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Abstract

by human T cells specialized in helping B cells.

antibody response.

Background: It is well established that PD-1 is expressed by follicular T cells but its function in regulation of
human T helper cells has been unclear. We investigated the expression modality and function of PD-1 expressed

Results: We found that PD-1-expressing T cells are heterogeneous in PD-1 expression. We identified three different
PD-1-expressing memory T cell subsets (ie. PD-1°" ) pp-1medium &0 and pp-1M9" 444 cells). PD-1" T cells
expressed CXCR5 and CXCR4 and were localized in the rim of germinal centers. PD-1* or PD-1"" cells expressed
CCR7 and were present mainly in the T cell area or other parts of the B cell follicles. Utilizing a novel antigen
density-dependent magnetic sorting (ADD-MS) method, we isolated the three T cell subsets for functional
characterization. The germinal center-located PD-17*" T cells were most efficient in helping B cells and in
producing IL-21 and CXCL13. Other PD-1-expressing T cells, enriched with Th1 and Th17 cells, were less efficient
than PD-1""" T cells in these capacities. PD-1"*" T cells highly expressed Ki-67 and therefore appear active in cell
activation and proliferation in vivo. IL-2 is a cytokine important for proliferation and survival of the PD-1"" T cells.
In contrast, IL-21, while a major effector cytokine produced by the PD-1-expressing T helper cells, had no function
in generation, survival, or proliferation of the PD-1-expressing helper T cells at least in vitro. PD-1 triggering has a
suppressive effect on the proliferation and B cell-helping function of PD-1*"" germinal center T cells.

Conclusion: Our results revealed the phenotype and effector function of PD-1-expressing T helper cell subsets and
indicate that PD-1 restrains the B cell-helping function of germinal center-localized T cells to prevent excessive

Background

Programmed death-1 (PD-1 or also called CD279) is a
member of the CD28 family costimulatory molecules
[1,2]. Unlike CD28, PD-1 has two intracellular tyrosine
signaling motifs (immunoreceptor tyrosine inhibition
motif and immunoreceptor tyrosine-based switch motif)
[3] and recruits intracellular phosphatase SHP2 (SRC
homology 2 domain-containing protein tyrosine phos-
phatase 2) that dephosphorylates and deactivates down-
stream signal transducers [4,5]. PD-1 is expressed by a
number of immune cell types including activated T
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cells, B cells, dendritic cells, monocytes, and mast cells
in mice. As the ligands for PD-1, PD-L1 (CD274/B7-H1)
and PD-L2 (CD273/B7-DC) have been identified [6,7].
In general, engagement of PD-1 by PD-L1 or PD-L2
inhibits TCR-mediated T cell proliferation and cytokine
production [8,9], indicating that the cross-linking of PD-
1 by its ligands leads to down-regulation of T cell
responses in a manner somewhat similar to the effect of
CTLA4 stimulation. PD-1-deficient mice are prone to
develop autoimmune diseases such as autoantibody for-
mation, dilated cardiomyopathy, acute type I diabetes,
and bilateral hydronephrosis [10,11]. In humans, single
nucleotide polymorphisms in the PD-1 gene are linked
to a number of autoimmune diseases including lupus,
rheumatoid arthritis, Graves’ disease, type I diabetes,
multiple sclerosis, ankylosing spondylitis, and myocardial
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infarction [12-18]. In mice, blocking of PD-1 exacer-
bated a lupus-like nephritis [19]. Also, triggering of PD-
1 suppressed rheumatoid arthritic symptoms [20]. While
PD-1 and its ligands are thought to function to promote
immune tolerance, it was also reported that mice defi-
cient in PD and their ligands had fewer long-lived
plasma cells, suggesting a certain positive role of PD-1
in regulation of humoral immunity in mice [21].

PD-1 is highly expressed by a subset of T cells in the
germinal centers (GC) [22-25]. In contrast, most human
B cells do not express PD-1 [22]. Additionally, PD-1 is
preferentially expressed on exhausted CD8" T cells dur-
ing chronic viral infection [26-29]. Although the sup-
pressive function of PD-1 on CD8" T cells has been
studied extensively, the phenotype and role of PD-1-
expressing CD4" T helper cells in regulation of humoral
immune responses have been unclear. We investigated
the phenotype and function of PD-1-expressing T helper
cells in human tonsils and the function of PD-1 in regu-
lation of these T cells. Our study revealed that PD-1-
expressing human helper T cells are heterogeneous in
PD-1 expression, chemotactic response, tissue localiza-
tion, cytokine response, and effector function. Moreover,
triggering of PD-1 can restrain the B cell-helping func-
tion of the PD-1M&" ¢+ T cells,

Results

PD-1-expressing T helper cells are heterogeneous in PD-1
expression and tissue localization in human tonsils

We examined the PD-1 expression by T cells, B cells
and dendritic cells in human tonsils. PD-1 was mainly
expressed by CD4" T cells but neither by CD19" B cells
nor CD11c" dendritic cells (Figure 1A). Among the CD4
" T cells, naive CD45RA™ T cells were PD-1". However,
almost all memory (CD45RA") T cells expressed PD-1 at
various levels (Figure 1B). They can be fractionated into
three subsets (PD-1", PD-1"", and PD-1**") based on
the level of PD-1 expression. 15-20% of PD-1 4im (+/++)
cells were FOXP3" or CD25" T cells (Figure 1C).

We investigated the localization of the PD-1-expresing
T cells. The PD-1""" cells that expressed PD-1 at the
highest level were localized in the outer rim of GC adja-
cent to the mantle zone (Figure 1D-a). In contrast, PD-1
dim (+/+4) cells were frequently found in either the center
of GC or interfollicular areas (IFA; Figure 1D-a and 1b).
PD-1""" T cells were localized close to IgD* B cells in
the mantle zone (Figure 1D-c and 1d). Some PD-1-
expressing T cells were found even inside the mantle
zone (Figure 1D-e). There was no clear association of
the sites of PD-1-expressing T cells and dendritic cells
(Figure 1D-f). Both small and large germinal centers had
PD-1-expressing T cells (Figure 1D-g and 1h). The
numbers and location of these T cells in various primary
and secondary follicles demonstrate that PD-1 M&h (+++)
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T cells are the germinal center T cells, while PD-1 4™

+/+4) T cells are in the T cell area or mantle zone.

PD-1-expressing T cells differentially express secondary
lymphoid tissue-homing chemokine receptors

The differential localization of PD-1-expressing T cells
in human tonsils is intriguing. We investigated the
expression of key chemokine receptors, CXCR5 (the
CXCL13 receptor), CCR7 (receptor for CCL19 and
CCL21), and CXCR4 (the CXCL12 receptor), which are
known to regulate the localization of the T cells in sec-
ondary lymphoid tissues (Figure 2A). All PD-1-expres-
sing T cells expressed CXCR5, thus meeting the
definition of follicular T cells. Compared to PD-1*** T
cells, however, PD-1""" T cells even more highly
expressed CXCR5. Naive PD-1" T cells did not express
CXCR5. Interestingly, CCR7 expression was exactly the
opposite of the CXCR5 expression pattern with PD-1*"*
T cells expressing CCR7 at the lowest level. While all of
the subsets expressed CXCR4, it was the PD-1"** T
cells that expressed CXCR4 at the highest level.

Next, we examined the activity of the chemokine
receptors expressed by the PD-1-expressing T cells (Fig-
ure 2B). PD-1""" T cells were highly responsive to
CXCL13 but poorly migrated to CCL19. PD-1*/** T
cells were responsive to both CXCL13 and CCL19 at
moderate levels. PD-1""" T cells were more responsive
to CXCL12 than PD-1"" T cells. Overall the chemotac-
tic responses were in line with the expression levels of
chemokine receptors.

Because the high expression of CXCR4 by PD-1""" T
cells and their localization in the rim of GC, we exam-
ined the in situ expression of CXCL12 at protein level
(Figure 2C). It was found that CXCL12 was expressed
by the stromal cells in the mantle zone and throughout
the interfollicular area but not significantly within GC.
It was notable that the site of CXCL12-expression in the
mantle zone was found right next to the sites of PD-1""
* T cell localization (Figure 2C). Thus, it appears that
PD-1""" T cells localize to the outer rim of GC adjacent
to the mantle zone because of the combined chemotac-
tic force of CXCL12 and CXCL13 in the absence of the
chemotactic influence of CCL19/CCL21.

PD-1-expressing T cells have distinct surface antigen and
cytokine production phenotypes

In order to gain more insights into the phenotype of the
PD-1-expressing T cells, we examined the expression of
various surface antigens such as CD69, CD10, CD127,
CD62L, and leukocyte function antigen (LFA)3 (Figure
3A). All PD-1-expressing T cells were CD69". PD-1""*
T cells highly expressed the adhesion molecule LFA3
but not CD62L and integrin f7. CD10 (an angioimmu-
noblastic T-cell lymphoma marker) was specifically
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Figure 1 PD-1-expressing T cells and their localization in human tonsils. (A) T helper cells, but not DCs and B cells, express PD-1 at high
levels in tonsils. (B) Definitions of the PD-1 expressing CD4™ T cell subsets (PD-17, PD-17", and PD-17" cells) in this study. (C) Expression of
FOXP3 or CD25 versus PD-1 by total tonsil CD4* T cells. (D) In situ immunofluorescence identification of PD-1-expressing T cells. Frozen tonsil
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expressed by a subset of PD-1""" T cells. CD127 (a
component of the IL-7 receptor) was decreased on PD-1
T cells. Thus, PD-1""* T cells have the surface phe-
notype, CD69* LFA3* CD10"/~ CD127" CD62L". Loss of
CD127 is commonly cited as a phenotype specific for
FoxP3™ T regulatory cells but the phenotype of PD-1*"*
T cells suggests that it is actually a shared phenotype
among certain effector or regulatory T cells.

We further investigated the cytokine production capa-
city and co-stimulation receptor expression property of
the PD-1-expressing T cells. All of the three PD-1-
expressing T cell subsets were able to produce IL-2 and
TNF-a (Figure 3B). PD-1" T cells were largely of naive
T cells and included some cells capable of producing
IL-2 (~12%) and TNFa (7%). However, the PD-1-
expressing T cells were heterogeneous in production of
IFN-y and IL-17: PD-1"*" cells included few Th1 or
Th17 cells, while PD-1" T cells contained most Thl and
Th17 cells, suggesting that most polarized effector T

cells belong to the PD-1" T group (Figure 3B). PD-1""*
T cells contain a small number (~5%) of IL-4 or IL-10-
producing T cells. IL-5 or IL-13 producers were hardly
detected. PD-1""" T cells highly expressed co-stimulator
receptors such as OX40 and ICOS (Figure 3C). Also,
intracellular CD40L was expressed more highly by PD-1
T cells than PD-17 or PD-1"" cells.

The PD-1-expressing T cells are heterogeneous in
production of CXCL13, cell proliferation and survival

In order to study the function of the PD-1-expressing T
cells, we isolated naive T cells, PD-17%, PD-1*", and PD-1
T cells at high purities (> 97%) utilizing an antigen
density-dependent magnetic sorting (ADD-MS) devel-
oped for the study (Figure 4). IL-21 is a major cytokine
for follicular helper T cells in helping B cells. IL-21
expression by T cells was proportional to their expres-
sion levels of PD-1 expression (Figure 5A). We reported
previously that a subset of GC-T cells can produce
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Figure 2 Expression of chemokine receptors and chemotaxis of PD-1-expressing T cells. (A) Expression of CXCR5, CCR7 and CXCR4. (B)
Chemotaxis to respective chemokine ligands, CXCL13, CCL19 and CXCL12. (C) Expression of CXCL12 in the tonsil follicular area. % Cells
expressing indicated chemokine receptors among each group of cells are shown in panel A. %Net migration in panel B indicates specific cell
migration levels after subtraction of the background migration occurring in the control medium. The inset in panel C is the image obtained with
an anti-PD-1 antibody and an isotype control antibody. Combined (A) or representative data (A, B, and C) of at least 3 independent experiments
are shown. “*" and “**"indicate significant differences from naive T cells and PD-1"" cells respectively. “MFI” stands for mean fluorescence
intensity.
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Figure 3 Expression of surface antigens, cytokines, and costimulatory molecules by PD-1-expressing T cells. (A) Flow cytometric analysis
of the surface antigen expression by freshly isolated tonsil T cells is shown as graphs and dot plots. (B) Intracellular cytokine expression by
CXCR5" PD-1" CD4" T cells. The T cells were surface-stained and, then, activated with PMA and ionomycin in the presence of monensin for 4 h.
The CXCR5* PD-1" CD4" T cells are gated excluding the largely PD-1-negative naive T cells. Representative data out of 3 independent
experiments are shown. (C) Surface expression of ICOS and OX40 and intracellular expression of CD40L by freshly prepared PD-1-expressing T
cells. Combined data of 3 independent experiments are shown in the graphs. “*" and “**"indicate significant differences from naive T cells and
PD-1"" cells respectively.




Wang et al. BMC Immunology 2011, 12:53 Page 6 of 15
http://www.biomedcentral.com/1471-2172/12/53

Tonsil cells (100 million SRBC-rosseted)

Non-CD4* cell depletion (30l depletion antibody mix )
CD25+ cell depletion (5-10pl of anti CD25-FITC)

CD4* CD25* T cells (~30 million)
CD45R0O* cell depletion
2 CD45RA* cell depletion
(15 pl of antI-CD45R0-F'T‘i/ \ 15 pl of anti-CD45RA-FITC)
CD45RA* CD4* T cells CD45RO* CD4* T cells (~15 million)

(~7 million) PD-1++/+++ cell selection
(5 pl of anti-PD-1-PE)

(-) fractionl l(+) fraction

PD-1+/- cells PD-1++/+++ cells  (~10 million)

Positive selection of PD-1* cells

w/o additional Ab/bead labeling Controlled release of antibodies from PD-1++ cells through

incubation at 37 °C for 30 min based on antigen expression

density
PD-1+ cells l
(~2.5 million) Magnetic positive selection
(-) fraction | 4 (+) fraction
PD-1++ cells PD-1+++ cells
(~0.7 million) (~4 million)
B
Naive T PD-1* PD-1** PD-1"
A
E. URALIL E T T =TT E T T VT 1 T T UL E”"“'W LRALL BRALLULL IRALLLL B
CD45RO -

Figure 4 Isolation of PD-1*, PD-1**, and PD-1"** T cells using a novel antigen density-dependent magnetic sorting (ADD-MS). (A) ADD-
MS procedure utilizing controlled release of antibody/beads based on antigen expression density. The key idea behind this method is to release
the bound beads with short term incubation (30 min) at 37°C to differentially sort high and medium antigen-expressing cells. In a typical
experiment, approximately (~) 100 million SRBC-rosetted T cells were processed to prepare ~4 million PD-1""", ~0.7 million PD-1"*, and ~3
million PD-1" T cells. Anti-FITC or anti-PE microbeads (Miltenyi Biotec) were used at 2x volume of the primary FITC or PE-conjugated antibodies
to sort the T cell subsets. (B) PD-1 and CD45RO expression by the CD4" T cells isolated by the ADD-MS method.
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Figure 5 PD-1-expressing T cells vary in IL21 expression,
CXCL13 production, cell proliferation and cell survival abilities.
(A) Expression of IL21 mRNA by the T cell subsets. Real time PCR
was performed. Shown are expression levels normalized with that of
B-actin. (B) CXCL13 production in response to anti-CD3, anti-CD28,
and IL-2. (C) Proliferation responses of PD-1-expressing T cells in
response to anti-CD3 and anti-CD28. (D) Cell survival rates after 5
days of culture in complete medium in the absence of TCR
activators and cytokines. (E) Expression of Ki-67 by PD-1-expressing
T cell subsets. Combined data of 3 independent experiments are
shown in the graphs. “*" and “**"indicate significant differences from
naive T cells and PD-1"" cells respectively.

CXCL13 [30]. We determined if the PD-1-expressing T
cells have the same phenotype. As shown in Figure 5B,
PD-1""" T cells were most efficient in CXCL13 produc-
tion. Overall, the CXCL13 production ability of the PD-
1-expressing T cells correlated well with the PD-1
expression level. We, next, examined the proliferation
and survival ability of the PD-1-expressing T cells.
Unlike PD-1" T cells and PD-1*" cells, PD-1""" T cells
failed to proliferate in vitro in response to stimulation
with anti-CD3 and anti-CD28 antibodies (Figure 5C).
The PD-1""" T cells had a poor survival ability in the
absence of any stimulatory signals. The cell survival rate
of PD-1" T cells was higher than those of PD-1""" cells
and PD-1"" cells (Figure 5D). Approximately, 15% of
PD-1*"" cells were Ki-67" T cells, which indicates pro-
liferation of these T cells (Figure 5E). These results indi-
cate that PD-1""" cells are active in proliferation in vivo
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but are prone to cell death and difficult to activate for
proliferation in vitro.

Roles of IL-2 and IL-7 in survival and proliferation of PD-
1-expressing T cells

Next, we examined if cytokines can regulate the survival
and proliferation of PD-1-expressing T cells. Both IL2
and IL7 were able to promote the survival of PD-1""" T
cells (Figure 6A). While IL2 was able to induce prolif-
eration of PD-1"** T cells, IL7 was not effective in this
activity (Figure 6B). One interesting difference between
the PD-1""" cells and PD-1"" cells is that IL-7 was able
to readily induce the proliferation of PD-1"" cells but
not PD-1"*" T cells, which is in line with their low
CD127 expression. In contrast, IL21 had no notable
effect on the survival or proliferation of the PD-1-
expresing T cells. These results indicate that PD-1""" T
cells can be induced for cell proliferation in an appro-
priate cytokine milieu.

Lack of function for IL-21 or IL-6 in maintenance or
generation of PD-1""* T cells in vitro

IL-6 and IL-21 are implicated in generation of follicu-
lar helper T cells in mice [31-33]. We examined the
impact of IL-6 and IL-21 on the stability of the PD-1-
expresing T cells. For this, the T cell subsets were cul-
tured for 6-7 days in the indicated conditions, and
expression of CXCR5, CCR7, and PD-1 was examined.
Naive T cells gained some expression of CXCR5 but
they did not lose CCR7. PD-1%, PD-1"", and PD-1"""
T cells maintained the expression of CXCR5, CCR7
and PD-1 throughout the culture period (Figure 6C
and 6D). IL-6 and IL-21 had no effect on the stability
of the PD-1-expresing T cells in terms of expression of
PD-1, CXCR5 and CCR?7.

We consider that expression of CXCR5, PD-1,
CXCL13, and IL21; and loss of CCR7 are the features of
mature follicular helper T cells that can effectively help
B cells and are localized in the GC [30,33-37]. We
examined if IL-6 and/or IL-21 has any role in generation
of the PD-1-expressing CXCR5" B cell-helping T cells.
We observed that these cytokines did not promote the
expression of CXCRS5, IL-21, or CXCL13 by antigen-
primed human naive T cells at the mRNA (Figure 6E)
and protein level (not shown).

PD-1 triggering restrains the B cell-helping ability of PD-1
*** T cells in a cell-specific manner

The information that PD-1""" T cells are found in GC
and express B cell-helping effector molecules such as
ICOS and CD40L suggests that PD-1""" T cells are
highly specialized effector T cells for helping B cells. We
co-cultured the PD-1-expressing T cells and B cells and
assessed their B cell-helping activity. As shown in Figure
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7A, there is a striking positive correlation between the
PD-1 expression and the ability to promote B cell anti-
body (IgG, IgA, IgE, and IgM) production. This was true
for both naive B cells and GC B cells as target cells.
Neutralizing antibodies to ICOS and CD40L almost

completely abolished the B cell-helping activities of PD-
17" T cells (Figure 7B).

A question that remains to be answered regarding
the function of PD-1""" T cells is about the role of
PD-1 expressed by the T cells. Utilizing PD-L2-Fc
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fusion protein, we stimulated the PD-1 receptor of the
T cells. We used a PD-L2-Fc fusion protein, but not a
PD-L1 protein because PD-L1 can trigger also B7-1 in
addition to PD-1 [38]. PD-1 stimulation moderately
increased the CXCL13 production but decreased the
proliferation and B cell-helping ability of PD-1""" T
cells (Figure 8). However, the same stimulation had no
effect on PD-1" * T cells. This suggests an overall
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negative role for the PD-1 specifically expressed by the
PD-1""" GC-T cells.

Discussion

We investigated the phenotype and function of PD-1-
expressing T helper cell subsets in human tonsils. Unex-
pectedly, PD-1 is expressed by all memory, but not
naive, T cells in tonsils. The PD-1-expressing T cells,
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however, are heterogeneous in the PD-1-expression
level, trafficking receptor phenotype, tissue localization,
and effector function in helping B cells. PD-1""" T cells
can stimulate GC B cells for generation of plasma B
cells within the GC, while PD-14™ ¢/+4) T cells are
enriched with Thl and Th17 cells, reside in the mantle
zone of GC or interfollicular area, and have weaker B
cell-helping activity. Interestingly, PD-1 triggering limits
the activity of PD-1""" T cells in helping B cells.
Expression of several receptors such as CXCR5,
CXCR4 and CCR7 is the major determining factor for
localization of lymphocytes in lymphoid tissues that are
divided into T and B cell areas including the interfolli-
cular area, GC, and mantle zone. Coordinated expres-
sion of the three receptors regulates the exact
microanatomical positioning of lymphocytes in mice
[36,39]. This is because the chemokine ligands that bind

the receptors are differentially expressed in the T cell
area (CCL19 and CCL21, CCR7 ligands), the B cell area
(CXCL13, the CXCRS5 ligand), and certain areas of GC/
interfollicular area (CXCL12, the CXCR4 ligand)
[40-43]. The expression patterns of CXCL12 in mice
and humans are somewhat different from each other. In
mice CXCL12 is more expressed in the GC dark zone
[44], while it is expressed at mRNA level by specialized
reticulum cells that surround GC [45] or at the protein
level in the mantle zone and interfollicular area in
human tonsils as shown in this study. The chemokine
receptor phenotypes of PD-1 expressing T cell subsets
are in line with the expression sites of the three chemo-
kines. PD-1*** T cells are CXCR4** CXCR5"* CCR7'*™
and reside in the rim of GC adjacent to the mantle
zone. PD-1** T cells are CXCR4* CXCR5* CCR7'Y,
which would put them elsewhere in GC. The CXCL12
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expressed in the mantle zone would attract PD-1""" T
cells but these cells also highly express CXCR5 to stay
within the GC close to the mantle zone. PD-1"" T cells
express CXCR5 but not CCR7 and stay within the GC.
They express CXCR4 at a reduced level and, thus, are
more scattered throughout GC instead of localized to
the rim of GC. PD-1" T cells express both CXCR5 and
CCR7 at a moderate level and would stay in the peri/
interfollicular area outside of GC as the result of the
balanced chemoattraction between CXCL13 and CCR7
ligands (CCL19 and 21).

An interesting function of human GC-T cells is to
produce CXCL13 [30], which is thought to attract
CXCR5" T cells, B cells, dendritic cells, and follicular
dendritic cells to form and expand GC. Interestingly, the
CXCL13 production ability of PD-1-expressing T cells is
positively associated with their PD-1 expression level.
We found that the GC-localized PD-1""" T cells are
highly efficient in production of CXCL13. Other features
of these PD-1-expressing GC-T cells include expression
of LFA3, CD40L, ICOS, OX40, and CD10. LFA3 is
important for cell-cell interaction, and thus, is likely to
play a role in their interaction with other cells for cell
activation and effector function [46]. ICOS, CD40L and
OX40 are co-stimulatory receptors which would be
involved in activating target cells (e.g. B cells) or the T
cells themselves. We observed that the ICOS and
CDA40L signals are required for the optimal B cell-help-
ing activity of PD-1""" T cells. The function of CD10 in
GC is unclear at this time but it is likely that PD-1""" T
cells would be a normal counterpart of CD10" angioim-
munoblastic T-cell lymphoma in human patients
[47,48].

It has been determined previously that GC-T cells
are prone to cell death and do not proliferate well
[49]. Some even called the cells anergic [50]. The
dilemma in calling them “anergic” is that many T cells
in GCs are active in cell cycling [22] and they are
functionally active in producing IL21 and CXCL13 and
helping B cells. These functions cannot be performed,
at least by definition, by anergic T cells. Moreover,
PD-1""" T cells, although as suggested before to be
apoptotic and non-proliferative, can be driven to sur-
vive and proliferate in response to IL-2. IL-2 and IL-7
can rescue the T cells from cell death. Active prolifera-
tion of PD-1""" T cells in vivo is supported by expres-
sion of Ki-67 by many PD-1""" cells in tonsils. These
results suggest that the PD-1""" GC-T cells are
actively propagating in the GC environment in
response to antigen presenting cells and cytokines. We
noted also that the PD-1""" T cells were highly stable
and did not lose their phenotype in expression of PD-1
and CXCR5 and in B cell-helping function upon subse-
quent antigen stimulation.
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It is still controversial what directly regulates the gen-
eration of fully committed B cell-helping T cells, which
express IL21, CXCL13, CXCR5 and PD-1 but not
CCR?7. ICOS, IL-21, and IL-6 are implicated in increas-
ing the number of CXCR5-expressing T cells or B cell-
helping T cells in mice [32,33,51]. As internal transcrip-
tion factors, Bcl6, c-Maf, STAT3 and BATF1 are impli-
cated in regulating the number of CXCR5" or B cell-
helping T cells in vivo [51,52]. IL-12, a cytokine for Thl
cells, can increase the CXCR5 and IL21 expression by
human T cells [53]. Also, IL-4 can increase the CXCR5
expression by naive T cells in response to activation by
dendritic cells [54]. We found in this study that IL6 and
IL-21 lack the ability to induce the fully differentiated
GC-T cells in vitro. One should note that CXCR5
induction is a spontaneous event following T cell prim-
ing in vivo [54], and is not sufficient by itself to define
fully committed B cell-helping effector T cells. Also,
IL21 is widely produced by different T cell types, and,
thus, expression of IL21 alone would not be sufficient to
define fully differentiated GC-T cells. In this regard, to
date, none really established a reproducible in vitro sys-
tem to induce a stable B cell-helping effector T cell line-
age with a GC tropism (PD-1""" CXCR5" CCR7"). Our
results point out that there are several subsets of
CXCR5" T helper cells with distinct phenotype and cell
function. “Follicular T helper cells,” defined by CXCR5
expression alone, is an ambiguous term, and these T
cells are actually comprised of heterogeneous T helper
subsets. Additional phenotypes such as effector function,
tissue localization and expression of additional antigens
such as CCR7 should all be considered in characteriza-
tion of the diverse B cell-helping T cells.

A key question would be “what is the function of PD-
1, highly expressed by GC-T cells?” It has been estab-
lished that mice deficient with PD-1 expression are
prone to develop various autoimmune diseases [10,11].
Some of these autoimmune diseases are induced, in
part, by autoantibodies produced by B cells, a process
promoted by GC-T cells. Thus, we hypothesized that
PD-1 has the function of down-regulating the T-cell-
dependent B cell responses. To test this hypothesis, we
stimulated the PD-1 by PD-L2-Fc protein and observed
that the PD-1""" T cell-dependent antibody response
was decreased. Also, observed was suppressed prolifera-
tion of PD-1""" T cells by the PD-1 triggering. However,
the production capacity of CXCL13 was not altered.
These results suggest that PD-1 can limit the magnitude
of GC-T cell response. The degree of suppression fol-
lowing PD-1 triggering was moderate which suggests
that PD-1 triggering would not completely shut down
the GC-T cell response. Hyper-activity of PD-1""" T
cells would cause chronic inflammation or autoimmune
diseases. PD-1 appears to function to restrain the
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function of PD-1""" T cells possibly to prevent the aber-
rant humoral immune responses.

Conclusions

PD-1-expressing human T helper cells are highly hetero-
geneous, including PD-1M8h (+++) pp_gmedium (+4) "5
PD-19™ ) cells in tonsils. Among them, PD-17*" T
cells have the phenotype of the germinal center T helper
cells in tissue localization, cellular phenotype and effec-
tor function. Triggering of PD-1 restrains the B cell-
helping activity and proliferation of PD-1""" germinal
center T cells, supporting the role of PD-1 in promoting
tolerance in humoral immunity.

Methods

Isolation of T cells expressing PD-1 at different levels
using a novel antigen density-dependent magnetic
sorting (ADD-MS)

The use of human tonsils for this study has been
approved by the institutional review board at Purdue.
The specimens, byproducts of surgeries and obtained as
pathological specimens without any associated patient
information, were exempted from obtaining consent
forms by the review board. Human tonsil specimens
were obtained from young patients (3-10 yr) undergoing
tonsillectomy to relieve obstruction of respiratory pas-
sages and improve drainage of the middle ear and had
no apparent inflammation. Tonsil mononuclear cells
were prepared by density gradient centrifuge on histopa-
que 1077 (Sigma-Aldrich, St. Louis, MO). T cells were
enriched from the mononuclear cells by a sheep red
blood cell (SRBC) rosetting method. CD4" T cells were
isolated by the CD4" T cell isolation kit (Miltenyi Biotec
Inc. Auburn, CA). CD25" (Treg-enriched) T cells were
depleted with anti-CD25/magnetic beads to obtain CD4
"CD25" cells. Naive and memory CD4" T cells were iso-
lated by depleting CD45RO" and CD45RA™ cells respec-
tively. To isolate the T cell subsets, we developed a
novel magnetic sorting method utilizing controlled bead
release based on antigen expression density. The advan-
tage of this method is to isolate cells at a relatively high
speed using a magnetic sorting method utilizing com-
mercially available magnetic beads (anti-FITC/PE beads,
Miltenyi Biotec Inc). This method was more efficient
than a flow cytometry method in preparing many cells
(1- 5 million sorted cells) within a short time period (5
h). PD-1*/" T cells were isolated by magnetic sorting
from the CD4"CD25 CD45RA" cells by magnetically
selecting PD-1*"*** T cells. PD-1* memory T cells
were further isolated from the PD-1*/" T cell fraction by
magnetically selecting PD-1-expressing cells, PD-1*+/***
T cells were cultured for 30 min at 37°C in complete
RPMI-1640 to release attached beads from PD-1"" cells.
PD-17"" T cells were positively selected from the
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cultured PD-1" */*** fraction. The negative fraction of
this isolation was used as PD-1"" T cells. All of the T
cell fractions were highly pure (> 97% based on the
expression of CD4 and CD45RO or CD45RA). Figure 4
shows the typical purity of PD-1-expressing T cells iso-
lated by this method. Total CD19" B cells were isolated
by depleting T cells with a SRBC-rosetting method.
Naive B cells were further isolated from the total B cells
by positively selecting IgD" cells (purity > 99%), and
CD19°CD38"IgD™ GC B cells (purity = ~95%) were iso-
lated by depleting IgD" cells and positively selecting
CD38" cells as described before [55].

Expression of trafficking receptors and other antigens by
T cells by flow cytometry or real time PCR

The T cells isolated with SRBC-rosetting were stained
with antibodies to CCR7 (150503), CXCR4 (44717.111),
CXCR5 (51505.111, all from R&D Systems, Minneapolis,
MN), or mouse control IgG1 (BioLegend, CA). Cells
were further stained with a biotinylated horse anti-
mouse IgG (H+L) antibody (Vector Lab, Mountain
View) for 20 min, followed by staining with APC-strep-
tavidin (BD Biosciences) and antibodies to PD-1
(eBioJ105), CD45RO (UCHL1), and CD4 (RPA-T4). For
surface or intracellular staining, T cells were stained
with antibodies to CD4 (RPA-T4), CD45RO (UCHL1),
PD-1 (eBioJ105), CD58 (LFA-3, 1C3), CD134 (OX40,
ACT35), CD10 (HI10a), CD127 (hIL-7R-M21), CD62L
(Dreg 56), CD69 (FN50), ICOS (C398.4A), CD25
(BC96), FOXP3 (259D), Ki-67 (B56), and/or CD154
(TRAP-1). The antibodies to the antigens were pur-
chased from R&D systems, eBioscience, BioLegend, or
BD Biosciences (San Jose, CA). Intracellular staining for
cytokine production was performed as described pre-
viously [56]. Stained cells were acquired on a FACS
Canto II. Real time PCR detection was performed on
¢DNA with a 7500 Sequence Detection System (Applied
Biosystems, Foster City, CA) using the SYBR green Mas-
ter Mix (Applied Biosystems). Primers used were: hIL-
21-F (TTC TGC CAG CTC CAG AAG ATG), hIL-21-R
(CAC TTC CGT GTG TTC TAG AGG), h-CXCR5-F
(GCC AGA GAT TCT CTT CGC CAA), h-CXCR5-R
(TGT CCA GGA AGA TGA CGA TGT G), h-CXCL13-
F (TCC AAG GTG TTC TGG AGG TC), and h-
CXCL13-R (TTT CTT GGA CAA CCA TTC CQ).

Immunohistochemistry

Frozen sections of tonsils were cold acetone-fixed and
stained with monoclonal antibodies to human CD3
(HIT3a), CD4 (RPT-T4), PD-1 (eBioJ105), CD19
(HIB19), CD21 (BU32), CD11c (3.9), and/or IgD (IA6-
2). For detection of human CXCL12, the acetone fixed
sections were stained with anti-CXCL12 (Clone 79018;
R&D systems) and then with biotin-conjugated horse-
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anti-mouse IgG (H+L) (Vector lab). The sections were
further stained with FITC or PE-conjugated streptavidin
(eBioscience). After blocking with 10% mouse serum,
the sections were stained with an antibody to PD-1.
Slides were examined with a microscope equipped with
epifluorescence as described previously [49].

Chemotaxis

Chemotaxis was performed as described previously [57].
Human CXCL12, CCL19 and CXCL13 were purchased
from R&D Systems. 5 x10° CD4" T cells in 100 ul of
chemotaxis medium (RPMI with 0.5% BSA) were placed
in each Transwell insert (5 pm pore, 24-well format;
Corning Costar Corp., Cambridge, MA), and the Trans-
well inserts were placed in 24-well plates containing 600
ul of chemotaxis medium (RPMI-1640 with 0.5% BSA)
with optimal concentrations of CCL19 (2000 ng/ml),
CXCL12 (100 ng/ml) or CXCL13 (3000 ng/ml). Cells
were allowed to migrate for 3 h in a 5% CO, incubator
at 37°C. After chemotaxis, the cells that migrated to the
lower chambers were harvested and stained with antibo-
dies to CD4 (RPA-T4), PD-1 (eBioJ105 (J105)), and
CD45RO (UCHLI1). Stained cells were acquired on a
FACS Canto II, and specific percent migration after sub-
traction of the background migration was calculated.

Proliferation, cell survival, differentiation and CXCL13
production

Sorted T cells were cultured in U-bottomed 96-well
plates for 5-6 days in the presence of phytohemaggluti-
nin (PHA, 5 pg/ml) or anti-CD3 (5 pg/ml, immobilized)
and anti-CD28 (2 pg/ml, soluble) in the presence of
hIL-2 (20 U/ml), hIL-7 (20 ng/ml), hIL6 (20 ng/ml),
and/or IL21 (50 ng/ml). For assessment of proliferation,
cells were further incubated with 1 uCi/well of *H-thy-
midine for 8 hours, and 3H-thymidine incorporation was
measured by a beta scintillation counter (Packard Top
Count Microplate Scintillation Counter, Packard Instru-
ments, Meriden, CT). For the cell survival assay, isolated
T cell subsets were cultured for 5 days in RPMI/10%
FBS and, then, stained with 7-Amino-actinomycin D (7-
AAD; final 0.5 pg/ml) immediately before flow cyto-
metric detection of dead (7-AAD* or FSC'") cells. The
5-day old culture medium was examined for CXCL13
production with an anti-hCXCL13 ELISA kit (R&D
Systems).

Assessment of B cell-helping activity

To cross-link the B cell receptors, isolated B cells were
incubated for 2 h at 4°C with sepharose-conjugated rab-
bit Ab to human Ig p chain and human Ig (H + L)
chain (Irvine Scientific, Santa Ana, CA; mixed 1:1 at 2
pg/ml) and then washed with cold PBS. Sorted T cells
and B cells (10° each) were co-cultured in each well of
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96-well plates in RPMI1640 medium supplemented with
10% FBS, gentamycin, streptomycin, and penicillin in
the presence of Staphylococcal enterotoxin B (SEB; 1
pg/ml, Sigma-Aldrich, St. Louis, MO). When indicated,
recombinant human PD-L2-Fc chimera (10 pg/ml, R&D
Systems) or control antibodies (mouse IgG1, 11711.11,
R&D systems) were added at 10 pg/ml to trigger PD-1.

Statistical analyses
Student’s paired 2-tailed ¢ test was used for statistical
analysis when indicated. p values < or = 0.05 were con-
sidered significant.

List of abbreviations

GC: germinal center; MZ: mantle zone; SEB: Staphylococcal enterotoxin B;
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PD-1M9": PFA: perifollicular area
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