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Abstract

Background: Inflammation is characterized by dynamic changes in the expression of cytokines, such as M-CSF,
and modifications of lipids and proteins that result in the formation of ligands for Class A Scavenger Receptors (SR-
A). These changes are associated with altered SR-A expression in macrophages; however, the intracellular signal
pathways involved and the extent to which SR-A ligands regulate SR-A expression are not well defined. To address
these questions, SR-A expression and function were examined in resident mouse peritoneal macrophages
incubated with M-CSF or the selective SR-A ligand acetylated-LDL (AcLDL).

Results: M-CSF increased SR-A expression and function, and required the specific activation of p38 MAPK, but not
ERK1/2 or JNK. Increased SR-A expression and function returned to basal levels 72 hours after removing M-CSF. We
next determined whether prolonged incubation of macrophages with SR-A ligand alters SR-A expression. In
contrast to most receptors, which are down-regulated by chronic exposure to ligand, SR-A expression was
reversibly increased by incubating macrophages with AcLDL. AcLDL activated p38 in wild-type macrophages but
not in SR-A-/- macrophages, and p38 activation was specifically required for AcLDL-induced SR-A expression.

Conclusions: These results demonstrate that in resident macrophages SR-A expression and function can be
dynamically regulated by changes in the macrophage microenvironment that are typical of inflammatory
processes. In particular, our results indicate a previously unrecognized role for ligand binding to SR-A in up-
regulating SR-A expression and activating p38 MAPK. In this way, SR-A may modulate inflammatory responses by
enhancing macrophage uptake of modified protein/lipid, bacteria, and cell debris; and by regulating the
production of inflammatory cytokines, growth factors, and proteolytic enzymes.

Background

SR-A is a multifunctional macrophage receptor that is
upregulated during monocyte differentiation into macro-
phages, and is further increased in pathological condi-
tions such as diabetes [1-3]. SR-A is also highly
expressed by macrophages in atherosclerotic lesions and
Alzheimer’s plaques [4-6]. In contrast, decreased SR-A
expression is associated with increased susceptibility to
bacterial infection, progression of prostate cancer, and
enhanced cytokine production [7-9]. Such results sug-
gest important and complex roles for SR-A in modulat-
ing immune function and inflammation.
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Macrophage differentiation and recruitment during
inflammation is mediated by changes in the local envir-
onment and the secretion of cytokines/chemokines such
as M-CSF. M-CSF, which is produced by many cell
types, is a cytokine that plays an essential role in mono-
cyte-macrophage functions including membrane ruffling,
cell migration, and the production of inflammatory
mediators [reviewed in [10,11]]. Because of its role in
the development of monocyte/macrophage cells, M-CSF
is thought to play important roles in immune function
and inflammatory diseases [reviewed in [12]]. For exam-
ple, M-CSF is thought to promote atherosclerosis by
increasing macrophage viability/differentiation, low-den-
sity lipoprotein (LDL) receptor-mediated lipoprotein
uptake, and the expression of macrophage SR-A [12-14].
SR-A promotes foam cell formation by binding and
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internalizing modified lipoproteins [e.g., acetylated LDL
(AcLDL), oxidized LDL (oxLDL)], but not native lipo-
proteins [15]. SR-A has also been associated with addi-
tional macrophage functions including cell adhesion to
modified extracellular matrix, phagocytosis/clearance of
apoptotic cells, and the modulation of macrophage acti-
vation and cytokine production [16-20]. Thus, increased
SR-A expression may play an important part in the
effects of M-CSF on immune function and inflamma-
tion. Taken further, the ability to inhibit M-CSF-induced
SR-A expression may have important therapeutic impli-
cations. However, the cellular pathways that couple M-
CSF binding to increased SR-A expression are not
known.

In addition to increased secretion of M-CSF, local
inflammation results in the modification of proteins,
alterations in the extracellular matrix (ECM), and tissue
damage. Such modifications result in the formation and
accumulation of SR-A ligands. Many receptors including
receptor-tyrosine kinases (e.g., insulin receptors), G pro-
tein-coupled receptors (e.g., B-adrenergic receptors), and
nutrient receptors (e.g., LDL receptors) are down-regu-
lated by prolonged exposure to ligand. This negative
feedback is mediated by activation of intracellular signal-
ing pathways that regulate receptor expression.
Although it might be of particular importance in diverse
inflammatory conditions, the effect of modulating the
concentration of SR-A ligand in tissue on SR-A expres-
sion in resident macrophages is not known.

SR-A gene expression is under the control of a proxi-
mal promoter in combination with an upstream enhan-
cer element [2,21,22]. Binding of the transcription factor
AP-1 to this upstream enhancer element has been
shown to be sufficient to direct specific macrophage SR-
A expression [1,22]. Activation of AP-1 in inflammatory
cells is primarily regulated by the mitogen activated pro-
tein kinases (MAPK), in particular via c-Jun phosphory-
lation by JNK and ATF2 phosphorylation by p38 MAPK
[23]. Roles for both of these MAPKs in regulating SR-A
expression in elicited macrophages has been suggested
[24,25].

It has been suggested that different agents used to eli-
cit resident peritoneal macrophages can alter macro-
phage populations, their regulation by intracellular
signals, and macrophage responses e.g., superoxide pro-
duction, chemokine generation, and Ab-dependent cell-
mediated cytolysis [26,27]. In this study, we used iso-
lated resident peritoneal macrophages to examine the
intracellular signaling pathways involved in regulating
SR-A expression and function. We also examined
whether chronic exposure to SR-A ligand alters SR-A
expression in macrophages. Our results demonstrate
that cytokine and SR-A ligand reversibly enhance SR-A
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expression and function via activation of p38 MAPK
and the subsequent induction of SR-A transcription.

Methods

Chemicals

Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with L-glutamine, DMEM with 25 mM HEPES,
and heat-inactivated fetal bovine serum (FBS) were pur-
chased from GibcoBRL (Grand Island, NY). Penicillin
and streptomycin, fucoidan, and actinomycin D were
purchased from Sigma (St Louis, MO). Recombinant
murine M-CSF and goat anti-mouse SR-A antibody
were purchased from R&D Systems (Minneapolis, MN).
Rabbit anti-phospho-p44/42 (ERK1/2), anti-phospho-
p38, anti-phospho-SAPK/JNK, and anti-p38 MAPK anti-
bodies were purchased from Cell Signaling Technology,
Inc. (Beverly, MA). Anti-p44/42 (ERK1/2) and anti-
JNKI1 antibodies were purchased from Santa Cruz Bio-
technology, Inc (Santa Cruz, CA). The specific MAPK
inhibitors SB203580 (p38), SP600125 (JNK1/2), and
PD98059 (MEK) were purchased from EMD Bios-
ciences, Inc (La Jolla, CA). Alexa**®-Acetylated LDL was
purchased from Molecular Probes, Inc (Eugene, OR)
and Alexa®”-conjugated 2F8 mAb from Serotec.

Cell culture and treatment

Resident (non-elicited) mouse peritoneal macrophages
(MPMs) were harvested by peritoneal lavage with ice-
cold sterile saline from male NIH Swiss mice (Harlan;
Indianapolis, IN), and from C57Bl/6 and SR-A-/- mice
on a C57Bl/6 background (Figures 1C and 4B; Jackson
Laboratory, Bar Harbor, ME). Animal care and use for
all procedures were done according to protocols
reviewed and approved by the Institutional Animal Care
and Use Committee at University of Arkansas for Medi-
cal Sciences and the University of Kentucky. Isolated
macrophages were cultured as previously described [28].
Briefly, peritoneal exudates were incubated overnight at
37°C and non-adherent cells removed by gently washing
with PBS. Adherent macrophages were maintained in
DMEM containing antibiotics and FBS (10%) for 48 hrs
prior to use in experiments. MPMs were then treated
with agonists in the presence or absence of specific inhi-
bitors as described in figure legends. Following treat-
ment, MPMs were washed with ice-cold PBS and cell
lysates prepared by incubating cells in MBST/OG buffer
(25 mM MES; 150 mM NaCl; 60 mM octylglucopyrano-
side; 1% Triton X-100; pH 6.4) containing protease and
phosphatase inhibitors (Sigma, St. Louis, MO) for 45 min
on ice. Cell lysates were centrifuged at 13,000 rpm for 15
min and the pellets were discarded. Protein concentra-
tion of supernatant was determined using the BioRad DC
assay using BSA as a standard (Hercules, CA).
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Figure 1 M-CSF induces SR-A expression and AcLDL association. (A) Cultured resident MPMs were incubated with the indicated
concentrations of M-CSF for 24 hrs. Subsequently, SR-A and GAPDH proteins were detected in lysates prepared from treated cells by
immunoblotting with specific antibodies. A representative immunoblot from a single experiment and the results (mean + SEM) from at least
three separate experiments are shown. (B) Cultured resident MPMs were pretreated with actinomycin D (5 uM) for 30 min, and then incubated
with or without M-CSF (25 ng/ml) for the indicated times prior to assessing SR-A expression. A representative immunoblot from a single
experiment and the results (mean + SEM) from at least three separate experiments are shown. (O) Alexa®®-AcLDL association with macrophages
isolated from C57BI/6 or NIH-Swiss mice was quantified by flow cytometry as described in Material and Methods. Non-specific association was
determined in the presence of fucoidan (Fuc, 75 pg/ml), a blocking SR-A antibody (2F8, 10 ug/ml), or by using SR-A-/- macrophages. Shown is
the mean + SEM of three separate experiments. (D) SR-A-specific Alexa®®-AcLDL association with macrophages incubated with M-CSF (25 g/
ml) for the indicated times was quantified by flow cytometry as described in Material and Methods. The results of a representative experiment
and the mean + SEM of at least three separate experiments are shown. (F) Relative changes in SR-A expression and function were plotted and
the best fit line determined using a Deming linear regression model in GraphPad Prism.
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Western blot analysis

Equal amounts of cell lysate protein were resolved by
12% SDS-PAGE and transferred to polyvinylidene
difluoride (PVDF) membrane (Millipore, Billerica, MA).
Proteins were detected by immunoblotting with specific
primary antibodies followed by incubation with species-
specific HRP-conjugated secondary antibodies. Bands
were visualized by chemiluminescence, images captured
with a Kodak Image Station 4000 MM Pro, and band
intensities quantified using Kodak 1D image analysis
software.

Flow Cytometry

To assess SR-A-mediated lipoprotein uptake and surface
accessible SR-A, cultured MPMs were preincubated for
2 hrs in serum-free DMEM and then incubated for 2
hrs at 37°C with Alexa**®-AcLDL(2.5 pg/ml). Nonspeci-
fic association of Alexa**®-AcLDL with cells was defined
in the presence of the SR-A ligand fucoidan (75 pg/ml)
for 5 minutes prior to addition of lipoprotein. Nonspeci-
fic values were subtracted from total values to calculate
SR-A-specific cell association. To quantify surface SR-A,
MPMs were washed and incubated in DMEM/1% FBS
containing Alexa®"-conjugated 2F8 mAb for 30 min at
25°C. Cells were then washed and suspended in PBS,
and Alexa*®®-AcLDL and Alexa®"-conjugated antibody
association quantified by flow cytometry.

Results and Discussion

M-CSF induces SR-A expression and AcLDL association
Macrophage differentiation and recruitment into
inflammatory sites are associated with increased SR-A
expression. SR-A expression is regulated by both tran-
scriptional and post-transcriptional processing
[1,3,14,25,28-30]. M-CSF is involved in both monocyte/
macrophage differentiation and recruitment during
inflammation, and has previously been shown to
enhance SR-A expression in elicited macrophages via
increased transcription [14]. However, the intracellular
signals that couple M-CSF to enhanced SR-A expression
have not been defined.

To examine the signaling pathways that regulate SR-A
expression, the effect of M-CSF on SR-A expression was
examined in non-elicited, resident MPMs. Non-elicited,
resident MPMs were used because of the potential for
eliciting agents to alter macrophage phenotype and reg-
ulation by intracellular signals. Culturing isolated MPMs
with M-CSF resulted in the concentration-(Figure 1A)
and time-(Figure 1B) dependent induction of SR-A pro-
tein expression. SR-A expression was increased by incu-
bating macrophages with physiologically relevant (0.5-75
ng/ml) concentrations [31-33] of M-CSF (ECsq =5 ng/
ml), and was maximally induced following a 24 hr incu-
bation with M-CSF (Figure 1B). No further increase in
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expression was observed with longer times of incubation
with M-CSF (data not shown). Treating MPMs with
actinomycin D (5 uM), an inhibitor of gene transcrip-
tion, prior to incubation with M-CSF abolished M-CSE-
mediated upregulation of SR-A expression indicating
that M-CSF-stimulated SR-A expression in resident
macrophages results from increased SR-A transcription.
To confirm that increased SR-A expression is correlated
with enhanced SR-A function, we examined the ability
of M-CSF to stimulate fluorescently-labeled AcLDL
(Alexa®®®-AcLDL) association with MPMs. Results
shown in Figure 1C show that a blocking SR-A mono-
clonal antibody (2F8) and an excess of SR-A competitor
(fucoidan) reduced AcLDL association with macro-
phages isolated from C57Bl/6 or NIH-Swiss mice to a
level similar to that obtained using macrophages isolated
from SR-A-/- in a C57Bl/6 background. These results
demonstrate the specificity of this asssay for assessing
SR-A function. M-CSF treatment induced a time-depen-
dent increase in AcLDL association with MPMs that
was maximal (2.4-fold) at 24 hrs (Figure 1D), with no
further increase at longer incubation times (data not
shown). M-CSF stimulation of SR-A function was line-
arly correlated (Pearson r = 0.97; p = 0.007) with the
effect of M-CSF on SR-A expression (Figure 1E) indicat-
ing that in resident MPMs SR-A function is limited, at
least in part, by the level of receptor expression. These
results suggest that by increasing SR-A expression M-
CSF, produced for example by endothelial cells or lym-
phocytes in an atherosclerotic plaque or other inflam-
matory sites, can increase the uptake of modified
lipoprotein and other scavenger receptor ligands.

M-CSF-stimulates SR-A expression by upregulating SR-A
mRNA and protein synthesis which requires p38 MAPK
activation

Many effects of M-CSF including macrophage migra-
tion, differentiation, survival, and cytokine production
are mediated, in part, via activation of MAPKs, a family
of kinases that include ERK1/2, JNK, and p38 [34-36].
Activation of MAPKs, in particular JNK and p38
MAPK, regulates the activity of several transcription fac-
tors including AP-1 [23]. The binding of AP-1 to an
upstream enhancer element is sufficient to direct speci-
fic macrophage SR-A expression in inflammatory cells
[1,21,22]. Therefore, we examined M-CSF-dependent
MAPK activation and whether MAPK activation was
required for M-CSF-induced SR-A expression. For this,
resident MPMs were treated with M-CSF and the acti-
vation of ERK, p38, and JNK assessed by immunoblot-
ting with phospho-specific MAPK antibodies. As shown
in Figure 2A, M-CSF induced the phosphorylation of
both p38 and ERK1/2. In contrast, JNK phosphorylation
was not detectable in either the presence or absence of
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Figure 2 M-CSF-stimulates SR-A expression by upregulating SR-A mRNA and protein synthesis which requires p38 MAPK activation.
(A) MPM were incubated with or without M-CSF (25 ng/ml) for 10 min at 37°C. Cells were then lysed with MBST/OG buffer and phosphorylation
of MAPK quantified by immunobloting. The results from a single experiment are shown and are representative of at least four separate
experiments. (B) MPM were treated as indicated with specific inhibitors of p38 [SB203580 (10 uM)], JNK [SP600125 (20 uM)] or ERK1/2 [PD98059
(10 uM)] for 20 minutes at 37°C. Cells were then treated with or without M-CSF (25 ng/ml) for 24 hrs at 37°C and SR-A protein quantified by
immunoblotting. Data represent the mean + SEM from at least three independent experiments* denotes significant difference (p < 0.05) from
untreated control value (ANOVA with Dunnett's multiple comparison). () MPM were treated with specific inhibitors of p38 [SB203580 (10 pM)],
INK [SP600125 (20 uM)] or ERK1/2 [PD98059 (10 uM)] for 20 minutes at 37°C, and then incubated with M-CSF (25 ng/ml) for 24 hrs. SR-A-specific
macrophage association was quantified by flow cytometry as described in Materials and Methods. Data represent the mean + SEM from at least
three separate experiments. * denotes significant difference (p < 0.05) from M-CSF treated control value (ANOVA with Dunnett's multiple
comparison).
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M-CSF (data not shown). To determine if activation of
MAPK was specifically required for M-CSF-induced SR-
A expression and function, the ability of M-CSF to sti-
mulate SR-A expression and AcLDL association was
assessed in MPMs pretreated with specific inhibitors of
p38 MAPK (SB203580), JNK (SP600125), and MEK1
(PD98059), which inhibits ERK1/2 activation. Inhibiting
JNK or ERK1/2 activation had no effect on either
M-CSF-induced SR-A expression (Figure 2B) or M-CSE-
induced uptake of modified lipoprotein (Figure 2C). In
contrast, pretreating macrophages with SB203580 inhib-
ited both M-CSF-induced SR-A expression and modified
lipoprotein uptake (Figure 2C). Together, these data
define a specific requirement for activation of p38
MAPK, but not ERK1/2 and JNK, in M-CSF-induced
SR-A expression and function.
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M-CSF stimulates SR-A expression and AcLDL association
in reversible manner

Increased SR-A expression and function following M-
CSF treatment suggests that regulating SR-A expression
in resident macrophages is an adaptive response to
changes in the local inflammatory environment. Inflam-
mation is a dynamic process in which the production of
cytokines such as M-CSF changes as inflammation
resolves over time. To test whether the enhanced SR-A
expression and function induced by M-CSF is reversible,
we examined SR-A protein and AcLDL uptake following
removal of M-CSF using the incubation scheme
depicted in Figure 3A. The increase in SR-A expression,
as quantified by western blotting (Figure 3B) or flow
cytometry (Figure 3Ctop), and function (Figure 3Cbot-
tom) observed following M-CSF treatment returned to
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ng/ml) for 24 hrs. SR-A expression and function were assessed at the end of incubation (arrows). (B) Following incubations, cell lysates were
prepared and SR-A protein was quantified by immunoblotting. (C) Following incubations, surface SR-A (top) and SR-A-mediated uptake (bottom)
were quantified by flow cytometry using Alexa®’-conjugated 2F8 mAb and Alexa*®®-AcLDL as described in Materials and Methods. The results of
representative experiments are shown. (D) The mean + SEM of at least three separate flow cytometry experiments are shown.
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(Reverse). Cell lysates were prepared and SR-A protein expression quantified by immunoblotting. A representative immunoblot from a single
experiment and the results (mean + SEM) from at least three separate experiments are shown. * denotes significant difference (p < 0.05) from
AcLDL treated control value (ANOVA with Dunnett’s multiple comparison). (B) To determine whether AcLDL induces MAPK activation in SR-A
dependent manner, MPM from wild type and SR-A-/- mice were cultured for 48 hrs and then incubated without or with M-CSF (25 ng/ml) or
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denotes significant difference (p < 0.05) from untreated wild-type value (ANOVA with Dunnett's multiple comparison).
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the pretreated levels 72 hr after M-CSF removal (t 1/2 =
24 hr). To determine if SR-A expression was still
responsive to M-CSF, previously treated MPMs were re-
stimulated with M-CSF for another 30 hrs. Similar to
naive MPMs, SR-A expression and function were
increased by the restimulation with M-CSF. As summar-
ized in Figure 3D, M-CSF-induced proportional changes
in SR-A expression and function in both naive and pre-
viously treated MPMs. Together, these data demonstrate
that in resident macrophages SR-A expression and func-
tion is dynamically regulated by M-CSF.

AcLDL stimulates SR-A expression in reversible manner
via activation of p38 MAPK

In addition to cytokines, inflammatory settings are char-
acterized by accumulation of SR-A ligands including
oxidized lipoproteins (e.g., modified LDL), necrotic cell
debris, and modified ECM. Because many receptors are
down-regulated by chronic exposure to ligand, we tested
whether SR-A expression was decreased by ligand. In
contrast to our hypothesis, incubating macrophages with
an SR-A selective ligand (AcLDL; 50 pg/ml) for 24 hr
increased SR-A protein expression (Figure 4A). As
demonstrated for M-CSF, enhanced SR-A expression
returned to the pretreated levels 72 hr after AcLDL was
removed, and pre-treating MPMs with a specific p38
MAPK inhibitor (SB203580) blocked AcLDL-induced
SR-A expression. In contrast, inhibitors of ERK1/2 and
JNK did not affect the ability of AcLDL to enhance SR-
A expression. To confirm that incubating resident
MPMs with AcLDL induced SR-A-dependent MAPK
activation, the ability of AcLDL to activate MAPK in
wild-type and SR-A deficient resident MPMs was exam-
ined. As shown in Figure 4B, treating macrophages with
AcLDL (50 pg/ml, 10 min) induced phosphorylation of
p38 MAPK and ERK1/2 in wild-type but not in SR-A
deficient macrophages. In contrast, p38 MAPK and
ERK1/2 phosphorylation were similarly increased in
both wild type and SR-A deficient MPMs treated with
M-CSE. JNK phosphorylation was not detected in any
treatment group (data not shown). Together, these data
indicate that ligand binding to SR-A is positively
coupled to SR-A expression via specifically activating
p38 MAPK.

Regulating SR-A expression in vivo may be relevant to
many inflammatory disorders. For example, M-CSF
plays important roles in inflammation and immunity.
M-CSF increases anti-tumor and anti-infective functions
of macrophages, whereas M-CSF deficiency decreases
atherosclerosis and impairs osteoclast development
[11,37]. The extent to which these effects depend on
altered SR-A expression remains to be defined. How-
ever, the possibility that regulating SR-A expression
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modulates inflammatory responses is suggested by the
many studies showing that decreased SR-A expression is
associated with reduced atherosclerosis, increased sus-
ceptibility to infection, disease progression in prostate
cancer, and dysregulation of bone development
[8,9,38-40]. Like SR-A, activation of p38 MAPK is
important for many inflammatory processes including
the production of TNFa, IL-1B, and other cytokines
[41,42]. In addition, inhibiting p38 MAPK has shown
potential benefit in the treatment of inflammatory dis-
ease [43,44]. Our findings suggest that the effects of M-
CSF and p38 MAPK on immune and inflammatory pro-
cesses may be mediated, in part, by modulating SR-A
expression.

Conclusions

Our results indicate that resident tissue macrophages
adapt to changes in their local environment by modulat-
ing SR-A expression and function. Such modulation
may involve the local secretion of M-CSF, which
increases SR-A expression via activating p38 MAPK.
Unlike many receptor systems which are down-regulated
by ligand, ligand binding to SR-A up-regulates SR-A
expression by activating p38 MAPK. Increased SR-A
expression might modulate inflammation by enhancing
macrophage uptake and clearance of modified protein/
lipid, bacteria, and cell debris. In addition, SR-A-
mediated p38 MAPK activation may regulate the pro-
duction of inflammatory cytokines, growth factors, and
proteolytic enzymes, and therefore modulate the pro-
gression of many inflammatory disorders [18-20]. This
may be of particular importance in settings where SR-A
ligands accumulate such as atherosclerosis, diabetes, and
Alzheimer’s disease.
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