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Abstract

Background: The spike (S) protein is a major structural glycoprotein of coronavirus (CoV), the
causal agent of severe acute respiratory syndrome (SARS). The S protein is a potent target for
SARS-specific cell-mediated immune responses. However, the mechanism CoV pathogenesis in
SARS and the role of special CTLs in virus clearance are still largely uncharacterized. Here, we
describe a study that leads to the identification of a novel HLA-A*0201-restricted epitope from
conserved regions of S protein.

Results: First, different SARS-CoV sequences were analyzed to predict eight candidate peptides
from conserved regions of the S protein based upon HLA-A*020I binding and proteosomal
cleavage. Four of eight candidate peptides were tested by HLA-A*0201 binding assays. Among the
four candidate peptides, Sp8 (Sgsg9¢¢» YVLNDILSRL) induced specific CTLs both ex vivo in PBLs of
healthy HLA-A2* donors and in HLA-A2.1/KP transgenic mice immunized with a plasmid encoding
full-length S protein. The immunized mice released IFN-y and lysed target cells upon stimulation
with Sp8 peptide-pulsed autologous dendritic cells in comparison to other candidates.

Conclusion: These results suggest that Sp8 is a naturally processed epitope. We propose that Sp8
epitope should help in the characterization of mechanisms of virus control and immunopathology

in SARS-CoV infection.

Background

Severe acute respiratory syndrome (SARS), a newly emerg-
ing infectious disease, is caused by a SARS-associated
coronavirus (SARS-CoV) [1-3], which may originate from
some wild animals [4]. After its first occurrence, SARS rap-
idly spread around the world along international air-
travel routes, reaching all five continents and resulting in
several hundreds of deaths [5]. The most recent epidemic
of SARS occurred in Beijing and Anhui, China in April

2004 and originated from laboratory contamination
(WHO update 7; see Further Information). Although the
outbreaks seem to be over, SARS remains a safety concern
because of the possible reintroduction of a SARS-like
coronavirus (SL-CoV) into humans and the risk of an
escape of SARS-CoV from laboratories [6-8]. More impor-
tantly, a new recombinant virus derived from human [9],
swine and/or avian influenza virus, might re-emerge as a
new SARS-CoV type, much like the recent emergence of a
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novel swine-origin influenza A (H1N1) in humans. Thus,
it is essential to develop various and distinct strategies to
combat this highly contagious disease.

The published literature reports that high titres of neutral-
izing antibodies and SARS-CoV-specific cytotoxic T lym-
phocyte (CTL) responses were detected in patients who
had recovered from SARS [10,11], and the levels of those
responses correlated well with disease outcome [12].
Hence, both humoral and cellular immune responses
appear to be crucial for the clearance of SARS-CoV infec-
tion. Immune responses can be raised directly against sev-
eral of the SARS-CoV proteins [13-15]. Targeting the spike
(S) structural glycoprotein [12,16-18] in particular
induces a robust immune response, suggesting it plays an
important role in the systemic clearance of SARS-CoV
[10]. The viral surface S protein is involved in host cell
receptor recognition, virus attachment and entry [19];
adaptive evolution of S protein, thus, contributes to SARS-
CoV overcoming the species barrier [20]. Hence, many
vaccines and therapeutics against SARS-CoV target the S
protein [19]. Considering that cytotoxic T-cell responses
participate in the clearance of virus from recovered SARS
patients and contribute to immunopathology in early
stages of the disease [21], one of the most attractive S pro-
tein-based strategies proposes eliciting a SARS-CoV CTL
response to clear the infection. To this end, a detailed
understanding of the S protein-mediated CTL response is
essential.

Development of effective treatments and vaccines against
SARS-CoV depends upon the underlying mechanisms of
various immune effectors in protective immunity and
identification of the protective antigens recognized by
each. Epitopes are the basic antigenic elements of virus
structural proteins, which functionally induce the host
cell-mediated immune response. Identification of the
CTL-specific epitopes of SARS-CoV proteins could provide
the basis for the development of SARS immunity-based
treatments and aid in the understanding of mechanisms
underlying SARS-CoV pathogenesis.

HLA-A*0201 is expressed 39-46% of all major ethnicities
[22]. The identification of HLA-A*0201-restricted SARS-
CoV/S CTL epitopes is an important contribution towards
understanding the role of CTLs in SARS-CoV pathogenesis
and protection. Currently, several CTL-specific SARS-CoV
S protein epitopes have been identified in the context of
HLA-A*0201, including S;11.420, S787.795 So78.986: S1042-
1050 S1167-1175: S1203-1211 and SSp-1 [23-26], and the H2
complex, including S34.374, Sq36.443/ Ss25.532 and S1031.1047
[18,27]. It is likely that additional S protein CTL epitopes
exist. S protein is relatively large in size and usage of dif-
ferent detection methods may result in the identification
of novel S protein-derived epitopes. In turn, this data will
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provide advances towards understanding the mechanisms
of SARS-CoV infection, and contribute to the develop-
ment of future SARS-CoV infection intervention strategies.

In this study, we identified a novel SARS/S-specific, HLA-
A*0201-restricted epitope that was conserved among
SARS-CoV strains. Based on a binding affinity-based pre-
diction and a proteosomal cleavage site prediction, we
constructed a panel of potential HLA-A*0201-restricted
CTL peptides from the S protein. Each candidate peptide
was evaluated for its binding affinity to HLA-A*0201 mol-
ecules using the T2 cell-peptide binding test. We then eval-
uated the ability of HLA-A*0201 binding peptides to
provoke CTL responses in peripheral blood lymphocytes
(PBL). PBL preparations from major histocompatibility
complex (MHC)-matched healthy donors or HLA-A2.1/
Kb transgenic (Tg) mice, were incubated with dendritic
cells (DCs) that had been pre-pulsed with the peptides of
interest. We identified a novel SARS-CoV S protein-
derived CTL epitope Sy55.965)(VLNDILSRL) that was capa-
ble of priming the S protein-specific HLA-A2.1-restricted
CTL response. The effective CTL response was evidenced
by cell death of peptide-pulsed T2 and peptide-pulsed Jur-
kat-A2/Kb cells. The findings of this study should provide
insight into the immunological characteristics of spike
protein and provide an alternative strategy for the future
development of SARS-CoV S protein CTL epitope-based
vaccines.

Results

Selection of potential HLA-A*0201 binding peptides
derived from SARS-CoVI/S protein

We selected candidate CTL epitopes derived from SARS-
CoV S protein by two criteria: (i) conservation between
different strains of SARS-CoV to encompass as many
SARS-CoV strains as possible, and (ii) high representation
in the general population, i.e., HLA-A*0201-restricted.
After alignment of the amino acid residues of S protein
with eighteen SARS-CoV strains (Figure 1), the BJO1 strain
S protein was selected to predict the S protein specific,
HLA-A*0201-restricted CTL epitopes. Based on the pres-
ence of HLA-A*0201 binding motifs and the cleavage sites
for proteasomes and immunoproteasomes, eight candi-
date peptides were predicted and synthesized (Figure 1
and Table 1), termed Sp1-8. These peptides were further
verified as having an absence of shared sequence homol-
ogy with the human or murine proteins using the BLAST

search engine http://www.ncbi.nlm.nih.gov/blast/, to

avoid any autoreactive response.

To evaluate the binding affinity of these peptides to HLA-
A*0201 molecules, a T2 cell-peptide binding test was used
[28]. T2 cells lack the transporter associated with antigen
processing (TAP), a key factor involved in endogenous
antigen processing and presentation, causing the empty
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Alignment of the putative amino acid sequences of S proteins from eighteen SARS-CoV strains. SARS-CoV
strains with GenBank accession numbers of nucleotide sequence in parentheses were as follows: BJO| (AY278488), BJ02
(AY278487), BJ03 (AY278490), CUHK-Sul0 (AY282752), CUHK-WI1 (AY278554), Frankfurt | (AY291315), GDOI
(AY278489), HKU-39849 (AY278491), HSR | (AY323977), Sin2500 (AY283794), Sin2677 (AY283795), Sin2679 (AY283796),
Sin2748 (AY283797), Sin2774 (AY283798), TOR2 (AY274119), TW1 (AY291451), TWC (AY321118) and Urbani (AY278741).

A dot among the individual sequences denoted nucleotides that are the same as the consensus. The candidate epitope peptides

were shown in bold text.

HLA-I molecules on the T2 cell surface to be very unstable
and to degrade rapidly after cell surface presentation.
However, when exogenous epitope peptides bind to the
HLA-I molecules on the cell surface, they become stable
[28,29]. Accordingly, the peptide-induced upregulation of
HLA-I on TAP-deficient T2 cells is used to monitor peptide
binding to class I molecules, which then indicates the
binding affinity of peptides to HLA-I molecules. Higher-
affinity peptides will induce more HLA-A*0201 expres-
sion on the cell surface than will lower-affinity peptides.
As shown in Table 1, of the eight candidate peptides only

Sp5, Sp6, Sp7 and Sp8 were high-affinity epitopes (FI =
1.1, 1.1, 1.2 and 1.5, respectively). The positive control
peptide, S;;1_450, bound HLA-A*0201 strongly (FI = 1.5),
whereas no binding was observed with the negative con-
trol HBcAg131.14¢) Peptide (FI = 0.1).

Ex vivo generation of peptide-specific CD8* CTLs from
healthy human donor PBLs

To investigate the capacity of candidate peptides to mobi-
lize a human CTL repertoire, HLA-A2+ PBLs from ten HLA-
A2+ donors were stimulated in vitro by DCs loaded with

Table I: HLA-A*0201 binding affinity of candidate epitope peptides on T2 cells.

Peptide Denomination Start position Sequence Score* FIt
No.I Spl 2 FIFLLFLTL 24 0.5
No.2 Sp2 851 MIAAYTAAL 26 0.8
No.3 Sp3 404 VIADYNYKL 26 0.4
No.4 Sp4 208 DLPSGFNTL 24 0.1
No.5 Sp5 940 ALNTLVKQL 27 1.1
No.6 Spé 1174 NLNESLIDL 27 1.1
No.7 Sp7 673 SIVAYTMSL 25 1.2
No.8 Sp8 958 VLNDILSRL 27 1.5

* HLA-A*0201-binding motif score from algorithm SYFPEITHI > 24. The eight peptides were also predicted and selected using ProPred|, in which
the threshold of HLA-A2-binding motif is 4% and the threshold of proteasomal and immunoproteasomal cleavage site is 8%.
T Increase of HLA-A*0201 molecules on T2 cell surface. FI = [(mean FITC fluorescence with the given peptide - mean FITC fluorescence without
peptide)/(mean FITC fluorescence without peptide)]. FI > 1.0 indicates high-affinity peptides; Fl < 1.0, low-affinity peptides. HLA-A*020 | -restricted
peptide S, 450 Was used as a positive control for HLA-A*0201-binding ability, while the H-25-restricted peptide HBcAg(;3,.140) Was used as a

negative control.
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the eight candidate peptides, positive control peptides
S411.420, OF negative control peptides HBcAG(13;.140)- T2
cells loaded with each of peptides were used as target cells
in cytotoxicity assays. Of the eight peptides tested, Sp6,
Sp7 and Sp8 induced more CD8+ T-cells that specifically
produced IFN-y in response to DCs pulsed with the rele-
vant peptides or positive control peptide in comparison to
other groups (Figure 2A). Furthermore, these CD8+ T cells
could lyse the T2 cells loaded with relevant peptides or
positive control peptide more efficiently than other
groups (Figure 2B). The cytolysis observed were specific
because the CTLs could not lyse T2 cells loaded with irrel-
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Figure 2

Identification of candidate epitope peptides ex vivo.
Panel A, Identification of candidate peptides with the PBLs of
HLA-A2.1* healthy donors by ELISPOT assay. Autologous
DCs were pulsed with 20 pg/ml of the indicated peptides and
then used as stimulators for HLA-A2.1* PBLs in an IFN-y
release assay. Resulting CTLs were tested for IFN-y release
using an ELISPOT assay. Results presented are from three
independent experiments and values are expressed as means
* SD. PC, positive control peptide S4;,_4,0; NC, negative con-
trol peptide HBcAg3;.149)- Panel B, Specific cytolysis of
human CTLs induced by peptides-loaded DCs ex vivo. Pep-
tide-specific CTLs were generated from the PBLs of HLA-
A2.1* healthy donors through two rounds of stimulation with
eight different peptide-pulsed DCs, respectively. Resulting
CTLs were tested for peptide-specific lysis using a standard
4-hour 3!Cr release assay. Results presented are from three
independent experiments. Data is expressed as means * SD.
E/T ratio, effector cell to target cell ratio.

http://www.biomedcentral.com/1471-2172/10/61

evant peptides (Figure 2B). Due to the limited induction
of IFN-y secreting T cell frequency and the low CTL cytol-
ysis ability, groups other than Sp6, Sp7 and Sp8 were
excluded from further study. The ex vivo results showed
the existence of functional anti-SARS-CoV/S CTL precur-
sors in the peripheral T cell repertoire of healthy donors.
Furthermore, SARS-CoV/S-derived peptides Sp6, Sp7 and
Sp8 could not only induce the increased S protein specific
IFN-y secreting T cell frequency but also the enhanced
cytolytic capacity of these CTLs.

In vivo induction of peptide-specific CD8* CTLs in HLA-
A2.1/KP transgenic mice

To further address whether the immunogenic candidate
peptide is naturally processed and presented, HLA-A2.1/
K transgenic mice were immunized with S/pVAX1 plas-
mid containing a full-length cDNA encoding the SARS-
CoV/S protein. Splenocytes were collected from mice
seven days after four weekly injections with S/pVAX1, and
re-stimulated ex vivo by mouse bone marrow-derived DCs
loaded with the candidate peptides, the positive peptide
Si11.420 the irrelevant peptides HBcAg( 31 149), or DCs
alone, for an additional 6 days. Investigation of [FN-y pro-
duction and the cytolytic ability of the effector CTL cells
were carried out following the re-stimulation. The J(A2/
kb) cells loaded with the corresponding peptides were
used as targets in cytotoxicity assays. As shown in Figure
3A, CTLs from S/pVAX1-immunized mice were able to
lyse three candidate peptides-pulsed J(A2/kb) cells but did
not lyse J(A2/kb) cells alone or J(A2/kP) cells loaded with
irrelevant peptide HBcAg(;31.140) at any E/T ratio. Of the
three candidate peptides tested, Sp8 exhibited the most
lytic capacity at each E/T ratio, which was comparable to
the positive control peptide (Figure 3A).

In accordance with results from the cytolytic assays, bulk
CTLs released IFN-y only in response to DCs pulsed with
Sp6, Sp7, Sp8 and the positive control peptide, but not to
those pulsed with irrelevant peptide HBcAg;5;.149) 0r DCs
alone (Figure 3B). Again, among the three tested candi-
date peptides, Sp8 released the most IFN-y following pep-
tide stimulation (Figure 3B).

Discussion

It is known that SARS-CoV can induce a strong specific
CTL response in infected patients, besides high titres of
neutralizing antibodies [10,11]. Furthermore, the CTL
response levels correlate with disease outcome [12], sug-
gesting CTL response is crucial for the clearance of SARS-
CoV. Among all the encoded proteins in the SARS-CoV
genome, S protein is currently considered the most impor-
tant target to prime the hostimmune response [12,16-18].
It has been reported that an inflammatory cell influx of
airway macrophages and a massive release of cytokines
occur during the peak of SARS infection [30]. Thus, it is
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Figure 3

SARS-CoV S protein specific CTLs in DNA vaccine-
immunized HLA-A2.1/KbP-Tg mice. Panel A, Specific
cytolysis of CTLs induced by the candidate peptides in HLA-
A2.1/KP transgenic mice. Splenic single-cell suspensions from
S/pVAXI-immunized mice were harvested and re-stimulated
with peptide-pulsed mouse bone marrow-derived DCs in
vitro to act as effector cells. The J(A2/kb) cells pulsed with
peptides were used as targets. Cytotoxic activity was deter-
mined in a standard 3!Cr release assay at the indicated E/T
ratios. Panel B, Frequency of IFN-y producing cells induced
by the indicated SARS S-derived candidate peptides in HLA-
A2.1/Kb transgenic mice. Bulk CTLs from immunized mice
were co-cultured with autologous DCs in the presence of
each peptide at a final concentration of 20 pg/ml. The secre-
tion of peptide-specific IFN-y was analyzed using ELISPOT
assays. Results presented were from three independent
experiments. Data is expressed as means + SD. E/T ratio,
effector cell to target cell ratio.

reasonable to investigate the underlying mechanism of
specific CTL response induced by SARS-CoV S protein dur-
ing SARS-CoV infection which may have a positive role in
SARS-CoV clearance or a negative role in SARS-CoV
immunopathogenesis.

In this study, we predicted and validated a novel CTL
epitope of SARS-CoV § protein. We used two prediction
systems to identify candidate CTL epitopes of S protein

http://www.biomedcentral.com/1471-2172/10/61

(i.e., HLA-A2-binding peptide prediction method com-
bined with a proteosomal cleavage site prediction system)
to improve prediction accuracy. The eight predicted pep-
tides were then verified via MHC peptide binding assay
(Table 1). Among the eight candidate peptides, Sp5, Sp6,
Sp7 and Sp8 exhibited the highest capacity to induce
more potent CTLs secreting IFN-y and to lyse target cells
from HLA-A*0201-matched healthy donor PBLs (Figure
2). Further in vivo investigation showed that plasmid
encoding the full-length SARS-CoV § gene elicited strong
CTL response in HLA-A2.1/Kb transgenic mice. These CTLs
could produce substantial amounts of IFN-y and kill target
cells in a peptide-specific and HLA-A*0201-restricted
manner (Figure 3), suggesting the predicted candidate
peptides were native epitopes, capable of priming CTL
responses in vivo. We found that candidate peptide Sp8
held the greatest ability to secrete IFN-y and kill target cells
in vivo (Figure 3). Another candidate peptide, Sp7, failed
to induce the most potent peptide specific CTLs in Tg mice
(Figure 3), despite it having had the highest such ability in
comparison to the rest of the in vitro stimulation set (Fig-
ure 2), indicating the need for candidate peptides to be
biofunctionally validated in vivo.

To date, several CTL epitopes of SARS-CoV S protein have
been identified in the context of HLA-A*0201, including
S4117420’ 8787—795’ S978—986’ S1042—1050’ 81167—1175’ S120371211 and
SSp-1 [23-26], or of the H2 complex, including S;44 5,4/
S436-443 Ss25.532 and Sy031.1047 [18,27]. In this study, we
predicted and validated a novel CTL epitope of SARS-CoV
S protein, Sp8 (Sy55, VLNDILSRL). This may be due to the
unique predictive methods used in our study. We com-
bined strategies for prediction (i.e., HLA-A2-binding pep-
tide prediction method combined with a proteosomal
cleavage site prediction system). Previous studies used sin-
gle methods, such as HLA peptide binding prediction or
overlapping peptide strategy [18,23-27], suggesting differ-
ent prediction strategies might lead to different results. In
any case, the predicted candidate peptides require addi-
tional validation methods to ensure accuracy.

In our study, we also determined that among the eight
peptides we predicted, four could potent prime CTLs to
produce significant IFN-y and lyse target cells; although,
Sp8 peptide exhibited the most potency for CTL priming.
However, Zhou et al. reported that they only found one
predicted peptide that could stimulate IFN-y secretion and
target cell lysis [26]. This may reflect the different stimula-
tors used in these studies; Zhou used peptides to stimulate
the effector cells directly while we used DCs loaded with
the candidate peptides.

We argue for the use of DCs as stimulator cells in ex vivo
study because DCs are the most potent APCs for priming
T cells, and they not only present peptides to T cells but
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also provide many important co-stimulatory signals.
Moreover, under in vivo conditions DCs present peptides
to T cells in the context of MHC molecules. Thus, using
DCs as ex vivo stimulator cells most closely mimics the in
vivo context.

Conclusion

Our study has identified a novel conserved HLA-A*0201-
restricted epitope from the spike protein of SARS-CoV. We
propose that the newly identified epitope could be used
for evaluation of SARS-CoV-specific CD8+ T-cell responses
during the course of SARS infection and treatment. This
epitope should also aid in the characterization of virus
control mechanisms and immunopathology of SARS-CoV
infection. Ultimately, our findings may be relevant to the
development of ethnically unbiased, widely applicable
immunotherapeutic approaches for SARS disease.

Methods

Sequence alignments

Nucleotide sequences of SARS-CoV strains were analyzed
using BioEdit version 5.0.9 software suite. The corre-
sponding amino acid sequences of S protein were then
aligned with Clustal W http://www.ebi.ac.uk/clustalwy/.
SARS-CoV strains used were as follows, with the nucle-
otide sequence GenBank accession numbers in parenthe-

ses: BJO1 (AY278488), BJ0O2 (AY278487), BJO3
(AY278490), CUHK-Sul0 (AY282752), CUHK-W1
(AY278554), Frankfurt 1 (AY291315), GDO1
(AY278489), HKU-39849 (AY278491), HSR 1
(AY323977),  Sin2500  (AY283794),  Sin2677
(AY283795),  Sin2679  (AY28379G),  Sin2748

(AY283797), Sin2774 (AY283798), TOR2 (AY274119),
TW1 (AY291451), TWC (AY321118) and Urbani
(AY278741).

Peptides

To identify potential HLA-A*0201-binding peptides
within the S protein of the SARS-CoV (BJ01) strain, a com-
bination of two computer algorithms was utilized. The
predictive algorithm, "ProPred1"[31], is a matrix-based
method that allows the prediction of MHC binding sites
in an antigenic sequence for 47 MHC class-I alleles. We
restricted our analysis to the HLA-A2 allele, since it is prev-
alent in a large percentage of all major ethnicities and it is
the most extensively studied HLA class-I antigen [22].
ProPred1 also allows the prediction of the standard pro-
teasomal and immunoproteasomales cleavage sites in an
antigenic sequence. The simultaneous prediction of MHC
binding and proteasomal cleavage sites in an antigenic
sequence leads to the identification of potential T-cell
epitopes. The second algorithm, "SYFPEITHI", was devel-
oped by H. G. Rammensee et al [32], and ranks peptides
according to a score that takes into account the presence
of primary and secondary MHC-binding anchor residues.

http://www.biomedcentral.com/1471-2172/10/61

The 9 mer peptides with a score exceeding 24 were
selected in "SYFPEITHI".

The amino acid sequence of SARS-CoV/S (BJ01) was ana-
lyzed on both of the computer programs for the existence
of 9-amino acid peptides predicted to bind to HLA-A2.
The candidates peptides were synthesized at SHENYOU
Biotech (Shanghai, China) and purified by reverse phase
HPLC to > 95%, as confirmed by mass spectrometry. The
published HLA-A*0201-restricted peptide S,;;.4,0 (KLP-
DDFMGCYV) derived from the S protein of SARS-CoV [26]
was used as a positive control for HLA-A*0201-binding
ability, and the HBcAg-derived H-2P-restricted peptide
HBCAg(131.140) (AYRPPNAPIL) was used as a negative con-
trol. Lyophilized peptides were dissolved in PBS at a con-
centration of 1 mg/ml and stored in aliquots at -20°C.

Cells and Cell Culture

HLA-A2+ individuals were selected by flow cytometry
screening using the anti-HLA-A2 monoclonal antibody
BB7.2. Buffy coats from HLA-A2+ normal donors were
purchased from Southwest Hospital (Third Military Med-
ical University, Chongqing, China). PBL from an HLA-A2+
healthy donor were separated on Ficoll-Hypaque density
gradients (TBD, Inc, Tianjin, China), washed three times
in phosphate-buffered saline (PBS), resuspended in
RPMI1640 medium (Gibco, BRL) supplemented with L-
glutamine (10 mg/ml), penicillin (5 x 104U/L), strepto-
mycin (50 mg/L) and 10% fetal calf serum (FCS), and
plated in 6-well plates at 4 x 10° cells per well.

Human TAP-deficient T2 cell line and BB7.2 cell line pro-
ducing mADb against HLA-A2 were purchased from Ameri-
can Type Culture Collection. T2 cell line was maintained
in RPMI1640 medium supplemented with 20% fetal
bovine serum and 100 pg/ml penicillin/streptomycin.
BB7.2 cell line was maintained in DMEM containing 10%
FCS, 4 pug/L glucose, penicillin (5 x 104U/L) and strepto-
mycin (50 mg/L). Jurkat-A2/KP cells, a generous gift from
Dr. W. Martin Kast (the Norris Comprehensive Cancer
Center, Los Angeles, CA) and Dr. Jehad Charo (the Max
Delbruck Center for Medicine, Berlin, Germany), were
transfected with the HLA chimeric molecule containing
the a1 and 02 domains from human HLA-A*0201 and a3
from mouse H-2Kb, to serve as a model system of HLA
restricted responses [33]. The Jurkat-A2/KP (J(A2/kb)) cell
line was maintained in RPMI1640 medium (Gibco, BRL)
plus 10% calf serum and supplemented with 4 pg/L glu-
cose, penicillin (5 x 104 U/L) and streptomycin (50 mg/
L). All cell lines mentioned above were kept at 37°C in a
humidified atmosphere of 5% CO, in air.

Animals
HLA-A2.1/KP transgenic (Tg) mice were purchased from
the Jackson Laboratory (Bar harbor, ME). For experimen-
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tal purposes, six to eight week-old mice were used. Cell
surface HLA-A*0201 expression was assessed by flow
cytometry using fluorescein isothiocyanate (FITC)-
labeled HLA-A2-specific mAb BB7.2 (Sterotec Ltd, Oxford,
UK). Mice were kept in SPF animal care facilities and all
experiments were performed according to the guidelines
in the Institutional Animal Committee of TMMU.

Binding assay of candidate peptides to HLA-A2

All candidate peptides were tested individually for their
capacity to bind to HLA-A2 molecules on the surface of
human TAP-deficient T2 cells [28]. Briefly, T2 cells were
incubated with 20 pg/ml candidate peptides and 3 pg/ml
human P2-microglobulin (Sigma, St Louis, MO) in
serum-free RPMI1640 for 18 hours at 37°C in a 5% CO,
atmosphere. Expression of HLA-A*0201 on T2 cells was
then determined by staining with FITC-conjugated anti-
HLA-A2 mAb BB7.2 and data analyzed using a FACSCali-
bur flow cytometer (Becton Dickinson, Mountain View,
CA) and CellQuest software (Becton Dickinson). The
published peptide S4;1459 and HBcAG151.14¢) served as
positive and negative control, respectively. The former is
known to bind to HLA-A2 molecule with high affinity, the
latter has been identified as mouse H2K4 epitope that has
little binding affinity with HLA-A2 molecule. The fluores-
cence index (FI) was calculated as follows: FI = [(mean
FITC fluorescence with the given peptide - mean FITC flu-
orescence without peptide)/(mean FITC fluorescence
without peptide)]. Peptides with an FI more than 1 were
regarded as high-affinity epitopes.

Generation of CTLs in healthy donors

Human peripheral blood monocyte-derived DCs were
generated as described previously [28] with minor modi-
fications. Briefly, human PBLs were suspended in serum-
free RPMI1640 and allowed to adhere to 6-well plates at a
final concentration of 1 x 107 cells/3 ml/well and cultured
in 5% CO2 at 37°C. After 2 hours, non-adherent cells
were gently removed with warm medium. The resulting
adherent cells were cultured in RPMI1640 medium sup-
plemented with 10% FCS, 20 ng/ml recombinant human
interleukin-4 (IL-4) (R&D Systems, Minneapolis, MN)
and 800 U/ml recombinant human granulocyte-macro-
phage colony stimulating factor (GM-CSF; Sandoz, Basel,
Switzerland) in 5% CO, at 37°C. Every two days, one-half
of the medium was replaced by fresh medium containing
double concentration of GM-CSF and IL-4 as indicated
above. Cell suspensions were collected for analysis of sur-
face phenotype at different stages of development. After
five days of culture, DCs were harvested for subsequent
experiments (90% pure as confirmed by analysis of rela-
tively DC-specific phenotype and with a typical DC mor-
phology). 10 ng/ml recombinant human tumor necrosis
factor (TNF-a, Peprotech, Rocky Hill, NJ) was added to
the medium to induce phenotypic and functional matura-
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tion. Then, 48 hours later, DCs were used to prime autol-
ogous PBLs as follows, DCs were pulsed with 20 pg/ml
peptide in the presence of 3 pg/ml B2-microglobulin at
37°C for 5 hours and irradiated at 30 Gy before use. PBLs
(2 x 106 cells/3 ml culture medium) were co-cultured with
2 x 105 peptide-pulsed irradiated autologous DCs in a 6-
well plate in the presence of 10 ng/ml recombinant
human interleukin-7 (IL-7; Peprotech). After 24 to 48
hours 20 [U/ml human interleukin-2 (IL-2, Sigma) was
added to the culture medium. Lymphocytes were re-stim-
ulated each week in the same manner. Three days after the
second round of re-stimulation, induced cells were har-
vested and tested by cytokine determination and cytotox-
icity assays.

Generation of CTLs in HLA-A2. 1/Kb transgenic mice

A plasmid S/pVAX1 encoding SARS-CoV S protein was
constructed and used to immunize the HLA-A2.1/Kb
transgenic mice at a dose of 100 pg (in 100 pl of PBS) of
plasmid S/pVAX1 by injection into tibialis anterior mus-
cles. Mice were re-inoculated four times every seven days
under the same conditions. In this study, bone marrow-
derived DCs were generated from transgenic mice as pre-
viously described [34,35] with some modification. DCs
were pulsed with 20 pg/ml peptide in the presence of 3
pg/ml B2-microglobulin at 37°C for 5 hours and irradi-
ated at 30 Gy before use. Spleens were aseptically removed
after the final scheduled immunization. Splenic single-
cell suspensions were then harvested and cultured in 6-
well plates at a density of 1 x 107 cells/3 ml/well, in the
presence of 1 x 105 peptide-loaded irradiated syngeneic
DCs. On day six of culture, induced cells were harvested
and tested by cytokine determination and cytotoxicity
assays.

Cytotoxicity assays

Cytotoxic activity of CTLs was determined in a standard 4-
hour 51Cr release assay as previously described [36] with
some modification. In human cytotoxicity assays, DCs
derived from a healthy HLA-A2+ donor were incubated
with each of candidate peptides and used to stimulate
autologous healthy HLA-A2* donor PBLs. T2 cells loaded
with the relevant peptides were used as target cells in cyto-
toxicity assays. As a positive control group, HLA-A2+ PBLs
were stimulated with S,;;4,,-pulsed autologous DCs.
HLA-A2+ PBLs stimulated with HBcAg(;3;.140)-pulsed
autologous DCs served as the negative control group. In
DNA-immunized mice cytotoxicity assays, the target cells
were the J(A2/kb) cells loaded with the candidate pep-
tides, the positive control peptide S,;; 4,0, the irrelevant
peptides HBcAg31.140), and J(A2/kb) cells alone.

First, T2 cells and/or J(A2/kb) cells were loaded with 20
pg/ml peptides and 3 pug/ml human B2-microglobulins
and incubated at 37°C for 2 hours. Then peptide-pulsed
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T2 cells and/or J(A2/kb) cells were labeled with 51Cr
sodium chromate (Na>!CrO,, Perkin-Elmer Life Science,
Boston, MA) for 90 minutes at 37°C. 5!Cr-labeled target
cells were washed three times and mixed with graded
doses of effectors in 96-well plates. After incubation at
37°C for 4 hours, a total of 100 ul supernatant was col-
lected from each well and radioactivity was counted with
a gamma counter. Each assay was performed in triplicate.
Percent specific lysis was determined according to the fol-
lowing formula: percent specific lysis = [(mean experi-
mental cpm - mean spontaneous cpm)/(mean maximum
cpm - mean spontaneous cpm)] x 100%. Spontaneous
and maximum releases were determined by incubating
the labeled targets with medium alone or 1 M HCI, respec-
tively. Spontaneous release was always < 15% of maxi-
mum release.

Enzyme-linked immunosorbent spot (ELISPOT) assay
ELISPOT assay was performed using a commercially avail-
able kit (U-CyTech, Netherlands) according to the manu-
facturer's instructions and published literature [37] with
some modification. Autologous DCs were pulsed with 20
pg/ml candidate peptides and used as stimulators for
HLA-A2.1+ PBLs from the immunized mice. Effector cells
(1 x 10°) and stimulator cells (1 x 10°) were seeded into
96-well polyvinylidene fluoride (PVDF)-backed micro-
plates pre-coated with anti-IFN-y mAb. After incubation at
37°C for 48 hours, cells were removed and plates proc-
essed as described in the instruction. Resulting spots were
counted with a stereomicroscope (Carl Zeiss, Thornwood,
NY) under magnifications of x20 to x40. Only brown
and/or blue colored spots with fuzzy borders were scored
as spot-forming cells (SFCs). As a positive control, S,;;.
aro-loaded DCs were used as stimulator cells. The
HBcAg(131.140)10aded DCs, DCs alone, and medium were
used as negative controls. Negative control values were
always < 20 SFC per 10¢ input cells. Results were consid-
ered positive when at least 120 SFC/10¢ PBL were
detected. Each assay was run in triplicate and results were
representative of three experiments.
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