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Abstract

Background: Elevation of soluble major histocompatibility complex class I chain-related gene A (sMICA) products
in serum has been linked to tissue/organ transplantation, autoimmune diseases and some malignant disorders. Cells
infected by microbiological pathogens may release sMICA, whereas less is known whether and to what extent
serum sMICA levels may change in infectious diseases.

Methods: The present study determined serum sMICA levels by enzyme-linked immunosorbent assay (ELISA) in a
southern China population, including patients (n = 1041) suffering from several types of malignant and infectious
diseases and healthy controls (n = 141).

Results: Relative to controls, serum sMICA elevation was significant in patients of hepatic cancer, and was
approaching statistical significance in patients with lung, gastric and nasopharyngeal cancers. sMICA elevation was
also associated with some bacterial (Enterobacteriaceae, Mycobacterium tuberculosis, non-fermenting Gram-
negative bacteria and Gram-positive cocci), viral (hepatitis B and C) and the Microspironema pallidum infections.

Conclusion: Serum sMICA levels may be informative for the diagnosis of some malignant and infectious diseases.
The results also indicate that microbiological infections should be considered as a potential confounding clinical
condition causing serum sMICA elevation while using this test to evaluate the status of other disorders, such as
cancers, host-graft response and autoimmune diseases.
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Background
A host organism can mount immune responses to “for-
eign” antigens during tissue transplant, against infectious
pathogens and under autoimmune conditions. The major
histocompatibility complex (MHC) or human leukocyte
antigen (HLA) genes located in chromosome 6 encode the
classical class I gene products that are involved in such im-
mune responses. Thus, MHC class I (HLA-A, -B and -C)
and class II (HLA-DR, -DQ and -DP) genes produce
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antigen-presenting molecules that stimulate CD8+ and
CD4+ T cells activation. MHC class III or central MHC
proteins perform various immune functions by participat-
ing complement and cytokine activities [1-4].
The human major histocompatibility complex class I

chain-related genes (MIC) are lately discovered genes
located on chromosome 6 in the region encoding the clas-
sic MHC products, This set of genes encodes protein pro-
ducts performing distinct immune functions than antigen
presentation. The MIC region consists of 7 loci encoding
two functional genes, namely the human major histocom-
patibility complex class I chain-related gene A (MICA) and
B (MICB), with the remainder (MICC-MICG) being pseu-
dogenes [5,6]. Specifically, the MICA gene is about 11.7 Kb
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Figure 1 Example of the standard curve for serum soluble
Major histocompatibility Complex class I related chain A
(sMICA) generated by Sandwich ELISA in a typical assay.
Concentrations of the recombinant MICA*008 are plotted against
the readings of optic absorbance. A liner relationship exists between
the values of optic absorbance and concentrations of the MICA*008.
The values are averaged from duplicated loadings at each
concentration.
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in length, and is transcribed into a 1382 bp mRNA that
has 6 exons separated by 5 introns. Mature MICA polypep-
tide consists of 383 amino acid residues (43 Kda), contain-
ing a leading sequence translated from exon 1, the α1 to α3
structural domains encoded by exon 2 to 4, and a trans-
membrane domain and a cytoplasmic domain that are
determined by exons 5 and 6, respectively. The transmem-
brane domain encoded by exon 5 is rich of GCT microsat-
ellite repeats, resulting in a great polymorphism. The MICB
gene is organized in a similar manner to that of MICA, and
shares ~91% base-pair sequence with the latter. Evidence
suggests that the MICB gene also exhibits a certain degree
of polymorphism [6-12]. MICA and MICB, including their
polymorphism conditions, may relate to the susceptibility
to cancer and infectious diseases among individuals,
although the underlying mechanisms remain less clear at
the present [13-23].
In addition to their membrane-bound forms, MICA

and MICB can be released from the surface of tumor
and infected cells following proteolytic cleavages, yield-
ing soluble MICA (sMICA) and MICB (sMICA) in
serum. By binding to NKG2D receptor, soluble MICA/B
molecules may block the activation of effector lymph
cells by MICA/B, thereby facilitate the escape of tumor
or infected cells from immunosurveillance [1,2,24-30].
In patients with some types of cancers, serum levels of
sMICA/B are elevated, whereas the NKG2D expression
on NK and/or CD8+ T cells are downregulated. As such,
soluble MICA/B in the circulation may therefore play an
important biological role in modulating immune re-
sponse [1,25,26].
sMICA/B have been used as potential biomarkers for

assessing chronic graft-host immune response as well as
the status of some malignant diseases [1,2,17,18,26].
Specifically, serum sMICA is elevated in patients with
various carcinomas including gastrointestinal, lung,
hematological, gynecological and urological cancers,
with the extent of change reported to correlate with dis-
ease severity and/or metastasis status [24-43]. Other
studies demonstrate serum sMICB elevation being of
Table 1 Demographic characteristics of the patients and
healthy controls

Subject groups Number of
cases

Sex (male/
female)

Age (years) mean ±
S.D.(range)

Carcinoma 495 306/189 53.4 ± 13.0 (12-89)

Bacterial infection 146 103/43 52.6 ± 22.0 (0.1-91)

Candida albicans
infection

14 3/11 66.2 ± 22.0 (0.2-90)

Virus infection 344 217/127 41.6 ± 21.9 (0.2-88)

Microspironema
pallidum

42 24/18 37.2 ± 16.1 (1-69)

Healthy controls 141 81/60 44.0 ± 11.4 (22-70)
diagnostic value in cancer patients [34-43]. It should be
noted that moderate increase of serum MICA/B has been
demonstrated in some benign conditions, including non-
malignant tumors and chronic inflammation [36,44-50].
However, association studies on sMICA/B alteration in
various infectious disorders are scarce.
In the present study, we measured serum sMICA

levels by enzyme-linked immunosorbent assay (ELISA)
in a large patient population from Hunan Province of
China. Subjects included patients with several types of
clinically diagnosed cancers, bacterial and viral infec-
tions, and healthy controls. The extent of sMICA eleva-
tion and diagnostic value, i.e., sensitivity and specificity
by receiver operating characteristic (ROC) analysis, were
evaluated for each disease entity. Our results point to a
modulation of sMICA in malignant as well as nonmalig-
nant disorders, which might be of clinical implications
for disease diagnosis and differential diagnosis.
Methods
Patients and healthy donors
The present human subject study was approved by the
ethics committee of Nan-Hua (Southern China) Univer-
sity; with pre-informed consent obtained from all parti-
cipants. Patients (n = 1041) were enrolled into the first
affiliated hospital of the University from October, 2007
to December, 2009. Healthy controls (n = 141) were out-
patients who received routine physical examination
during the same period. All participants were Han Chinese.
The general demographic information is summarized in
Table 1. The malignant tumor group included 495 cases



Figure 2 Dot graph showing the distribution and means (blue
bars) of serum sMICA concentration (pg/ml) among cancer
patients (red) relative to healthy control (green) groups. The
liver cancer group shows the highest mean, with the levels of sMICA
remarkably elevated among some individuals. Each dot represents
an individual case, referring to Table 2 for case numbers in each
group and statistics.
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suffered from liver (n = 141), lung (n = 70), gastric (n = 77),
intestine (n = 58), breast (n = 57), cervical and ovary
(n = 46) and nasopharyngeal (n = 21) carcinoma, as
well as lymphoma (n = 25). The bacterial infection
group (n = 146) included patients with symptomatic infec-
tions by enterobacteriaceae (n = 40), non-fermenting
Gram-negative bacteria (n = 39), Mycobacterium tubercu-
losis (n = 55) and Gram-positive cocci (n = 12). The viral
infection group included 344 cases with clinical symp-
toms caused by hepatitis virus B (n = 74), hepatitis
virus C (n = 94), and other viruses (n = 176) including
herpes simplex virus, Coxsackie virus, Epstein-Barr virus
and cytomegalovirus Fourteen and 42 cases were enrolled
into the Candida albicans and Microspironema pallidum
infection groups, respectively. Diagnoses were established
Table 2 Levels of soluble MICA in different cancer patients

Number of cases Sex (male/female) A

Liver cancer 141 118/23 5

Lung cancer 70 54/16 5

Breast cancer 57 0/57 5

Gastric cancer 77 63/14 5

Colorectal cancer 58 39/19 5

Cervical/ovary cancer 46 0/46 4

Nasopharyngeal cancer 21 19/2 4

Lymphoma 25 13/12 4

Controls 141 81/60 4
based on clinical history, imaging examination and patho-
logical evaluation for tumor patients [including by the
TNM (tumor, node, and metastasis) staging system]. For
all infectious disease patients, the diagnoses were also
confirmed by serological tests and/or microbiological cul-
tures using blood and/or body fluids.

Measurement of serum sMICA by ELISA
The capture antibody was a monoclonal antibody to
human sMICA (mAbAMO-1, IgG1, BAMOMAB GmbH,
Habsburgerstrasse, Germany). A total of 100 μl buffer
containing the antibody at a concentration of 5 ng/ml was
loaded into each well of 96-well plates. After antibody
coating overnight at 4°C, the plates were washed 3 times
with 0.01 M phosphate-buffered saline (PBS) containing
3% Tween-20 (PBST). To block non-specific binding, the
plates were incubated with PBS containing 15% bovine
serum albumin (BSA) at 37°C for 2 hours, and then rinsed
with PBST once. Loading samples were mix of human
serum and PBS containing 15% BSA, at a 1 to 2 ratio. For
each case, 100 μl sample mix was loaded in each well of
the plates, incubated at 37°C for 2 hours. The plates were
then incubated with the reporter antibody anti-MICA 6B3
(monoclonal IgG2α, see [17,18]) at 1 μg/ml (100 μl) at 37°C
for 2 hours, and with horseradish peroxidase (HRP) con-
jugated goat anti-rat IgG antibody (100 μl/well, 1:2000) at
37°C for 2 hours. Binding signal was visualized using
tetramethyl benzidine (TMB) as a chromogen, with optic
absorbance values measured at 450 nm (RT-6000, Rayto
Life and Analytical Sciences Co. Ltd., USA). Recombinant
human sMICA (MICA*008, see [17,18]) was prepared at
titered concentrations (0.156 ng/ml, 0.31 ng/ml, 0.62 ng/
ml, 1.25 ng/ml, 2.5 ng/ml, 5.0 ng/ml), and assayed in paral-
lel with serum samples. All samples were assayed in
triplicate.

Data and statistical analysis
Concentrations of sMICA were calculated according to
the standard curve derived from MICA*008 references.
Data were expressed as mean ± SD, and subjected to
ge (years) mean ± SD (range) sMICA (pg/ml) P (vs controls)

2.7 ± 11.2(24-75) 743.4 ± 110.8 <0.0001

9.5 ± 10.5(39-79) 192.3 ± 258.2 0.095

0.0 ± 11.5(29-72) 162.5 ± 116.1 >0.05

2.4 ± 12.4(20-78) 264.4 ± 524.8 0.075

8.8 ± 16.3(13-89) 176.4 ± 147.9 >0.05

6.3 ± 8.9(23-70) 168.3 ± 173.3 >0.05

7.1 ± 10.9(30-74) 238.2 ± 318.6 0.087

8.2 ± 13.6(17-70) 140.9 ± 137.6 >0.05

4.0 ± 11.4(22-70) 168.5 ± 56.7



Figure 3 Receiver operating characteristic (ROC) curves illustrating the diagnostic impact of serum sMICA levels in different malignant
tumors, as determined by the values of area under the ROC curve (AUC). The data indicate that test has the highest diagnostic value
(AUC = 0.834) among patients of hepatic cancer relative to other malignant tumors.
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One-way ANOVA test using the Prism 4.02 software
(GraphPad Software, Inc., San Diego, CA, USA). The
significant level was set at P < 0.05. To assess the diag-
nostic value of the assay, the sensitivity/specificity re-
ceiver operating characteristic (ROC) curve was
generated with Excel. Cut-off level was set at the 95th
percentile to a given testing group. Area under the ROC
curve (AUC) (ranging from 0.5-1) was established to es-
timate the diagnostic value. According to clinical statis-
tics, AUC values from 0.5 to 0.7, 0.7 to 0.9, and >0.9 are
suggestive of low, intermediate and high diagnostic sig-
nificance, respectively.



Table 3 Serum sMICA levels relative to hepatic cancer
staging

Tumor
grading

Case
subgroups

sMICA
(pg/ml)

P (relative
to T1)

TNM staging T1 4.3% (6) 389.6 ± 153.3

T2 23.4% (33) 712.3 ± 108.6 <0.0001

T3 59.5% (84) 883.7 ± 133.2 <0.0001

T4 12.8% (18) 699.1 ± 212.5 <0.0001

Pathological
Differentiation

high 56.1% (79) 718.9 ± 113.6 >0.05

Intermediate 33.3% (47) 753.5 ± 132.1 >0.05

low 10.6% (15) 840.8 ± 232.2 >0.05
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Results
Serum levels and diagnostic impact of sMICA in
malignant diseases
A linear relationship between sMICA concentrations and
optic absorbance readings was established by the calibra-
tion assays using the recombinant human sMICA (Figure 1).
Accordingly, serum levels of sMICA were obtained from
the patient and control groups. Overall, patients with liver
cancer had the highest levels of sMICA (743.4 ± 110.8
pg/ml) relative to other types of cancers and healthy con-
trols (168.5 ± 56.7, pg/ml) (Table 1). Patients with gastric
cancer ranked the second highest elevation of sMICA levels
among the cancer groups (264.4 ± 524.8 pg/ml). In contrast,
serum levels of sMICA in patients with female reproductive
system tumors and malignant lymphoma (140.9 ± 137.6
pg/ml and 162.5 ± 116.1 pg/ml) appeared to be comparable
to that in control (Figure 2, Table 2). One-way ANOVA
analysis showed a significant difference among the cancer
and control groups (P < 0.0001, F = 80.53, df = 8, 627).
Posthoc tests indicated that the levels of sMICA in the liver
cancer group were significantly different relative to the
control (P < 0.0001) as well as the remaining cancer groups
(P < 0.0001). The differences between the gastric cancer
(P = 0.075) relative to control groups and between
Table 4 Levels of soluble MICA in infectious diseases patients

Pathogens Number of cases Sex (male/fem

Enterobacteriaceae 40 26/14

M. tuberculosis 55 41/14

Non-fermenting Gram-negative bacteria 39 26/13

Gram-positive cocci 12 10/2

Hepatitis B virus 74 45/29

Hepatitis C Virus 94 48/46

Other viruses* 176 124/52

Microspironema pallidum 42 24/18

Canidia albicans 14 11/3

Healthy controls 141 81/60

*: including herpes simplex virus, Coxsackie virus, Epstein-Barr virus, cytomegaloviru
nasopharyngeal cancer (P = 0.087) relative to control
groups, were approaching statistical significance (Table 2).
The diagnostic impact of sMICA in the above cancer

groups was analyzed by ROC curve fitting (Figure 3). The
AUC value was 0.843 for hepatic cancer patients, which
was of high diagnostic value (Figure 2A). The AUC values
were 0.673, 0.668, 0.626, 0.673 and 0.660 for lung, gastric,
female reproductive, nasopharyngeal and colorectal can-
cers, respectively. Thus, the AUC values of the non-hepatic
malignant groups appeared to be of a relatively low diag-
nostic impact (Figure 3B-F).
Given the potential high diagnostic implication of sMICA

among the liver cancer patients, we further analyzed
whether serum sMICA levels were correlated to TNM sta-
ging and the pathological grade of the tumor. Levels of
sMICA were 389.6 ± 153.3, 712.3 ± 108.6, 883.7 ± 133.2 and
699.1 ± 212.5 pg/ml in the subgroups with hepatic cancers
classified as T1, T2, T3 and T4 stages, respectively (Table 3).
Among all liver cancer patients, about 4.3%, 23.4%, 59.5%
and 12.8% of the cases had the cancers graded as T1, T2,
T3 and T4 clinical stages, respectively. The levels of sMICA
were significantly higher for T1-T4 groups relative to con-
trols (P < 0.0001, F = 655.8, df = 4,277). Posthoc tests indi-
cated statistical differences for the T1 relative to T2, T3 and
T4 subgroups (P < 0.001 for all subgroups), the T2 relative
to T3 subgroups (P < 0.001) and the T3 relative to T4 sub-
groups (P < 0.001). However, while the data were analyzed
against the pathologically defined differentiation grading,
no statistical differences were found between the high,
intermediate and low differentiation subgroups (Table 3).

Serum levels and diagnostic impact of sMICA in infectious
diseases
We analyzed serum sMICA levels among patients suffered
from several bacterial (enterobacteriaceae, non-fermenting
Gram-negative bacteria, Gram-positive cocci, M. tubercu-
losis, Microspironema pallidum), viral (hepatitis B, hepatitis
C and other viruses) and fungi (Canidia albicans) infections
ale) Age (year) mean ± S.D. (range) sMICA (pg/ml) P (vs controls)

59.2 ± 22.1(1-91) 492.2 ± 295.9 <0.001

56.1 ± 19.0(2-88) 493.9 ± 256.4 <0.001

49.4 ± 22.1(5-90) 384.1 ± 416.2 <0.001

38.9 ± 21.9(2-84) 542.3 ± 382.9 <0.001

44.1 ± 16.6(15-87) 472.4 ± 103.6 <0.001

50.3 ± 15.4(18-86) 474.9 ± 123.1 <0.001

12.9 ± 19.1(1-75) 251.2 ± 256.3 >0.05

37.2 ± 16.1(1-69) 365.8 ± 476.6 <0.001

66.2 ± 22.0(0.2-90) 285.0 ± 215.3 >0.05

44.0 ± 11.4(22-70) 168.5 ± 56.7

s, hepatitis A virus and hepatitis E virus.



Figure 4 Dot graph plots the distribution and means (blue
bars) of serum sMICA concentration (pg/ml) among patients
suffering various microbial infections (red), relative to healthy
controls (green). Each dot represents an individual case. Please
refer to Table 4 for sample sizes and statistical analysis information.
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relative to the healthy controls, as detailed in Table 4. All
infections were clinically established, with the diagnoses
also confirmed by microbiological and serological labora-
tory tests. A significant difference existed among the infec-
tious disease and control groups by one-way ANOVA
(P = 0.0001, F = 21.88, df = 9, 677). Specifically, levels of
sMICA were elevated among all infectious diseases, except
for the Canidia albicans and “other viruses” groups, relative
to controls as indicated by posthoc paired comparison
(Figure 4; Table 4). Of note, the hepatitis B and C virus in-
fection groups showed significant sMICA elevation relative
to the “other viruses” group (P < 0.001). In sum, a certain
extent of elevation of serum sMICA levels appeared to be
associated with most bacterial infections as well as hepatitis
B and C. In contrast, levels of sMICA in patients with
Canidia albicans fungi infection appeared to be comparable
to that in normal controls.
As with the cancer disease groups, the diagnostic values

of sMICA in the infection disease groups were assessed by
ROC curve fitting. The AUC value for hepatitis B was
0.712, for hepatitis C was 0.701, syphilis helicoid, 0.707, tu-
bercle bacilli, 0.766, gram-negative bacilli, 0.742, and for
other virus infections, 0.672 (Figure 5A-F).
Discussion
Previous association studies have shown a link of
polymorphism of MICA/B and/or alteration in sMICA/B
to cancers, autoimmunity and host-graft reaction
[11,17,19,25,26,34-36]. Serum sMICA/B levels are potential
biomarkers of pathogenic implications for these disease
conditions. For instance, upregulation of sMICA/B may be
involved in the escape of tumor cells from immune cell at-
tack and clearance [1-3,19,26,27]. Accordingly, inhibition of
sMICA/B production and/or preventing their shedding
from cell surface may be of therapeutic potential in treating
these human diseases [24,37]. A better understanding of
sMICA/B alteration in a broad disease spectrum is of im-
portant clinical relevance. Using a relatively large sample
pool, we show here elevations of serum sMICA in associ-
ation with infectious diseases in addition to cancers in a
southern Chinese Han population.
Elevations of serum sMICA and sMICB have been shown

in a number of malignant diseases, with sMICA potentially
being more suitable than sMICB for early diagnosis of some
cancers [33,34]. Specifically, lung, breast, digestive system
(hepatic, pancreas, gastric, colorectal) and urological can-
cers (prostate and renal) are associated with significant in-
crease of serum sMICA relative to healthy controls as well
as benign tumors. Consistent with these reports, the
present study finds elevation of serum sMICA among
Chinese patients with several types of malignant tumors,
which are, or are approaching to, statistical significance
relative to controls. In particular, the elevation appears to
be especially dramatic in the hepatic cancer patients. The
present data also suggest a certain extent of correlation of
sMICA levels to the clinical stages of hepatic cancer. Thus,
a significant difference exists between T2, T3 and T4 as
compared to T1 stage cases, as well as between T2 and T3
stage patients. Somewhat surprising, the levels of sMICA
are reduced in T4 compared with T3 stage patients in our
studied cohort. One possible explanation for this finding
may be that the lowering of sMICA in the T4 stage group
occurs as a result of severe systematic or hepatic deficiency
in cell function, such as failure of protein synthesis, among
end-stage cancer patients. The ROC analysis in the present
study reveals moderate diagnostic value for liver cancer, but
marginal impacts for other cancer types. Taken together,
serum sMICA and ROC analyses in the present study sug-
gest a trend of elevation of the protein in liver, lung and la-
ryngeal carcinomas in Chinese population, with the
laboratory test being of significant value in the diagnosis
and prognosis of hepatic cancer.
Evidence suggests that infections by microbiological

pathogens may alter the expression and functionality of
membrane bound MICA/B [2,4,16,36]. For instances,
changes in MICA/B and/or NKG2D levels and their activ-
ities are associated with infections caused by human
cytomegalovirus [28], hepatitis B and C viruses [14,29],
herpes simplex virus [30], human immunodeficiency virus
[31] and vesicular stomatitis virus [46]. Sex-transmitted
Chlamydia trachomatis may also down-regulate MICA/B
expression on cell membrane [16,44,50]. However, whether



Figure 5 Receiver operating characteristic (ROC) curves illustrating the diagnostic impact of serum sMICA levels in different infectious
diseases, with the values of area under the ROC curve (AUC) labeled for each type of infections. The data indicate that test has an
intermediate diagnostic impact (AUC > 0.7) among patients with infections by hepatitis B (A) and C (B) viruses; Microspironema pallidum (C),
bacillus tuberculosis (D) and Gram-negative bacterium (F). In contrast, the diagnostic value is low in the patient group with infections including
herpes simplex virus, Coxsackie virus, Epstein-Barr virus, cytomegalovirus, hepatitis A virus and hepatitis E virus (E).
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infections caused by microbiological pathogens also affect
serum sMICA levels remains poorly understood.
The present study provides evidence that serum sMICA

levels are elevated in various infectious diseases by micro-
biological pathogens. In detail, sMICA levels are increased
to above 2 fold in bacterial infections with enterobacteria-
ceae, mycobacterium tuberculosis, Gram-positive cocci,
non-fermenting Gram-negative bacteria and Microspiro-
nema pallidum. Among virus infectious diseases, sMICA
levels are significantly increased in hepatitis B and C.
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However, we fail to find significant elevations of sMICA
among patients infected by herpes simplex virus, Coxsackie
virus, Epstein-Barr virus, cytomegalovirus, hepatitis A virus
and hepatitis E virus, and by the Canidia albicans fungus.
These data implicate that increased shedding of membrane
MICA molecules presumably from infected/inflammatory
cells may occur in several types of infectious diseases,
which may lead to the observed rise of sMICA in serum.
Given the findings of the elevation in many but not all
infectious diseases, one may hypothesize that the extent of
sMICA elevation could be potentially relevant to either the
pathogens, or alternatively, the amount of involvement of
infected cells in the body. Our ROC analyses suggest that
serum sMICA measurement appears to have an
intermediate diagnostic value for infections with hepatitis B
and C virus, Microspironema pallidum, tuberculosis and
Gram-negative bacteria (i.e., AUC > 0.7).
Conclusions
The present study shows elevation of serum sMICA
levels in patients suffering from several types of malig-
nant and infectious diseases relative to healthy controls
in a southern China population. The data suggest that
serum sMICA is of potential diagnostic value for some
bacterial and viral infections, in addition to malignant
disorders as reported previously. Based on our currently
findings, microbiological infections should be considered
as a part of differential diagnosis while evaluating serum
sMICA changes in other disease conditions.
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