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Abstract

Background: Interleukin 7 (IL-7) signals via the IL-7 receptor (IL-7R) and drives homeostatic T-cell proliferation in
patients after allogeneic hematopoietic stem cell transplantation (aHSCT).

Purpose: We performed a prospective study in adults (n = 33) and children (n = 29) undergoing aHSCT measuring
plasma IL-7 and soluble IL-7R (sIL-7R) concentrations between 1 and 12 months after HSCT in order to investigate
the link between sIL-7R and clinical events after aHSCT.

Results: sIL-7R, but not IL-7, increased with time after HSCT in plasma from all patients enrolled in the study. sIL-7R
values were higher at 2, 3, and 6 months (p < 0.01) if the donor was a sibling as compared to an unrelated donor.
Increased sIL-7R levels were also identified in plasma from patients who were not treated with anti-thymocyte
globulin (ATG). Low sIL-7R was associated with any grade of acute graft-versus-host disease (GVHD) at 2 and
6 months (p = 0.02) and with a positive CMV PCR at 2 months after HSCT (p < 0.05). Patients with cytomegalovirus
(CMV) reactivation had increased IL-7 values at 2 and 3 months (p = 0.02) after HSCT. In multivariate analysis, lower
sIL-7R levels were associated with acute GVHD (relative hazard (RH): 0.70, p > 0.01) and sibling donors (RH: 2.23,
p = 0.004). Recipients of sibling grafts showed high levels of IL-7 (RH: 1.38, p < 0.05) and bone marrow recipients
had low IL-7 levels (RH: 0.73, p = 0.04).

Conclusions: Measurement of the sIL-7R/IL-7 axis will help in guided immune monitoring after HSCT and guided
interference with sIL-7R may be explored in GVHD management.
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Background
Interleukin-7 (IL-7) is a key cytokine in allogeneic stem
cell transplantation (aHSCT) and drives homeostatic,
extrathymic T-cell expansion in lymphopenic hosts [1]. IL-
7 may also promote expansion of alloreactive T-cells that
mediate graft-versus-host disease (GVHD) [2]. Elevated
IL-7 levels in serum have been shown to be associated
with acute GVHD [3,4]. Several cell types have been de-
scribed to contribute to IL-7 production, e.g. stromal cells
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[5], macrophages [6], B-cells [7] and thymic epithelial cells.
Several conditions may impair IL-7 production, including
infections associated with tissue damage of stromal cells,
the fibroblastic reticular network (FRC) [8] and cytotoxic
therapies in the course of anti-cancer treatment or in con-
ditioning regimens for HSCT. Murine studies have shown
that radiation, provided in the course of HSCT, can result
in reduced thymic stromal IL-7 production [9]. However,
it has not been unequivocally proven that thymus-derived
IL-7 contributes substantially to systemic IL-7 levels. IL-7
is consumed by the pool of available immune cells ex-
pressing the heterodimeric IL-7 receptor (IL-7R, CD127)
along with the common gamma chain (CD132) [1,3]. Ex-
pression of the IL-7R on T-cells is associated with T-cell
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Table 1 Summary of patient characteristics

Characteristics N = 61

Age 18 (<1–65)*

Children (<18 y) 29

Sex (M/F) 38/23

Diagnosis:

Non-malignant 13

Acute myeloid leukemia/Acute lymphoid leukemia 12/13

Chronic lymphoid leukemia 4

Myelodysplastic syndrome 11

Other malignancies 8

Stage (early/late) 16/32

Donor age 26 (0–62)

Donor sex (M/F) 38/23

Donor

Sibling/HLA-identical, related 21

MUD 32

HLA-mismatched, unrelated 8

Conditioning

MAC/RIC 34/27

Chemo-based 38

TBI-based 23

ATG 47 (77%)

GVHD prophylaxis

CsA ± MTX 41

CsA + Prednisolon 3

Tacrolimus + Sirolimus 16

CsA + MTX + Cy 1

Stem cell source:

BM/PBSCs/CB 25/31/5

*Median [4].
Abbreviations: MUD matched unrelated donor, MAC myeloablative
conditioning, RIC reduced-intensity conditioning, TBI total body irradiation,
ATG anti-thymocyte globulin, GVHD graft-versus-host disease, CsA cyclosporine,
MTX methotrexate, Cy cyclophosphamide, BM bone marrow, PBSCs peripheral
blood stem cells, CB cord blood.
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differentiation and maturation, based on CD45RA and
CCR7 expression [10]. Precursor T-cells exhibited the
highest numbers of IL-7R molecules per cell and ter-
minally differentiated T-cells were found to express the
lowest number of IL-7R molecules per cell.
The role of IL-7 in immune reconstitution after HSCT is

multifaceted: it promotes thymopoiesis by driving develop-
ment of immature thymocytes [11,12]. Some reports have
suggested that IL-7 treatment leads to improved—but
transient—immune reconstitution [11] without increased
alloreactivity [13,14]. In contrast, other studies have shown
that IL-7 aggravates GVHD [2] and that subsequent block-
ade of the alpha chain of the IL-7R may prevent GVHD
[15]. The situation is even more complex, since the IL-7R
is not only available in the cell-membrane-bound format,
but also as a soluble form (sIL-7R). The soluble IL-7R
binds IL-7 with an affinity similar to that of the membrane
bound IL-7R [16], leading to sIL-7R-mediated inhibition of
IL-7 signaling in T-cells [17]. sIL-7R is not only generated
by shedding of membrane-bound receptors, it is also asso-
ciated with polymorphism in the IL-7R gene (rs6897932),
which leads to increased splicing in the transmembrane
domain of exon 6 in the 8-exon Il-7R gene [18-20] result-
ing in increased sIL-7R generation. This SNP has been as-
sociated with autoimmune diseases, i.e. type-I diabetes
mellitus [21] and rheumatoid arthritis [22]. IL-7R poly-
morphism has also been studied in adults after HSCT with
inconclusive results concerning SNP analysis of donors
[23] and recipients [24]. Up to now, the protein concentra-
tions of IL-7 combined with its receptor IL-7R have not
been measured in plasma from children and adults during
12 months after HSCT. We therefore designed a longitu-
dinal study to determine IL-7/IL-7R plasma levels in 61 in-
dividuals after HSCT and we investigated associations
between IL-7/IL-7R and clinical events after HSCT.

Methods
Patients and controls
The study involved 29 children and 32 adults (Table 1).
Forty-eight patients underwent HSCT for malignant disor-
ders, 16 patients were in first complete remission. 21 pa-
tients received grafts from HLA-identical sibling donors
and the remaining patients received grafts from matched
unrelated donors (n = 33), or HLA-mismatched unrelated
donors (n = 8). The sources of stem cells were bone mar-
row, peripheral blood stem cells, or in a few individuals,
cord blood transplants. Genomic HLA typing (MHC class
I and class II four-digit typing) was performed as described
previously [25]. IRB approval (Stockholm Ethical Commit-
tee South 2010/760-31/1) was in place. Peripheral blood
mononuclear cells (PBMCs) were from adult participants
(n = 32) and in the case of children (n = 29), consent was
obtained from their parents or legal guardians (on file at
CAST; Center for allogeneic stem cell transplantation).
Samples were obtained from 61 patients at 1, 2, 3, 6, and
12 months after HSCT and 26 controls (15 adults and 11
children). Plasma was obtained after centrifugation and
stored at -20°C; PBMCs were isolated from heparinized
blood over a ficoll hypaque gradient. The cells were pre-
served in liquid nitrogen using fetal bovine serum (FBS)
containing 10% DMSO.

HSCT regimen
Conditioning
Conventional myeloablative conditioning was given to
34 patients and consisted of cyclophosphamide (Cy) at
60 mg/kg for two days in combination with fractionated
TBI (FTBI) at 3 Gy/day for four days (n = 15), or
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busulphan (Bu) at 4 mg/kg/day for four days (n = 17)
[26]. Two patients received other protocols. Reduced-
intensity conditioning (RIC) was given to 27 patients
and consisted of fludarabine (Flu) at 30 mg/m2 for 3–6
days in combination with either Bu at 4 mg/kg/day for
two days (n = 7), FTBI at 3 Gy/day for two days and Cy
at 60 mg/kg/day for two days (n = 7), Cy at 30 mg/kg/
day for two days (n = 7), treosulphan at 12–14 g/m2/day
for 3 days (n = 5), or TBI (2 Gy) (n = 1).

GVHD prophylaxis and CMV PCR
Immunosuppressive treatment mainly consisted of cyclo-
sporine (CsA) in combination with a short course of
methotrexate (MTX) (n = 41), or tacrolimus and sirolimus
(n = 16) [27]. All patients with an unrelated donor or a
non-malignant disease received anti-thymocyte globulin
(ATG) (Thymoglobulin, Genzyme, Cambridge, MA) (n =
45) or alemzumab (Genzyme) (n = 2) for 2–4 days during
conditioning [28]. During the first month, blood CsA
levels were kept at 100 ng/mL in patients with malig-
nancies when a sibling donor was used and at 200–
300 ng/mL when an unrelated donor was used and also in
patients with non-malignant disorders regardless of the
donor. In the absence of GVHD, CsA was discontinued
after three to six months for patients with malignancies
and after 12–24 months for patients with non-malignant
disorders. Patients were monitored for CMV viral load
with a quantitative PCR on whole blood from the time of
engraftment weekly until day 100 after HSCT as published
previously. Later than three months after HSCT, weekly
monitoring was continued only in those patients who had
experienced CMV reactivation or had severe GVHD, while
the other patients were monitored at each visit to the
transplant center occurring every 2-3 weeks until 6 months
after HSCT. Pre-emptive antiviral treatment with either i.
v. ganciclovir 5 mg/kg BID or oral valganciclovir 900 mg
BID was given at the center’s chosen intervention limit >
1000 copies/mL blood. The duration of therapy was a
minimum of two weeks and was discontinued when the
CMV viral load was < 500 copies/mL [29,30].

Supportive care
All patients were kept in reversed isolation or they were
treated at home, as described in detail previously [31].

Statistical analysis
Differences between patient groups (i.e. children versus
adults) or within each group (i.e. comparing different
time points) were analyzed using Mann-Whitney U-test
or the Wilcoxon test using the Statistical software pro-
gram (version 10) and GraphPad Prism 4 software. In
the multivariate analysis of factors affecting the levels of
sIL-7R at different time points, multiple regression were
used. To determine whether there was any correlation
between CD127 (IL-7R) positive immune cells and sol-
uble IL-7R levels, we used linear regression analysis with
the GraphPad software.
Quantification of plasma IL-7 and IL-7R
IL-7 quantification was performed using the ELISA IL-7
Eli-pair (Cat. 851.680.010; Cell Sciences, Inc., Canton,
MA) according to the manufacturer’s protocol (standard
range between 200 and 3,125 pg/mL). Soluble CD127
was measured using an IL-7R ELISA; the anti-IL-7R
alpha chain-directed antibody R34.34 (anti-CD127 puri-
fied Ab, 1 μg/ml; Beckman Coulter Inc., Brea CA) served
as the capture antibody (50 μL/well) by incubation over-
night with plasma at 4°C. The recombinant human IL-7
R alpha/CD127 Fc Chimera (306-IR; R&D Systems, Min-
neapolis, MN) served as the standard (ranging between
0.78125 and 100 ng/mL). Standard and samples were in-
cubated for 4 h, followed by washing steps (PBS, 0.05%
Tween) as described earlier [16]. sIL-7R was detected
with a biotinylated anti-CD127 antibody (BAF306; R&D
Systems). Incubation was for 1 h at RT, followed by
washing as described above. Streptavidin-HRP was applied
(554066: BD Biosciences, Frankin Lakes, NJ) for 30 min,
with subsequent development using Tetramethylbenzidine
(TMB). The absorbance was read at 450 nm.
Flow cytometry
PBMCs (0.5 × 106 cells) were first stained with anti-CCR7
for 15 min at 4°C, followed by addition of the 10-color
antibody mix as described in detail previously [10]. The
PBMC-antibody mixture was incubated for 15 min at 4°C.
The anti-CD27 antibody was then added to the cells,
which were incubated at 4°C for 15 min, followed by
washing with 1 mL of PBS containing 0.1% BSA. The cell
pellet was resuspended in 200 μL of PBS (with 0.1% BSA)
and the cells were analyzed as described previously [10].
For analysis of PBMCs from children, frozen PBMCs

were thawed and 1 × 106 cells were incubated at 4°C for
15 min with the following antibodies: peridinin-chlorophyll-
protein complex- (PerCP-) conjugated anti-CD3 (SK7), allo-
phycocyanine 7- (APC-Cy7-) conjugated anti-CD8α chain
(SK1), phycoerythrincyanin 7- (PE-Cy7-) conjugated anti-
CCR7 (3D12) purchased from BD Biosciences (Stockholm,
Sweden), Krome Orange-conjugated anti-CD4 (13B8.2),
fluorescein isothiocyanate- (FiTC-) conjugated anti-CD8β
chain (2ST8.5H7), APC-Alexa Fluor 700-conjugated anti-
CD107a (H4A3), PE-Texas Red-conjugated anti-CD45RA
(2H4), APC-conjugated anti-CD127 (R34.34) purchased
from Beckman Coulter (Marseille, France), and Brilliant
Violet-conjugated anti-CD117 (104D2) purchased from
BioLegend (London, UK). After washing, flow cytometric
analysis was performed using a Navios flow cytometer
(Beckman Coulter, Miami, FL, USA) and data were
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analyzed by using FlowJo software (Tree Star Inc., Ashland,
OR; USA).

Results
Different dynamics of immune reconstitution in children
and adults after HSCT
sIL-7R and IL-7 were determined at different time points
after HSCT in biological material from thirty-two adults
and twenty-nine children (Table 1). The frequency of CD4+

cells (in CD3+ T-cells) between 1 and 12 months after
HSCT was 30% for adults after aHSCT (Figure 1), the fre-
quency of CD3+CD4+ T-cells was lower in children in
months 1–3 (first month, p = 0.01; second month, p =
0.003; and third month, p = 0.01) after HSCT as compared
to adult HSCT recipients. PBMCs from children also
showed a not-significant trend of a lower frequency of
CD3+CD8+ T-cells in PBMCs, compared to PBMCs from
adults, at months 1–3 after HSCT (Figure 1, bottom
panel) with a proportionate increase in CD3+CD4-CD8-

T-cells in PBMCs (data not shown). PBMCs from children
exhibited lower leukocyte counts than adults prior to
transplantation (p = 0.02). There were no significant differ-
ences in proportion of CD8+ cells between PBMCs from
children and before and after HSCT.
PBMCs from children showed a higher frequency of

the CD127+ (IL-7R+) subpopulation in CD4+ and CD8+

T-cells as compared to adults (Figure 2). The frequency
Figure 1 Immune reconstitution measured as absolute leukocyte cou
blood from adults and children. * = p < 0.05. Note that leukocyte counts
months after HSCT.
of CD127+CD3+ cells (total CD3+ T-cells) was lower at
6 months (p = 0.02) in adults as compared to children and
the median for the CD127+CD4+ T-cell population at
1 month after HSCT was 76.5% as compared to 23.7% in
adults (p < 0.05). A different situation was found to be true
for the frequency of the CD127+CD8+ population, which
was lower in PBMCs from adults at 2 months (p = 0.03), 3
(p = 0.02), 6 (p = 0.01), and at 12 months (p = 0.03) as
compared to children.

Dynamics of sIL-7R and IL-7 in adults and children after HSCT
The median sIL-7R protein content in plasma from
adults was 5.17 ng/mL at 1 month after HSCT, it in-
creased to 8.72 ng/mL at 12 months. In plasma from
children, the median sIL-7R protein concentration was
5.43 ng/mL at 1 month after HSCT and 7.46 ng/mL at
12 months (Figure 3). No significant differences in
plasma levels of sIL-7R or IL-7 were found in samples
from adults and children. Significant differences con-
cerning the sIL-7R in plasma from adults were seen at
3 months relative to 1 month (p = 0.03), 3 months re-
lative to 2 months (p = 0.04), 6 months relative to
2 months (p = 0.002) and 12 months relative to 2 months
(p = 0.03). In plasma from children, the sIL-7R protein
levels increased at 5–7 months (p = 0.02) and at 12–14
months (p = 0.03), relative to the first month after
HSCT. The median sIL-7R values in plasma from
nts (left figures) and CD4 and CD8 T-cell frequency after HSCT in
were available from children at the time of transplantation (0) and 1–3



Figure 2 Percentage of CD127+ (IL-7R+) T-cells in patients after HSCT. Blood was taken at different time points after HSCT and CD127
expression was analyzed by flow cytometry on CD3+, CD3+CD4+, and CD3+CD8+ T-cells in PBMCs from adults and children.
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controls (adults and children) were respectively 9.55 ng/mL
and 95.05 ng/mL (see online Additional file 1: Figure S1,
left panel).
In addition to the soluble IL-7R, we measured IL-7

protein values in plasma from adults and children after
aHSCT. The median IL-7 in plasma from adults was
7.36 pg/mL at 1 month versus 6.50 pg/mL at 12 months
after aHSCT. In plasma from children, the correspond-
ing values were 6.85 pg/mL and 31.05 pg/mL, respect-
ively (Figure 3). The median IL-7 plasma level for
controls (adults) was 4.70 pg/ml and 5.81 pg/mL (for
children; Additional file 1: Figure S1, left panel). Regres-
sion analysis showed no significant correlation between
sIL-7R and IL-7 values in plasma from patients (Additional
file 1: Figure S1, right panel).

Effect of donor age and conditioning on sIL-7R and IL-7
levels
Adults with stem cell donors above 30 years of age tend
to have higher sIL-7R values at 2 months than to those
receiving grafts from younger donors (p = 0.06). In con-
trast, adults with donors aged < 30 years had higher IL-7
levels at 6 months than those with older donors (p <
0.05, Additional file 2: Figure S2). Patients conditioned
with RIC exhibited lower sIL-7R values 1 month after
HSCT as compared to patients conditioned with MAC
(p = 0.03, Additional file 2: Figure S2). There were no
statistically significant differences between the patients
who received RIC and MAC regarding IL-7 levels.

Effect of donor, HLA-match, ATG, and stem cell source on
sIL-7R and IL-7 levels
sIL-7R values were higher at 2, 3 (p < 0.01) and 6 months
(p < 0.001) if the transplant was from an HLA-identical
sibling rather than a MUD (Figure 4). Plasma from recipi-
ents of HLA-mismatched grafts exhibited elevated sIL-7R
value at 12 months as compared plasma from recipients of
grafts from HLA-matched donors (p < 0.001) (Figure 4).
sIL-7R values were significantly higher at 2 and 6 months
after HSCT if the conditioning regimen did not contain
ATG (p < 0.05) (Additional file 3: Figure S3).
In plasma from children, sIL-7R levels were associated

with the stem cell source. Plasma from children who re-
ceived bone marrow grafts rather than peripheral blood
stem cell grafts showed increased sIL-7R levels at
3 months after HSCT (p = 0.04) (Additional file 3: Figure S3).
Patients treated with donor lymphocyte infusion (DLI)
had significantly higher sIL-7R levels 1 month after HSCT
than those who were not treated with DLI (Additional
file 3: Figure S3).



Figure 3 Levels of soluble Il-7R (sCD127, left figures) and IL-7 (right figures) in plasma from adults and children after HSCT. * = p < 0.05.
Plasma was obtained at different time points after HSCT and examined for IL-7 and sIL-7R by ELISA. Median levels are marked with a bar. sIL-7R
levels increased with time after HSCT (non-parametric Wilcoxon test). Differences in plasma from children: 2 months after aHSCT as compared to
1 month (p = 0.02), 3–4 months vs. 1 month (p = 0.04), 5–7 months vs. 1 month (p = 0.02) and 12–14 months vs. 1 month (p = 0.03).
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Association of sIL-7R and IL-7 with post-HSCT complications
We determined whether IL-7 or sIL-7R levels were asso-
ciated with clinically and biologically relevant events in
the course of HSCT in adults and children. Patients with
acute GVHD of grades I–IV had lower levels of sIL-7R
at 2 and 6 months after HSCT than those without any
acute GVHD (Figure 5).
Figure 4 sIL-7R levels after HSCT and analysis of clinical endpoints, i.e
[32] and HLA-match versus HLA-mismatch.
Plasma from patients with CMV infection exhibited
lower sIL-7R values at 2 months after HSCT as compared
to patients without CMV infection (p < 0.05). Plasma from
patients with CMV infection showed higher IL-7 protein
values at 2 and 3 months after HSCT than those without
CMV infection (p = 0.02) (Figure 5). Plasma from patients
with late-stage disease had higher IL-7 levels in the first
. type of donor (HLA-identical sibling (sib) or unrelated donor



Table 2 Multivariate analysis of factors affecting levels of
soluble IL-7 receptors (sIL7R) at different time points
after HSCT

Factor RH 95% CI p-value

1 month after HSCT

Sibling donor 1.23 0.95–1.61 0.13

aGVHD 0.76 0.58–0.99 < 0.05

2 months after HSCT

Sibling donor 1.31 1.01–1.70 < 0.05

CMV infection 0.83 0.64–1.08 0.17

aGVHD 0.70 0.55–0.90 < 0.01

3 months after HSCT

Sibling donor 2.23 1.34–3.71 0.004

aGVHD 0.91 0.70–1.20 0.50

ATG 1.66 0.99–2.78 0.06

6 months after HSCT

Sibling donor 1.86 1.21–2.86 < 0.01

aGVHD 0.77 0.58–1.04 0.09

ATG 1.30 0.83–2.04 0.26

12 months after HSCT

Sibling donor 1.30 0.97–1.74 0.09

HLA-Mismatch 2.12 1.59–2.82 < 0.001

Abbreviations: RH relative hazard, CI confidence interval, aGVHD acute graft-versus-
host disease, ATG anti-thymocyte globulin, CMV cytomegalovirus.
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month after transplantation as compared to patients with
early disease (p < 0.05) (Figure 5).

Multivariate analysis
In multivariate analysis of factors affecting the levels of
sIL-7R at one month after HSCT, we found that acute
GVHD was the only factor that affected sIL-7R levels
(Table 2). At 3 months after HSCT, there was a correl-
ation between the absence of acute GVHD and the use
of a sibling donor and higher levels of sIL-7R. At 3 and
6 months after transplantation, use of stem cells from
sibling donors was the factor that was most strongly cor-
related to higher levels of sIL-7R. At 12 months after
HSCT, there was a correlation between receipt of an
HLA-mismatched graft and high levels of sIL-7R.
In multivariate analysis of factors affecting IL-7 levels,

we found that late disease (beyond CR1) was associated
with higher levels of IL-7 and that the use of bone mar-
row as the stem cell source was associated with lower
levels of IL-7 at 1 month after HSCT. At 6 months after
transplantation, the use of stem cells from a sibling
donor was associated with higher levels of IL7 (Table 3).

Discussion
The motivation for examining soluble IL-7R after HSCT
was threefold. First, increased sIL-7R levels have been
shown to be associated with an increased risk of devel-
oping autoimmune responses [18] and we hypothesized
that altered levels of sIL7R may drive GVHD. Secondly,
Figure 5 Levels of sIL-7R and IL-7 after HSCT, cytomegalovirus (CMV) reactivation (CMV PCR positivity) versus no CMV infection/reactivation,
acute graft-versus-host disease (GVHD) grades I–IV versus no GVHD and stage of disease: early versus late.



Poiret et al. BMC Immunology 2014, 15:25 Page 8 of 10
http://www.biomedcentral.com/1471-2172/15/25
increased soluble IL-7R has been shown to bind free IL-
7 and to inhibit IL-7 signaling (and therefore immune
effector functions) in CD8+ T-cells from patients with
infections [33]; inhibition of IL-7, via binding to soluble
IL-7R, could potentially impact on GVHD development.
Thirdly, increased sIL-7R has been associated with im-
proved immune reconstitution and immune competence
in patients with HIV infection [34]. All three biological
scenarios, i.e. immune reconstitution, resistance to infec-
tion, and higher risk of developing autoimmune re-
sponses are clinically relevant after HSCT. Up to now, it
has not yet been well defined which cell type or tissue is
responsible for generating sIL-7R. The soluble IL-7R
could be generated by shedding from cells or by splicing
of the IL-7r associated with a polymorphism in the IL-
7R gene (rs6897932) [18-20].
Recipients of grafts from HLA-identical siblings showed

higher sIL-7R levels than recipients of grafts from URD
(unrelated donors) (Figure 4). This difference was not only
significant in the univariate analysis but also in the multi-
variate analysis at 2, 3, and 6 months and with a trend at
12 months after HSCT (Table 2). It is possible that minor
histocompatibility antigens (mHags) contributed to im-
mune reconstitution and increased sIL-7R levels after
HSCT. Poor immune reconstitution, including low sIL-7R
plasma levels, may be associated with increased risks for
infection in recipients of grafts from URD as compared to
recipients of HLA-identical sibling grafts [35].
Earlier studies showed a close correlation between CMV

infection and GVHD [36,37]. A significant finding in the
univariate and the multivariate analysis in the current
study was the decreased level of plasma sIL-7R in patients
with any grade of acute GVHD (Figure 5, Table 2). Acute
GVHD and also chronic GVHD have a profound effect on
immune functions after HSCT [38,39] including increased
risk of CMV infection: In the univariate analysis, patients
with CMV infection exhibited lower levels of sIL-7R at
2 months after HSCT as compared to patients without
CMV infection. This is the timeframe when most patients
experience CMV reactivation after HSCT. Immune re-
sponses to herpesviruses in general, and CMV infection in
particular may trigger acute GVHD. Not mutually exclu-
sive, GVHD, may also pave the way for CMV infection,
Table 3 Multivariate analysis of factors affecting levels of
soluble IL-7 at different time points after HSCT

Factor RH 95% CI p-value

1 month after HSCT

Late disease 1.32 0.99–1.76 0.07

BM 0.73 0.55–0.98 0.04

6 months after HSCT

Sibling donor 1.38 1.02–1.86 < 0.05

Abbreviations: RH relative hazard, CI confidence interval, BM bone marrow.
which delays immune recovery and increases risk of infec-
tions [40,41] after HSCT. sIL-7R and CMV infection was
not significant in the multivariate analysis, which may sug-
gest that GVHD is more important than CMV infection
leading to decreased sIL-7R plasma levels.
We also found a tendency of lower sIL-7R levels in

plasma from patients treated with ATG (Table 2). We
treat all recipients of unrelated bone marrow grafts with
ATG to prevent GVHD [42] at our center. In addition, pa-
tients with non-malignant disorders are also treated with
ATG, since they do not benefit from GVHD. ATG has a
prolonged effect on T-cell immune reconstitution and
may therefore interfere with the generation of (soluble)
IL-7R. The use of ATG also affects the rate of infections
after HSCT in a dose-dependent fashion [28]. The data
from the present study suggest that circulating T-cells (the
numbers of which are reduced upon ATG treatment) con-
tribute substantially to generation of soluble IL-7R gener-
ation, particularly since IL-7R expression is associated
with T-cell maturation and differentiation [10].
Reduced levels of IL-7 protein were also identified in

plasma from recipients of bone marrow as compared to
patients who received peripheral blood stem cell trans-
plants (Table 3). These two transplant types have different
composite of the graft, which may be biologically relevant
for IL-7 and soluble IL-7R production as well as IL-7 con-
sumption. Blood cell grafts contain ten times more T-cells
and NK-cells than bone marrow grafts [43,44], supporting
the notion that sIL-7R is produced from circulating im-
mune cells. Decreased sIL-7R levels were also identified in
plasma from recipients of grafts from unrelated donors as
compared to recipients of grafts from HLA-identical sib-
lings. Furthermore, there was a correlation between acute
graft-versus-host disease—and to some extent also CMV
infection after HSCT—and lower sIL-7R levels.
Three independent studies showed that elevated sIL-

7R is associated with an increased risk of to develop
autoimmunity, a situation which maybe at first glance
counter-intuitive: since soluble IL-7R may bind free IL-7
and neutralizes its effects [16]. Two alternative mechan-
ism, not mutally exlusive, could explain the increased risk
of developing autoimmunity due to elevated sIL-7R. The
sIL-7R/IL-7 complex may serve as a buffer system and will
first neutralize free IL-7. Serum IL-7 levels (which are one
tenth of sIl-7R levels) are tightly controlled [45]. Firstly,
IL-7, complexed to the sIL-7R, could be released later
from its (soluble) receptor and drive autoimmune re-
sponses. Secondly, sIL-7R/IL-7 complexes may be more
potent in driving expansion of CD8+ T-cell subsets (in
murine experiments) [46]. It could very well be that IL-7,
complexed to sIL-7R, delivers a more potent signal to the
cell-bound IL-7R, an event which would be even more ac-
centuated in ‘hypersensitive’ autoreactive T-cells [33]. To
summarize, the IL-7/sIL-7R complex represents a double-
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edged sword: free IL-7 supports immune reconstitution
and promotes increased immune reactivity in infections
[47,48]; yet free IL-7 may also drive GHVD [3]. ‘Neutral-
ized’ IL-7, by binding to the sIL-7R may not accessible to
IL-7R-positive immune cells; this situation may be associ-
ated with increased risk of infections. Subsequently, IL-7,
released from the sIL-7R, may be available to antigen-
specific T-cells and ensure T-cell survival, which may also
include immune cells mediating GVHD. Until now, the
detailed dynamic of sIL-7R and IL-7 interaction in ex vivo
collected clinical material has not been determined, yet a
biologically and clinically relevant time frame to test for
sIL-7R would be monthly within the first three month
after HSCT; a time frame with a high risk to develop
CMV infection and/or GVHD.

Conclusions
Our data suggest that lower sIL-7R may be associated with
increased risk of GVHD, i.e. that sIL-7R is not available in
suffient amounts to serve as the IL-7 ‘buffer system’. Meas-
urement of sIL-7R plasma levels, in combination with IL-
7, may aid to identify individuals at higher risk to GVHD
and potentially CMV infection.
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aHSCT. R2, goodness of fit.

Additional file 2: Figure S2. Analysis of clinical endpoints and IL-7/
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