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Abstract

Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied
as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation.

Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-a by
lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid
DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with
1.5 mg/kg of LPS and 10 or 20 ug of plasmid DNA had a remarkable attenuation of mean arterial blood pressure
(MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the
plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of
plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management.
No difference was observed in relation to nitric oxide (NO) production.

Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents
anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.
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Background

Plasmid DNA has been successfully used as preventive
or therapeutic DNA vaccines in experimental models of
viral, bacterial or parasitic diseases [1]. Such vaccines are
composed of an antigen-encoding gene, in which its ex-
pression is regulated by a strong mammalian promoter
expressed on a plasmid backbone of bacterial DNA [2-4].
Although there has been a reasonable excitement about
DNA vaccines because of protection induced by strong T
helper 1 responses, it has become apparent that these
attained responses in non-human primates and humans
are weaker than those in mice, probably because of ques-
tions related to dosage and CpG stimulations [5,6]. This
aspect is an important issue to improve DNA vaccines.
We have previously studied DNA vaccine biodistribution
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[7] and also showed that naked plasmid DNA at low
doses inhibits antigen presentation to T cells [8]. Besides,
preliminary data from our group has suggested that
naked plasmid DNA at low doses has anti-inflammatory
properties.

In the last few years, Gram-negative bacteria have
re-emerged as one of the most important pathogens
that induce blood stream infections [9]. These blood-
borne bacteria can produce serious systemic reactions,
known as severe sepsis and shock septic, which are
associated with marked hemodynamic alterations, such
as hypotension, abnormal perfusion of organs and tissues,
decreased systemic vascular resistance and increased heart
rate (HR) [10]. Patients with severe sepsis have frequently
presented dysfunction/failure of at least one organ and, in
about 30% of the cases, multiple organ dysfunction
syndrome (MODS) [11].

In Gram-negative sepsis, hemodynamic instability in
response to infection is due to excessive production of
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inflammatory mediators by endotoxin-activated inflam-
matory cells [12]. Endotoxins, such as outer membrane
wall component lipopolysaccharide (LPS) from Gram-
negative bacteria [13], are responsible for direct activa-
tion of cells and indirect inflammatory cascade, leading
to the production of tumor necrosis factor-a (TNF-q,
interleukin (IL-) 1, IL-6 and IL-8 by macrophages and
monocytes [14-17]. The production of these pro-
inflammatory cytokines is dependent on LPS-binding
protein, receptors CD14 and Toll-like receptor (TLR) 4
[18] and following the intracellular activation cascade,
which triggers the nuclear translocation of nuclear
factor-kB (NF-xB) and following activation of cytokines
gene promoters [19].

IL-6, TNF-a and other inflammatory cytokines are of
fundamental importance in sepsis development by medi-
ating some biological responses, such as elevated pro-
duction of nitric oxide (NO) by macrophages [20]. NO is
a highly diffusible gas that is produced through a nitric
oxide synthase (NOS)-catalyzed oxidation of L-arginine
to L-citrulline. Although NOS presents non-inducible
isoforms, it is the inducible NOS (iNOS) isoform,
present in activated leukocytes, that contributes to vas-
cular hyporesponsiveness and hemodynamic alterations
associated with sepsis [21]. Moreover, iNOS-deficient
mice are resistant to LPS-induced death, indicating a
critical role of NO in sepsis development [22].

As the major symptoms of sepsis are related to pro-
inflammatory and coagulant mediators, many studies have
focused on molecules that could modulate these mediators.
However, treatment of severe sepsis and septic shock with
corticosteroids, the most powerful anti-inflammatory
agents, has been controversial [23]. Besides, clinical experi-
ence with mediator-specific anti-inflammatory agents in
sepsis has been disappointing [24]. The fact that prelimin-
ary data from our group suggested that naked plasmid
DNA at low doses might have anti-inflammatory properties
motivated us to evaluate plasmid DNA in experimental
endotoxemia. Here, we demonstrated that low dose of plas-
mid DNA can decrease inflammatory cytokines and the ini-
tial hypotension noticed in endotoxemia, opening new
perspectives for the treatment of inflammatory diseases.

Methods

Ethical approval

All experiments were performed in accordance with
institutional ethical guidelines of the Animal Care Com-
mittee of the University. Approval was granted by the
Committee of the University of Sao Paulo at Ribeirdo
Preto School of Medicine (CETEA-FMRP-USP).

Rats and reagents
Experiments were performed on adult male Wistar rats
weighing 250-300 g at the time of surgery. The animals
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were maintained under standard conditions with con-
trolled temperature (25.0 +2°C) and exposed to a daily
12:12 h light dark cycle, in the animal house of the Uni-
versity of Sdo Paulo at Ribeirdo Preto College of Nurs-
ing, Ribeirao Preto, SP, Brazil.

RPMI 1640 medium, Hepes, fetal calf serum (FCS),
TRIzol and plasmid pcDNA3 were obtained from
Invitrogen (Carlsbad, CA, USA), and L-glutamine, 2-
mercaptoethanol, penicillin, streptomycin, lipopolysac-
charide (LPS) from Escherichia coli serotype 0111:B4,
dexamethasone and 2,2,2-tribromoethanol, sodium ni-
trate were obtained from Sigma-Aldrich Co. (St. Louis,
MO, USA). Cell culture plates were purchased from
Corning Inc. (Corning, NY, USA). Recombinant mouse
IL-6, capture and biotinylated monoclonal anti-IL-6
(clones MP5-20F3 and MP5-32C11) and an OptEIA
mouse TNF-a (Mono/Mono) set were purchased from
BD Biosciences (San Jose, CA, USA). The forward and
reverse primers of IL-6 (f: TCCTACCCCAACTTCC
AATGCTC and r: TTGGATGGTCTTGGTCCTTA
GCC), TNF-a (f: AAATGGGCTCCCTCTCATCAGTTC
and r: TCTGCTTGGTGGTTTGCTACGAC) and -actin
(f: AAGTCCCTCACCCTCCCAAAAG and r: AAGCAAT
GCTGTCACCTTCCC) were purchased from Invitrogen
(Sao Paulo, Brazil).

Plasmid DNA preparation

pcDNA3 was propagated in Escherichia coli strain DH5«
and large-scale preparations of plasmid DNA were car-
ried out using the EndoFree Plasmid Giga Kit (Qiagen,
Ltd., Crawley, UK) according to the manufacturer’s ins-
tructions. Spectrophotometric analysis revealed 260/280
nm ratios > 1.80. The purity of DNA preparations was
confirmed on a 1% agarose gel. Samples of plasmid in
the doses described below were administered in normal
rats and we observed no changes in body temperature,
suggesting absence or very low concentration of endotoxin.

Cell line culture

The macrophage cell line J774 (5 x 10° cells/mL) was
suspended in complete RPMI medium (RPMI 1640
containing 2 mM L-glutamine, 50 uM 2-mercaptoethanol,
100 units/ml penicillin, 100 pg/mL streptomycin and 5%
heat-inactivated FCS), seeded in 24-well cell culture plates,
1 mL per well, and stimulated with plasmid pcDNA3 at
the concentration ranging from 1 to 100 pg/mL. In the
inhibition experiments, J774 cells were simultaneously
stimulated with 500 ng of LPS and pcDNA3 at the
concentration of 3, 5 or 10 pg/mL. LPS (500 ng) was
also used as the positive control. After incubation at 37°C
in a humidified 5% CO, atmosphere for 48 h, the superna-
tants were harvested and the concentrations of IL-6 and
TNEF-a were determined by ELISA, according to recom-
mendations obtained from BD Biosciences.
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Experimental design

Rats were submitted to general anesthesia with intraperi-
toneal injection of 2.5% 2,2,2-tribromoethanol (10 mL/kg
body weight) and implanted with a polyethylene catheter
in the femoral artery for direct blood pressure recording
and in the jugular vein for intravenous (i.v.) drug adminis-
tration. The animals were injected i.v. by bolus injection
with 1.5 mg LPS/kg body weight in a final volume of
0.5 mL of pyrogen-free sterile physiological saline (0.15 M
NaCl). Experimental time “zero” was determined as the
moment when LPS was injected. Control rats were
injected i.v. with 0.5 mL sterile saline.

In a separate set of experiments, rats received an i.v.
injection of 5, 10 or 20 pg plasmid DNA in a final vol-
ume of 0.5 mL physiological saline. Control animals were
injected with the same volume of saline. Two minutes
later, animals were injected with LPS as described above.

Mean arterial blood pressure (MAP) and HR of anaes-
thetized freely moving rats were recorded using a poly-
graph (Grass P122), connected to a pressure transducer
(Grass P23XL-1) and using the software PolyView
(Astro-Med, West Warwick, RI, USA), over a period of
4—6 h after LPS or saline i.v. injection. The rats were
decapitated 2, 4 and 6 h after LPS or saline administra-
tion. Blood samples were collected into chilled hepari-
nized plastic tubes, centrifuged for 20 min at 2000 x g at
4°C. Plasma samples were stored at —-70°C before dosage.
Liver samples were excised and frozen in liquid nitrogen
and stored at —=70°C until processing.

Plasma NO and arginine vasopressin (AVP) dosage

On the day of the assay, plasma samples were thawed
and deproteinized with 95% ethanol (at 4°C) for 30 min,
subsequently centrifuged, and the supernatant was used
for measurement of nitrate according to the NO/ozone
chemiluminescence technique [25], using a Sievers NO
Analyzer 280 (GE Analytical Instrument, Boulder, CO,
USA). Sodium nitrate was used as standard reference.
AVP extracted from 0.7-1.5 mL of plasma using acetone
and petroleum ether was dried and stored at —20°C until
radioimmunoassay measurements were performed as
previously described [26].

Real-time reverse transcription polymerase chain reaction
(RT-PCR)

Total RNA from liver homogenized manually under liquid
nitrogen with a mortar and pestle was extracted using
TRIzol. Quantification of RNA was carried out on a
NanoDrop ND1000 spectrophotometer (Fisher Thermo,
Wilmington, USA) and its concentration adjusted to 0.25
pg/uL using RNase free water. Reverse transcription (RT)
was performed using the Rotor-Gene 6000 Real-Time
PCR machine (Corbett Life Science, Mortlake, Australia).
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Gene expression was determined in mRNA as previously
reported [27], using primers described above.

Data analysis

Results are expressed as means + standard deviation.
Statistical determinations of the difference between
means of experimental groups were performed using
one-way analysis of variance (analysis of variance) fol-
lowed by the Tukey multiple comparisons test. Differ-
ences that provided p<0.05 were considered to be
statistically significant.

Results

Low dose of plasmid DNA inhibits production of IL-6 and
TNF-a by LPS-stimulated macrophages

To evaluate the production of inflammatory cytokines
in vitro by plasmid DNA-stimulated macrophages, we
incubated ]774 cells with plasmid pcDNA3. Although
plasmid induced the production of IL-6 in a dose-
dependent manner (Figure 1A), we observed that
pcDNA3 in the concentration of 10 pg/mL led to pro-
duction of low concentrations of IL-6 even when LPS
(0.5 pg/mL) was simultaneously used in the stimula-
tion of the cells (Figure 1B). This suppressive effect of
10 pg/mL of plasmid on production of IL-6 by LPS-
stimulated macrophage was surprising and remarkable,
since there was a 99% reduction of its production
when compared with cells cultured with LPS only or
LPS and plasmid at the concentration of 3 or 5 pg/mL
(Figure 1B). TNF-a production by LPS-stimulated J774
cells was also significantly suppressed with 10 pg/mL of
pcDNA3 (Figure 1C).

Low dose of plasmid DNA attenuates the LPS effect on
the experimental endotoxemia
Since plasmids was found to decrease in vitro production
of TNF-a and IL-6 by LPS-stimulated macrophage cell
line and these cytokines play a key role in the inflamma-
tory process, we evaluate if low doses of plasmid could
have a beneficial effect in vivo in an endotoxemia model.
To validate our experimental model, first we determined
the MAP, HR and plasma concentration of NO and AVP
in LPS-injected rats. As expected, the animals injected
with LPS had a significant decrease in MAP and increase
in HR, plasma nitrate and AVP concentrations as com-
pared to control rats (Figure 2). When low doses of
plasmid DNA were injected almost simultaneously
(2 minutes before) with LPS, we observed that the admin-
istration of 10 or 20 pg of plasmid significantly attenuated
the MAP drop (Figure 2B and C). The plasmid treatment
did not have considerable effect on the alterations of HR
and body temperature induced by LPS (Figure 2D-I).

To explain the mechanism involved in the plasmid-
induced attenuation of MAP drop in LPS-stimulated
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Figure 1 Low-dose plasmid DNA inhibits production of IL-6 and TNF-a by LPS-stimulated macrophage cell line. J774 cells were
stimulated with pcDNA3 at different concentrations in the absence (A) or presence of 0.5 ug/mL of LPS (B and C). After 48 h, the concentrations
of IL-6 (A and B) and TNF-a (C) were determined in the culture supernatants. Assays were performed in triplicate and the results represent the
mean + SD of at least three independent experiments. *, P < 0.05 versus group stimulated with LPS only.

rats, we determined the gene expression of liver IL-6  a significant decrease of TNF-a and IL-6 message in
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key mediators in endotoxemia. Similar to in vitro experi- 2 hours after LPS injection when compared with the
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Figure 2 Effect of administration of plasmid DNA on the alterations of MAP, HR and body temperature triggered by LPS in rats.
Animals were injected with LPS and plasmid DNA at doses of 5, 10 or 20 pg. Mean arterial blood pressure (AMAP) (A, B and C), variability of
heart rate (AVHR) (D, E and F) and body temperature (G, H and /) were monitored continuously. Results are expressed as mean + SD of at least
two independent experiments. *, P < 0.05 versus control group injected only with physiologic saline. #, P < 0.05 versus group injected with

LPS only.
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Figure 3 Administration of DNA in rats injected with LPS decreases liver expression of IL-6 and TNF-a. Animals were injected with LPS
and plasmid DNA at doses of 5 or 10 pg. At 2 (A) or 4 (B) hours after injection of LPS, relative amounts of mRNA for IL-6 (A) and TNF-a (B) from
liver were determined. Results are expressed as mean + SD of at least two independent experiments. *, P < 0.05 versus control group injected

with LPS only.

significant difference was detected at 4 hours after LPS
injection (data not shown). In contrast, low doses of
plasmid DNA induced a significant reduction in the
TNF-a at 4 hours of experiment, but not at 2 hours,
when compared with the group treated with LPS only
(Figure 3). As the fall in MAP occurs in the first two
hours after injection of LPS, we suggested that the de-
crease of IL-6 may be important in reducing the pres-
sure drop observed in animals treated with plasmid
DNA. Like IL-6, two hours after LPS administration,
we observed that all tested dose of plasmid DNA sig-
nificantly enhanced the LPS effect on AVP production,
whereas only the doses of 10 and 20 pg of plasmid led
to a significant increase in NO (Figure 4). Interestingly,
the concentrations of AVP were low after 4 h of LPS
injection, whereas high concentrations of NO were
maintained (Figure 4).

Discussion

In this research, we demonstrated for the first time that
a low dose of plasmid DNA vector induces the produc-
tion of low concentration of inflammatory cytokine IL-6
and TNF-a by in vitro LPS-stimulated macrophages.
The novelty of this contribution lies in the fact that we
evaluated this inflammatory suppression by a non-
coding plasmid DNA in an endotoxemia model in rats
and obtained a remarkable attenuation in the drop of
MAPD.

Since the sharp fall in MAP in case of endotoxemia
can be a life-threatening situation, the maintenance of
MAP is one of the major concerns in its treatment [28].
Our data demonstrated that plasmid DNA, mainly at
doses of 10 and 20 pg, when administered concomitantly
with LPS in rats, significantly prevented the drop in
MAP within the first hour of the experiment. This
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plasmid DNA at doses of 5, 10 or 20 pg. At 2 (A and C) and 4 (B and D) hours after injection of LPS, blood was collected and the concentration
of plasma AVP (A and B) and NO3 (C and D) was determined. Results are expressed as mean + SD of at least two independent experiments. *, P
< 0.05 versus control group injected only with physiologic saline. #, P < 0.05 versus group injected with LPS only.

4 h

) EControl
ElLPS

600

* hd *
4507 o
3007
1501
0 5 10 20

DNA (ug/mL)

stabilization of MAP was maintained until the fourth
hour after LPS injection. Although we cannot exclude
that there may have been in vivo direct interaction be-
tween plasmid and LPS, this seems unlikely because
this interaction should induce an inhibition of all para-
meters analyzed in a dose response manner. Our
in vivo experiments demonstrated that 5 pg of plasmid
was able to produce a decrease of the effect of LPS on
the temperature of rats, but not on the AVHR and
AVMAP, when compared with the doses of 10 and 20 pug.
In contrast, 10 and 20 pg of plasmid diminished the
effect of LPS on the AVHR and AVMAP, but not on
temperature.

AVP and NO have been described as important media-
tors in septic shock [29-32]. AVP is a hormone that raises
blood pressure by regulating vascular water balance and
inducing vasoconstriction [33]. The plasma concentra-
tion of AVP is increased in the first and second hour after
administration of LPS in rats [34], as seen in our control
2 hours after LPS injection. More importantly, all tested
doses of plasmid DNA were able to further increase the
concentration of plasma AVP in LPS-injected rats at the
second hour of experiment, in a dose dependent manner.
Though plasmid DNA was responsible for the increase of
AVP in the first 2 hours, its effect was indirect, since rats
injected with only plasmid DNA did not have increased
AVP concentrations. This increase in plasma AVP
concentrations suggests it could be responsible for
recovering MAP.

Concerning to NO, although some studies have
demonstrated that specific iNOS inhibitors can reduce

the MAP drop in animal models [34-36], this has not
been observed in septic patients [37,38]. Even so, we
analyzed NO because it is considered one of the major
factors responsible for refractory hypotension in sepsis,
has its concentration increased after LPS injection [39],
and appears to play a key inhibitory role in AVP released
during endotoxemia, leading to hypotension [34]. Appar-
ently, NO over-production from endotoxin/cytokines-
induced iNOS mediates a vasodilatation difficult to revert
with vasoconstrictors [40]. In our experiments, NO level
was decreased until the fourth hour of the experiment
only in the group administered with LPS and treated with
5 pg of plasmid DNA. Interestingly, 5 pg of plasmid
DNA was not able to maintain the MAP in these rats. In
contrast, 10 and 20 pg of plasmid DNA, which best
stabilized the MAP in the second hour after LPS ad-
ministration, were the doses that significantly increased
the concentrations of NO when compared to rats
injected with LPS only. Therefore, even with high produc-
tion of NO, the LPS-injected rats treated with plasmid
DNA did not show a drop in MAP.

Given that physiological changes in sepsis are in part
caused by high concentrations of inflammatory media-
tors, it is reasonable to suppose that, among the treat-
ments that have been investigated in sepsis, emphasis
has been given to the inhibition of these mediators
[41]. In our experiment in vitro, plasmid DNA signifi-
cantly decreased the production of IL-6 and TNF-a by
LPS-stimulated macrophage cell line J774. The effect of
plasmid DNA on LPS-stimulated ]J774 cells was more

pronounced on the IL-6 than TNF-a, ie, 99%
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reduction for IL-6 and 56% for TNF-a when compared
with macrophages stimulated with LPS only. Similar
results were obtained when our in vitro experiments
were done with another plasmid (pVAX), suggesting
that the anti-inflammatory property does not appear to
be restricted to the pcDNA3 (data not shown). Because
studies have indicated that Kupffer cells promote a
significant role in the production of proinflammatory
cytokines, such as TNF-«, IL-1 and IL-6, after stimu-
lation with LPS [42-44], we evaluated IL-6 and TNF-a
messages from liver. Interestingly, the results of real
time RT-PCR showed that the in vivo gene expression
of IL-6, but not TNF-a, was decreased significantly at
2 hours after plasmid DNA and LPS injection when
compared with injection of LPS only, suggesting that
IL-6 contributes to the stabilization of MAP. Such
stabilization was not attributed to the TNF-a as it
was decreased only at 4 hours after plasmid DNA
and LPS injection. The role of IL-6 in murine sepsis
has been somewhat controversial, since data from the
literature are conflicting in relation to survival of IL-6
knockout mice subject to cecal ligation and puncture
[45-47]. Nevertheless, IL-6 has pointed out as an import-
ant cytokine in sepsis with pro- and anti-inflammatory
effects [48,49], regardless of whether it is a disease
biomarker or contributes to severity of sepsis [50].
More importantly, IL-6 appears to be one of the best
predictors to determine MODS, sepsis severity and
mortality in both animal models [51,52] and human
[49,53-56]. The former data from the literature sup-
ported our hypothesis that low expression of IL-6
induced by the plasmid DNA treatment was crucial to
dampen the LPS-induced hypotension in rats.

AVP infusion has been suggested as an alternative
therapy for septic shock patients that are refractory to
usual vasopressor therapy [29]. This therapy can be
justified because plasma AVP concentrations in septic
patients are maintained close to physiological level,
although a lower blood pressure is noticeable [57].
Because plasma concentrations of AVP might be in-
appropriately low in septic shock [57] and, as seen in this
study, plasmid DNA can increase concentration of AVP
and improve MAP, we suggested that plasmid DNA
constitutes a novel approach with therapeutic potential
in sepsis that may have clinical applications.

Conclusion

We demonstrated that rats injected concomitantly with
LPS and small doses of plasmid DNA had a remarkable at-
tenuation in the drop of blood pressure at 2 hours after
treatment when compared with rats injected with LPS
only. The beneficial effect of plasmid DNA on blood pres-
sure was associated with decreased expression of IL-6 in
liver and increased plasma vasopressin concentrations.
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Our results demonstrate for the first time that plasmid
DNA vector can be anti-inflammatory and constitute a
novel approach with therapeutic potential in inflammatory
diseases.
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