage and developmental restrictions of Tdt 
and RAG1 expression, and of JH and J  SE. Samples from 
these same sorted cells were used to amplify SE in V  6 gene 
segments. Cleavage at V  6-embedded cRS was detected 
only in pre-B cells. CD14 amplification demonstrates the 
equivalence of genomic template.

Table 3: V  cRS cleaved in 103/BCL2 cells and pre-B cells from RAG2:GFP and C57BL/6 mice.

Cell Type Position N cRS sequence V  gene RIC23

103BCL2 232 1 cactgaa cctgtttgggactcctgaggcca gattggaca 2–116 -76.53
103BCL2 238 1 cactAct ggagaaCcgggatgggactccag gacgaagag* 17–127 -72.20
103BCL2 282 2 cacagtg ctgatggtgaaagtgaaatccgt cccatatcc 6–32 -52.01
103BCL2 282 1 cacactg ttgatactgagagtgaaatctga ccctgatcc 5–39 -54.66
103BCL2 282 1 cacactg ttgatactgagagtgaaatctgt ccctgatcc 5–45 -54.66
BM pre-B 282 2 cacagtg ctgatggtgaaagtgaaatccgt cccatatcc 6–32 -52.01
BM pre-B 288 1 agcatgc acattgctaatggtgagagtgaa gtctgtccc 8–26 NA
103BCL2 313 1 cacagta ataaacacccacatcctcagcct ccactctgc 2–116 -62.49
103BCL2 313 1 cacagta ataaacacccacatcctcagcct ccactctgc 2–109 -62.49
103BCL2 327 1 gccatga ttgtgctgacagtaataaactgc taggtcttc 8–18 NA
103BCL2 342 1 cactgtg tgaggccagctgttactctgttg acagaaata 5–45 -65.18
103BCL2 342 1 cactgtg ggagggagatacctatgctgtag acagaaata 11–106 -69.65
BM pre-B 342 2 cactgtg ggaggagagctataatcctgctg acagaaata 6–32 -66.82
103BCL2 342 1 cactgtg ggaggagagctataatcctgctg acagaaata 6–32 -66.82
103BCL2 342 1 cactgtg ggaggaaactcataaaactgtag acagtaata 14–130 -70.3
BM pre-B 342 1 cactgtg ggaggaaactcataaaactgtag acagtaata 14–130 -70.3

LM-PCR products from 103/BCL2 cells and from pre-B cells isolated from RAG2:GFP knock-in mice or from C57BL/6 mice were sequenced and 
aligned to sequences from the IMGT reference directory set to identify the germline gene segment. Where matches to IMGT sequences were not 
found, the LM-PCR products were aligned to germline V  gene segments in NCBI (indicated in bold). The source, location, number of observations, 
cRS sequence, V  gene segment, and cRS sequence RIC score are shown for each independent cleavage event. cRS sequences are written in 
heptamer-to-nonamer orientation, and nucleotide positions using IMGT numbering indicate the location of the first heptamer nucleotide.
* The LM-PCR product shows 2 mismatches to the genomic cRS sequence (cactGctggagaaTcgggatgggactccaggacgaagag), indicated with capital letters. 
We attribute this difference to sequencing error.
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To determine if V  cRS are cleaved in vivo and to identify
the developmental stage in which cleavage occurs, we iso-
lated genomic DNA from the samples of bone marrow
pro-, pre-, and immature B cells sorted in the previous
study [25]. The genomic DNA was used as template for
LM-PCR to detect cleavage of O2 V  cRS in the V 6–32
gene. We targeted this V  gene segment because it con-
tains multiple cRS (Figure 4) with the highest RIC scores
of the cRS for which SE were detected in 103/BCL2 cells
(Table 3). Ligase-dependent, V 6–32 cRS SE could be
detected at nucleotide positions 282 and 342 (Figure 4
and Tables 1 and 2) in pre-B, but not pro-B or immature
B cells (Figure 5). These LM-PCR products were validated
as V 6–32 cRS SE by sequencing (Table 3). Thus, V  cRS
appear to be cleaved in vivo during the developmental
stage that is permissive for primary Ig  V   J  rearrange-
ments.

Conclusion
The adaptive immune system has evolved to generate a
diverse antigen-receptor repertoire. One mechanism of
somatic diversification is V(D)J recombination, a process
that joins antigen-receptor V, D, and J gene segments by
initiating double-strand breaks at RS flanking the gene
segments (for a review, see [1]). RS at locations other than
the boundaries of V, D, and J segments have been identi-
fied at both the Igh and Ig  loci [22,23]. Until recently,
cRS in the Igh locus were thought to be limited to the 3'
end of VH gene segments where cRS can mediate VH gene
replacement [7,9,22-24]. VH gene replacement can partic-
ipate in a form of receptor editing at the heavy chain
locus, which otherwise is incapable of secondary rear-
rangements that follow the 12/23 rule [7]. It has been pro-
posed that the utility of receptor editing is sufficient to
drive the evolutionary conservation of VH cRS [7]. There is
mounting evidence, however, that at least some receptor
editing is antigen-independent, and that the conservation
of Ig VH cRS may result from other selective pressures.

The earliest evidence that the regulation of VH replace-
ment is independent of BCR-specificity came from studies
[35-37] that demonstrated frequent VH replacement in
mice transgenic for non-autoreactive heavy chains. These
data suggested that selection for VH cRS includes the
capacity for increasing BCR diversification, in addition to
self-tolerance [8,35]. We subsequently showed that VH
cRS SE were detected only in pro-B cells, including the
pro-B cells of MT mice which can not assemble func-
tional BCR [25,38]. Together, these results support the
notion that VH gene replacement may not be driven by the
recognition of antigen.

Koralov et al. [39] demonstrated that, in transgenic mice
homozygous for nonproductive heavy-chain rearrange-
ments, VH replacement events are only three times more

frequent than direct VH to JH joining, in violation of the
12/23 rule. These results demonstrate the inefficiency of
cRS-mediated VH replacement and beg the question: How
can such an inefficient mechanism for rescuing autoreactive B
cells increase fitness sufficiently to maintain VHcRS conserva-
tion? If VH cRS are conserved to mediate VH replacement,
shouldn't VH replacement at cRS be much more efficient
than rearrangements in violation of the 12/23 rule? The
results of Koralov et al. [39] suggest that while VH replace-
ment may be mediated by VH cRS, their conservation is
unlikely to result only from their role in VH replacement.

Unlike the cRS associated with Igh, the cRS previously
identified in Ig  loci were not embedded in V  gene seg-
ments but sited in the J -C  intron and 3' of C  and medi-
ated locus inactivation [11,17,20-22]. The cRS located in
the J -C  intron are known as IRS (IRS1 and IRS2), while
the cRS found 3' of C  is named the kappa deleting ele-
ment (kde) in humans and RS in mice. For clarity, we
reserve 'RS' for signals adjacent to V, D, and J gene seg-
ments, and refer to the signal 3' of C  in mice as RS 3.

The structure of the Ig  locus allows for secondary V  
J  rearrangements. Thus, if antigen-driven receptor edit-
ing is the primary force behind conservation of V-gene cRS
[7,9], V  gene segments should not be selected for embed-
ded cRS. Fanning et al. [8] noted the presence of a partial
heptamer motif (CACA) in V  gene segments at a location
orthologous to the 3' VH cRS, but to date, there has been
no systematic attempt to identify potential cRS at other
sites within V  gene segments or to determine their func-
tion. The determination of cleaved cRS within V  gene
segments is an important first step in identifying their
physiologic role(s) and resolving the selective forces that
maintain their conservation.

To determine whether the Ig  locus contains active cRS
embedded in functional V  gene segments, we conducted
a computational scan for cRS in V  gene segments and
evaluated their functionality using LM-PCR. Our results
indicate that, despite the capacity for repeated secondary
Ig  rearrangements, functional V  cRS have been evolu-
tionarily conserved. V  cRS are primarily conserved in an
orientation (O2) opposite to physiologic V  12-RS and
have 23-bp spacers (Table 1 and Figure 1). This conserved
orientation and spacer size mirrors our earlier demonstra-
tion that conserved VH cRS are oriented opposite to phys-
iologic VH 23-RS and contain 12-bp spacers [25].

As with VH cRS, V  cRS are conserved at multiple sites in
V  gene segments and across V  gene families. Although
our genomic scan identified relatively few V  cRS at posi-
tions analogous to the 3' VH cRS (nucleotide position 313,
IMGT numbering) that mediate VH replacement (Figure
1), we did observe two cRS SE at this location, both in V 2
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gene segments (Table 2). Of the 10 unique cleavage events
at V -embedded cRS, 8 represent cRS SE  30 nucleotides
upstream of complementarity determining region (CDR)
3 (Table 2). V gene replacement (V   V J ) at one of
these embedded cRS would result in substantially length-
ened variable-region product that would be unlikely to
produce a typically folded L-chain protein. The conserva-
tion of functional cRS at such sites in V  gene segments in
a locus capable of secondary V   J  rearrangements
implies a function distinct from immunological toler-
ance.

cRS previously identified at the Ig  locus (IRS1, IRS2 and
kde/RS 3) mediate rearrangement events that inactivate
the locus and may serve to ensure Ig  allelic exclusion or
activation of the Ig  loci (reviewed in [40]). Rearrange-
ments between kde/RS 3 and IRS result in the deletion of
C  and rearrangements between kde/RS 3 and V  RS
result in the deletion of J  and C  [21,41]. It is possible
that the O2 V  23-cRS likewise participate in these inacti-
vation rearrangements, as recombination between IRS
and O2 V  23-cRS would result in deletion or inversion of
the J  gene segment cluster.

Inactivating rearrangements involving IRS and kde/RS 3
have been implicated in antigen-induced receptor editing
(reviewed in [22]), and Kiefer et al. [42] observed RS 3
cleavage in IgM- BM pre-B cells, IgMlow immature BM B
cells, and in IgMlowIgD+ splenic T3/T3' B cells. Our results
indicate that cleavage of O2 V  23-cRS is confined to the
IgM-, small pre-B compartment (Figures 4 and 5). We con-
clude that either V  cRS SE are rare relative to RS 3 SE, or
that V  cRS SE are not present in immature B cells (per-
haps because the cRS themselves are not accessible) and,
consequently, may be unrelated to antigen-driven recep-
tor editing. In either case, despite their frequency and
function, V  cRS appear to play a less significant role in
antigen-driven genomic change than do IRS and kde/RS 3.

The similarities between the VH and V  cRS suggest that
these DNA motifs are conserved for a common function.
Both cRS types are conserved at multiple locations, and
both are conserved with an orientation and spacer length
opposite to the corresponding physiologic V-associated
RS. Both sets of cRS are cleaved coincidentally with the
physiologic RS in the same locus. That is, VH cRS are
cleaved in pro-B cells and V  cRS are cleaved in pre-B cells.
We consider below possible mechanisms for conservation
of these V-gene cRS in the Igh and Ig  loci.

First, VH and V  cRS could be conserved to inactivate the
Igh and Ig  loci. If so, this inactivation might help to
ensure allelic exclusion, as evidence indicates that VH [25]
and V  cRS SE (Figure 5) do not depend on the generation
of a functional B-cell receptor. Inactivation of the Ig

locus would increase the proportion of -expressing B
cells and could act to increase the diversity of the BCR rep-
ertoire. A similar argument cannot be made for the Igh
locus as there is no alternative locus. Furthermore, the fre-
quency of IRS-to-kde/RS 3 rearrangements mitigates any
need for V-embedded cRS for inactivation at the  locus.
Thus, we doubt that the selection pressure resulting from
locus inactivation via V cRS cleavage is sufficient to result
in conservation of the cRS.

We previously suggested that V-embedded cRS could
function to form hybrid V gene segments thereby creating
combinatorial diversity beyond that created through the
combination of V, D, and J or V and J gene segments [25].
While the results are controversial, there is evidence for
such hybrid heavy chain V genes [43,44]. Given that both
VH and V  cRS are conserved in opposite orientation and
with the complementary spacer length to physiologic, V-
associated RS, we propose that V-embedded cRS may be
conserved to recombine with physiologic RS to form
hybrid V genes. Under this model, hybrid V gene forma-
tion would proceed by a two-step process. Recombination
of an O2 V  23-cRS to the same V  gene segment's physi-
ologic RS would result in deletion of the intervening
nucleotides and generation of a SJ intermediate. A second
recombination event could then occur between the RS of
the SJ and an O2 V  23-cRS located at the same or a
nearby nucleotide position in a downstream V  gene seg-
ment. This two-step rearrangement would be rare, but
would result in a novel, hybrid V  gene segment of
approximately normal length. In particular, utilization of
O2 23-cRS located in FR2 would create CDR1 – CDR2
combinations not present in the germline.

An alternative hypothesis to the conservation of cRS for
their recombinogenic potential is that the nucleotide
sequences are conserved to maintain appropriate V region
amino acid sequences, and the corresponding recombino-
genic potential is a coincidence. We present evidence that
the conservation of O2 cRS embedded in VH and V  is not
explained by the need to maintain V region amino acid
sequences ([25] and Figure 3). In VH gene segments, the
second, third, and fourth nucleotides of the 3' cRS
(...TGTG) encode the conserved Cysteine at amino acid
position 104 (Cys104), while the codon for the conserved
Cysteine at amino acid position 23 (Cys23) is not part of
any known cRS. Cysteine is degenerately encoded, and we
find that only 38% of Cys23 are encoded by TGT [25].
Ninety-eight percent of Cys104 are encoded by TGT, how-
ever, providing evidence for selection pressure to main-
tain the recombinogenic potential of the 3' VH cRS [25].
Similarly, analysis of FR codons in V  gene segments
shows that codon diversity at cRS is reduced relative to the
maximum possible to a significantly greater extent than at
any other FR site (Figure 3), a finding that implies strin-
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gent selection against synonymous nucleotide substitu-
tions in the cRS. The absence of synonymous mutations is
important given that the predicted recombinogenic
potential of most conserved (116/128) O2 V  23-cRS
could be eliminated by a single, synonymous nucleotide
substitution (data not shown). Of the remaining 12 cRS,
the recombinogenic potential for 10 of them would be
significantly reduced (>90%) by one synonymous nucle-
otide substitution (data not shown). Thus, while nucle-
otide substitutions in cRS motifs that eliminate efficient
recombination without altering V  amino acid sequence
are potentially frequent, they are rare or absent in the
genome. We conclude that there is evolutionary selection
for VH- and V -embedded O2 cRS.

Another alternative hypothesis to the conservation of V-
gene cRS for their recombinogenic potential is that the cRS
nonamers are conserved for nucleosome positioning.
Consensus RS nonamers may contribute to nucleosome
positioning and influence RS accessibility to the V(D)J
recombinase [45]. While the cRS nonamers may influence
nucleosome positioning, this property is unlikely to
explain conservation of V-gene cRS. First, RIC scores are
based on the complete cRS sequence, and above-thresh-
old RIC scores would not result from conserved nonamer
motifs alone. Second, cleaved V  cRS (Table 2) do not
contain consensus nonamers and lack the stretch of ade-
nosine nucleotides thought to be responsible for nucleo-
some positioning [45,46]. Thus, it is unlikely that
selection for nucleosome positioning motifs has resulted
in the maintenance of functional V  cRS.

We provide the first exhaustive search using a rigorous
method for cRS embedded in V  gene segments. We dem-
onstrate not only that V  cRS are conserved, but also that
they are cleaved in vivo. We show that the patterns of con-
servation for V  cRS are analogous to those for VH [25],
namely that the V-embedded cRS are conserved with an
orientation and spacer length opposite to that for V-asso-
ciated RS in the same locus. We provide evidence that
these V-embedded cRS are not conserved as a conse-
quence of selection pressure to maintain V region amino
acid sequence and explore several possible explanations
for their conservation. While the role of these V-gene cRS
is not yet clear, their conservation in both VH [25] and V
gene segments implies a substantial evolutionary benefit
to their presence.

Methods
Identification of V  cRS
To identify cRS in V  gene segments, we computed the RS
information content (RIC) score for 28- and 39-bp seg-
ments in the 135 mouse V  gene segments available in the
Immunogenetics Information System (IMGT) reference
directory set [47]. RIC is based on the position-specific

nucleotide combinations present in a sequence and the
relative frequency of these nucleotide combinations in the
set of mouse physiologic RS; sequences with nucleotide
combinations frequent in mouse physiologic RS have a
high RIC score [4]. We have previously demonstrated that
RIC scores can be used to identify RS and cRS and are pre-
dictive of recombination efficiency [4,6].

We used RIC scores to determine the location and number
of 12- and 23-cRS in mouse V  gene segments in both ori-
entations and compared the corresponding relative fre-
quencies with those previously reported for cRS in mouse
VH gene segments and in a 212-kb region of mouse chro-
mosome 8 (NCBI accession AC084823). Statistical signif-
icance was determined using Chi-square tests.

Estimation of nucleotide diversity

To estimate the nucleotide diversity at each V  framework
region position, we computed the Shannon entropy [32]

at position i  where pi, j is the prob-

ability of nucleotide j at position i and C is any constant.
We estimated pi, j as ni, j/Ni where ni, j is the number of

nucleotides of type j observed at position i and Ni is the

total number of functional V  sequences with a known
nucleotide at position i. The IMGT reference directory set
used for this analysis contained a total of 112 functional

V  sequences.

To estimate the maximum possible diversity at nucleotide

position i, pi, j was estimated by  where

Ni, k is the number of functional V  sequences with amino

acid k encoded by the codon of which nucleotide position
i is part, mk is the number of possible codons for amino

acid k, and mi, j, k is the number of k codons with nucle-

otide j at codon position i. For example, when nucleotide
position i is the second position of a codon encoding
either Leucine or Phenylalanine, mL = 6, mF = 2, mi, T, L = 2,

mi, C, L = 4, and mi, T, F = 2. This equation assumes a uniform

distribution of codons for each amino acid and preserves
the observed relative abundances of amino acids.

For each nucleotide position, we computed the difference
between the maximum possible entropy and the observed
entropy. We computed the average difference over all
nucleotide positions within codons for which at least one
codon position is within one of the three conserved cRS

( ) and compared this difference with the average
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over all other framework region nucleotide positions

( ). We then computed the difference  - .

To simulate the distribution of  -  under the null

hypothesis that, for any nucleotide position, being
located within one of the conserved cRS does not affect
the difference between the observed and the maximum
possible entropy, we randomly assigned each codon to
either a cRS or non-cRS position according to the observed
relative frequencies of codons within cRS and not, and

computed  -  for each randomization. We per-

formed 5000 randomizations.

103/BCL2 cells
103/BCL2 cells were cultured at 34°C and 39°C as previ-
ously described [6]. At 39°C, 103/BCL2 cells initiate
apoptosis, and their viability ranges from 50%–100%
after 1 to 5 days at 39°C [34]. To isolate genomic DNA
from viable cells only, we enriched viable 103/BCL2 cells
by density-gradient centrifugation with Lympholite-M
(Accurate Chem).

Mouse bone marrow B cells
C57BL/6 mice were purchased from Jackson laboratory.
RAG2:GFP mice [48] were obtained from F.W. Alt (Har-
vard University, Boston, MA). All mice were housed in
specific pathogen-free conditions at the Duke University
Medical Center Vivarium, and all experiments using ani-
mals were reviewed and approved by the Institutional
Animal Use and Care Committee of Duke University. Pro-
(B220loCD43+IgM-IgD-Lin-7AAD-), pre- (B220loCD43-

IgM-IgD-Lin-7AAD-), and immature (B220loCD43-

IgM+IgD-Lin-7AAD-) B cells were sorted from RAG2:GFP
as previously described [25]. Lin refers to the lineage
markers Mac-1, Gr-1, TER-119, CD4, and CD8 [25].

LM-PCR
Genomic DNA was extracted from 103/BCL2, C57BL/6,
and RAG2:GFP bone marrow B cells and ligated to the
BW-LC linker [6,33]. Ligated genomic DNA from 2 or 4 ×
103 bone marrow B cells or 4 × 104 103/BCL2 cells was
used in each PCR. B cell lineage and developmental stage
were demonstrated by amplification of JH, J  and D  RS
signal ends [25]. V  cRS SE were amplified by a nested
LM-PCR: the primary LM-PCR included High Fidelity
Platinum Taq (Invitrogen), Advantage 2 (BD Clontech),
the BW-LCH primer [25], and a degenerate V  primer
(V cRS below). The amplification program included
melting at 94°C and extension at 68°C. Annealing was
performed at 60°C for 5 cycles, 58°C for 4 cycles, 56°C
for 3 cycles, and 54°C for 18 cycles. Denaturation, anneal-
ing, and extension occurred for 30 seconds each, with the
exception of the initial denaturation (2 minutes) and final

extension (10 minutes). In lieu of MgCl2, as directed by
the manufacturer, 2 mM MgS04 was used with High-Fidel-
ity Platinum Taq.

The nested LM-PCR was performed with 10% of the pri-
mary LM-PCR product as template, High Fidelity Plati-
num Taq or Advantage 2, BW-LCH, and V  family specific
primers. Nested LM-PCR conditions were the same as for
the primary LM-PCR, except that the amplification pro-
gram was modified with annealing only at 54°C for 27
cycles or at 56°C for 25 cycles. LM-PCR products from
103/BCL2 cells were electrophoresed over 1% agarose gels
and stained with SYBR-Green (Molecular Probes) at a
1:104 dilution. LM-PCR products from RAG2-GFP sorted
B cells were electrophoresed over 1% agarose gels, stained
with SYBR-Green, and then transferred to nylon mem-
branes [25]. The nylon membranes were then hybridized
with a V  degenerate probe, radio-labeled with P32, to
identify double-strand breaks in V  gene segments [25].
In some experiments, LM-PCR products for 103/BCL2
and C57BL/6 pre-B cells were electrophoresed over 1.5%
agarose gels and stained with ethidium bromide. LM-PCR
products were gel-purified and cloned into the pCR2.1
vector as described [6]. Clones were sequenced at the
Duke University DNA Analysis Facility.

Oligomer sequences for the primers are V cRS (5'-ATTGT-
GATG ACCCAGACTCC-3'), V 2 (5'-CAGTCACTCTT-
GGAACATCA-3'), V 5 (5'-GACTCAGTCTCCAGCCAC-
3'), V 6 (5'-TTGTATCAGCAGGAGACAGG-3'), V 8 (5'-
GACACAGTCTCCAT CCTC-3'), and V 17 (5'-CAGCATC-
CCTGTCCATGGCTA-3'). The V  degenerate probe is (5'-
GSTTCAGTGGCAGTGGRTCTGGRAC-3').

PCR
CD14 amplification was performed as in [25].

Abbreviations
cRS: cryptic recombination signal; V: variable gene seg-
ment; D: diversity gene segment: J: joining gene segment;
RS: recombination signal; bp: base pairs; RAG: recombi-
nase activating gene; BCR: B cell receptor; LM-PCR: liga-
tion-mediated PCR; RIC: recombination information
content; O1: the orientation of physiologic RS relative to
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