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Abstract

Background: Development and function of tissue resident mast cells (MCs) is tightly controlled by various cytokines,
most of which belong to the typical T helper (Th) 2-type cytokines such as IL-3 and IL-4. The effects of the Th1-type
cytokine IFN-y on human MCs is less clear.

Results: Here, we analyzed the effects of IFN-y on tissue-derived, mature human MCs. We found that INF-y decreases
proliferation, without affecting apoptosis in human intestinal MCs cultured in the presence of optimal concentrations
of stem cell factor (SCF) or SCF and IL-4. However, in the absence of growth factors or at suboptimal concentrations of
SCF, INF-y promotes survival through inhibition of MC apoptosis. Interestingly, we found that INF-y has no effect on
FceRl expression and FceRI-mediated release of histamine and leukotriene (LT)C,4, while it has profound effects on FcyR
expression and activation. We show that intestinal MCs express FcyRI, FcyRlla, and FeyRllc, whereas FcyRIlb expression
was found in only 40% of the isolates and FcyRIIl was never detectable. INF-y strongly increases FcyRI and decreases
FcyRlla expression. INF-y-naive MCs produce LTC,4 but fail to degranulate upon crosslinking of surface-bound monomeric
IgG. In contrast, INF-y-treated MCs rapidly release granule-stored histamine in addition to de novo-synthesized LTC,.

Conclusion: In summary, we identify INF-y as an important regulator of tissue-resident human MCs. IFN-y displays a dual

function by blocking extensive MC proliferation, while decreasing apoptosis in starving MCs and enhancing FcyRI
expression and activation. These results emphasize the involvement of mucosal MCs in Th1-mediated disorders.
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Background

The inarguable key role of mast cells (MCs) in allergic
disorders is well established [1]. Moreover, there is a
growing evidence for the important functions of MCs in
host defense against parasitic and bacterial pathogens
[2], autoimmune diseases [3], and other chronic inflam-
matory processes such as atherosclerosis [4]. Immature
MC progenitors migrate from the bone marrow via the
peripheral blood into the tissue, where they undergo
final maturation. Consequently, human MCs can be de-
veloped in vitro from bone marrow, cord blood, and per-
ipheral blood cells in the presence of Stem cell factor
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(SCF), the essential MC growth factor required for MC
development and maintenance [1]. However, the pheno-
type of mature tissue-resident MCs is dictated by the
local microenvironment. Therefore, MCs of different tis-
sues exhibit remarkable differences in biochemical and
functional properties [1]. The functional properties of
MCs are significantly altered under pathological condi-
tions and the cytokine milieu is considered a key factor
in this regulation. Th2 type cytokines such IL-3, IL-4,
IL-5, and IL-9 have been shown to enhance human MC
growth, to increase degranulation and to enhance the
production of eicosanoids and many cytokines upon
FceRI-crosslinking [1,5-7]. These findings mainly explain
elevated MC numbers and enhanced activity in Th2 type
disorders [1,8].
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INF-y is the hallmark cytokine of Thl-mediated disor-
ders such as auto-immune diseases and Crohn’s disease.
It is mainly produced by NK and T cells and acts on
many cells including dendritic cells, macrophages, and
MCs [9]. For a long time INF-y has been mainly consid-
ered as an inhibitory factor for MCs. Reports on rodent
MCs have shown that INF-y decreases MC development
[10,11] and FceRI-dependent activation [12,13]. However,
more recent studies using human peripheral blood-derived
MCs indicate that INF-y does not affect IgE-dependent de-
granulation and induces the expression of the FcyRI ren-
dering MCs responsive to IgG-crosslinking [14]. There is
conflicting data concerning the role of IFN-y as a MC
growth factor, since IEN-y has been reported to either in-
hibit [15,16], promote [17], or to have no effect [15] on MC
survival. These contradictory results might be explained by
varying maturation states of the in vitro derived MCs.
Kulka and Metcalfe showed that MC growth is strongly
inhibited if INF-y is added to early MC progenitors by both
inhibiting proliferation and inducing apoptosis whereas the
growth of differentiated peripheral blood-derived MCs was
only slightly affected by INF-y [15].

Similar findings have been described for other cyto-
kines which is best exemplified by the effect of IL-4 on
MCs. It is well established that IL-4 decreases the
growth of early MC progenitors [7,15,18]. This effect
seems to be turned to the opposite in more differenti-
ated MCs. For late stage in vitro differentiated MCs it
has been reported that IL-4 slightly decreases [7],
slightly increases [16], or strongly increases [15] MC
growth. Importantly, besides stem cell factor (SCF), IL-4
is the most potent cytokine inducing MC proliferation
and enhancing IgE-dependent mediator release in tissue-
derived human MCs [7,19].

These findings reveal the complex biology of human
MCs, which can only be understood in detail if the re-
sults of studies on human MCs derived from different
sources are compiled. Here we studied the regulatory ef-
fects of IFN-y on purified human mucosal MCs. We
demonstrate a dual role of INF-y in the regulation of
MC growth. Addition of IEN-y inhibits the proliferation
of MCs cultured under optimal growth conditions on
the one hand. On the other hand, in the absence of the
essential MC growth factor SCF, IFN-y partly rescues
MC survival by inhibiting apoptosis. Moreover, we dem-
onstrate profound effects of IFN-y on the functional
properties of MCs. While it does not alter the expression
or responsiveness of the high affinity FceRI, IFN-y upre-
gulates expression levels of FcyRI on MCs. Crosslinking
of surface-bound monomeric IgG on I[FN-y treated MCs
induced degranulation and release of histamine as well
as production of leukotriene (LT)C, whereas IFN-y
naive MCs failed to degranulate and released only low
levels of (LT)C4. Thus, IEN-y represents an important
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regulator of mature human MCs, which may have im-
portant implications during Th1l mediated diseases.

Results

IFN-y has a dual role for MC growth by differentially
regulating MC proliferation and apoptosis

IFNGRI mRNA is expressed in human intestinal MCs
and the expression level is not changed by IL-4 or by
FceRI-crosslinking (Figure 1A). We tested whether IFN-
y has an impact on MC growth. To this end, we cultured
MCs in the presence of optimal concentrations of SCF
or SCF and IL-4 and various concentrations of IFN-y.
IFN-y decreased the MC recovery after 14 days in a
dose-dependent manner with a maximal effect at con-
centrations > 30 ng/ml (Figure 1B). To analyze the time
kinetic of this effect we determined MC numbers at day
3, 7, and 14. The growth inhibitory effect of IFN-y,
which was significant at day 14, could not be detected at
day 3 and was not significant at day 7, although there
was already a strong tendency towards reduced MC
numbers in cultures with [FN-y (Figure 1C/D). To
better understand the role of IFN-y during MC growth,
we lowered the concentrations of the dominant growth
factor SCF. Intestinal MCs cultured in medium alone or
in the presence of suboptimal concentrations of SCF
(5 ng/ml), died completely or were strongly reduced in
numbers, respectively. Surprisingly, IFN-y partly inhib-
ited the decline of MC numbers under these culture
conditions, although the effect did not reach statistical
significance (Figure 1E/F).

To further investigate the underlying mechanisms of
the pro-survival effect of IFN-y we studied *H-Tymidin
incorporation, as a measure of MC proliferation as well
as Caspase 3/7 activity to determine apoptosis. MCs cul-
tured in medium alone or in the presence of 5 ng/ml
SCF generally showed very low rates of *H-Tymidin in-
corporation, which was unchanged by IFN-y treatment.
Confirming previous results, we found high rates of *H-
Tymidin incorporation in MCs cultured with 50 ng/ml
SCEF, which was even more pronounced in MCs cultured
in the presence of 50 ng/ml SCF and 2 ng/ml IL-4
[7,20]. MC proliferation under these conditions was sig-
nificantly inhibited if IFN-y was added to the culture
medium. This effect was observed after 3 days (Figure 2A)
and 7 days of culture (not shown), although the decrease in
cell numbers was significant only after 14 days
(Figure 1C/D). This might be explained by the overall
slow proliferating phenotype of MCs in vitro, which
makes changes in the proliferation levels only detect-
able by cell counting at later time points [7].

Caspase 3/7 activity was low in MCs cultured in the
presence of 50 ng/ml SCF with or without IL-4. IFN-y
did not influence caspase 3/7 activity under these condi-
tions. In contrast, IFN-y significantly inhibited caspase
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Figure 1 Effects of IFN-y on mast cell growth in vitro. (A)
mRNAs encoding for GAPDH and IFNGRI detected by RT-PCR in MCs
following culture for 14 days in the presence of SCF (50 ng/ml) or
SCF and IL-4 (2 ng/ml) and subsequent challenge for 60 minutes
with mAb22E7 (+) or buffer control (). (B) Dose-dependent growth
inhibition of MCs by IFN-y. MCs were cultured for 14 days in the
presence of SCF (50 ng/ml) or SCF and IL-4 (2 ng/ml) and without
or with different concentrations of IFN-y (indicated in the graph).
One representative experiment performed in duplicates out of two
is shown. (C-D) MC recovery after culture in different conditions

for indicated time periods with or without the addition of IFN-y
(100 ng/ml). (C) Culture in medium alone + IFN-y (n =5). (D) Culture
in the presence of SCF (5 ng/ml) £ IFN-y (n=5). (E) Culture in the
presence of SCF (50 ng/ml) + IFN-y (n =7 for day 3 and day 14
n=>5 for day 7). (F) Culture in the presence of SCF (50 ng/ml) +

IL-4 (2 ng/ml) £ IFN-y (n=7). All data are shown as mean + SEM.
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Figure 2 Effects of IFN-y on proliferation and apoptosis of
intestinal MCs. (A/B) MCs were cultured for 3 days in the
conditions described in Figure 1C-F. (A) [*H] thymidine (0.5 Ci/well)
was added for the final 12 h of culture to assess MC proliferation.
Incorporation of [3H]thymidime into the cells was measured and is
depicted as cpom/10° MCs. Mean + SEM of 5 (medium and SCF

5 ng/ml) or 7 independent experiments (SCF 50 ng/ml and SCF +
IL-4) performed in duplicates. (B) Caspase 3/7 activity was determined
and is shown as fluorescence units/10° MCs. Mean + SEM of 5
independent experiments performed in duplicates. (C) Surface
binding of annexin V measured by FAVS following culture of MC
for 3 days with IFN-y (100 ng/ml) or medium alone. One representative
experiment out of two is shown. *p < 0.05; **p < 0.01.
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3/7 activity in MCs cultured in the presence of 5 ng/ml
or without SCF (Figure 2B). The anti-apoptotic effect of
IFN-y in MCs was further confirmed by FACS analysis
of annexin V binding, a marker for early apoptosis
(Figure 2C).

IFN-y does not change histamine content, FceRI
expression, and FceRI-dependent mediator release

We reported previously that cytokines affecting MC growth
such as IL-3, IL-4, and TGF-f also regulate the functional
response of intestinal MCs to FceRI-crosslinking [5,21,22].
Here we show that IFN-y has no effect on the histamine
content in MCs (Figure 3A), and the release of histamine
and LTC, upon FceRI-crosslinking (Figure 3B/D). Our
results confirms that IL-4 upregulates FceRI-dependent
histamine and LTC, liberation [7] and this effect is not
counter-regulated by IFN-y (Figure 3B/D). In line with the
functional data, we found that IFN-y did not change the
expression level of the FceRI (Figure 4A). FcaRI was not
detectable in intestinal MCs cultured with SCF alone or
SCF + IEN-y (Figure 4B). IEN-y strongly induced the ex-
pression of the MCH class II protein HLA-DR in human
intestinal MCs (Figure 4C) confirming studies on rodent
MCs, the human MC line HMC-1 and human progenitor
cell-derived MCs [23-26].

IFN-y upregulates FcyRI expression and the functional
response to IgG-crosslinking

We sought to investigate Fcy receptor expression and
function and the regulatory impact of IFN-y in human
intestinal MCs. We found that human intestinal MCs
express mRNA for FcyRI, FcyRIla, and FcyRIIc at steady
state (Figure 5A). Very low amounts of FcyRIIbl and
higher levels of FcyRIIb2 expression was only detected
in 4 out of 10 MC preparations derived from different
donors (Figure 5A and data not shown) and FcyRIII
expression was not detectable in any of the samples
(Figure 5A). FACS analysis confirmed the mRNA results
as we detected FcyRI and FcyRII (subtypes could not be
differentiated by the mAb), but no FcyRIII expression on
the cell surface. IFN-y increased the expression of the
FcyRI on mRNA and protein level (Figure 5A/B). FcyRII
expression of intestinal MCs was downregulated by IFN-y
(Figure 5B). The mRNA analysis suggests that this re-
gulation was dependent on the decreased expression of
FcyRIIa, whereas FcyRIlc expression was not affected
(Figure 5A). IL-4, IL-10, G-CSF, or GM-CSF had no
influence on the expression level of FcyRs in human
intestinal MCs (data not shown).

Next, we investigated the binding of IgG subtypes on
intestinal MCs by flow cytometry. We found that MCs
bound myeloma IgG1 and IgG3 which was significantly
increased by IFN-y. Marginal binding of IgG4 was found
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Figure 3 IFN-y does not change histamine content and
FceRIl-dependent mediator release of MCs. MCs were cultured
for 14 days in medium supplemented with SCF (50 ng/ml), with
SCF and IFN-y (100 ng/ml), with SCF and IL-4 (2 ng/ml), or with
all three cytokines. (A) Total cellular histamine content of MC
measured after cell lysis (n = 7). (B) Histamine (n=5) and (C) LTC,4
(n=4) release after stimulation of MCs by FceRI crosslinking for
30 min using mAb 22E7 (100 ng/ml). All data are shown as

mean + SEM; n.s. = non significant.
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Figure 4 Expression of FceRl, FcaRl, and HLA-DR in human
intestinal mast cells cultured with or without IFN-y. MCs were
cultured for 3 weeks in the presence of SCF (50 ng/ml) with or
without addition of IFN-y (100 ng/ml) to the culture medium for

the last 3 days. Surface expression of (A) FceR|, (B) FcaRl, and (C) HLA-DR

was analyzed by FACS. One experiment out of three is shown.

on IFN-y treated MCs, whereas [gG2 binding was absent
in all tested conditions (Figure 6).

To characterize the functional response of human in-
testinal MCs to IgG-crosslinking we sensitized MCs with
plasma IgG for 24 h and subsequently challenged the
cells with an anti-human IgG mAb. Primary human
MCs cultured in the absence of IFN-y failed to release
stored histamine upon FcyR activation. Interestingly, FcyR
stimulation of IFN-y treated MCs induced degranulation
and rapid release of histamine contents (Figure 7A). IFN-y-
treated and untreated MCs produced similar amounts
of LTC, upon IgG-crosslinking (Figure 7B). In sum-
mary, these results indicate that IFN-y induces upregu-
lation of FcyRI expression and renders intestinal MCs
responsive to IgG-induced degranulation, whereas IgG-
dependent production of de-novo synthesized eiconsa-
noids is independent of IFN-y.
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Figure 5 Expression of Fcy receptors in human intestinal mast
cells. (A) PCR detecting mRNAs encoding for GAPDH, FcyR, FcyRlla,
FeyRllb, FeyRllc, and FeyRIll For FeyRllb the two isoforms FeyRIlb1

(343 bp) and FcyRIIb2 (289 bp) were detected. Lane 1: PBMCs (positive
control). Lane 2: intestinal MCs cultured in the presence of SCF

(50 ng/ml). Lane 3: intestinal MCs from the same donors cultured in the
presence of SCF and IFN-y (100 ng/ml) for the last 3 days. One
experiment out of 10 is shown. FcyRIlb expression was found in MCs
derived from 4 out of 10 donors (data not shown). (B) Surface expression
of FoyRI (CD64), FoyRIl (CD32), and FeyRlll (CD16) following culture of MC
in the presence of SCF with or without the addition of IFN-y (100 ng/ml)
for the last 3 days. One experiment out of three is shown.

Discussion
In the present study, we identify IFN-y as an important
regulator of human intestinal MCs. IEN-y decreases the
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Figure 6 Binding of IgG subtypes on intestinal MCs. MCs were
cultured in the presence of SCF with or without addition of IFN-y
(100 ng/ml) for the last 3 days. Then, MCs were incubated with
IgG1-4 (500 pg/ml), respectively, or buffer control for 60 min. Binding
of IgGs was analyzed by FACS with mAbs specific for the respective
IgG subtype (dark gray peak). Isotype control (bright gray peak). One
experiment out of three is shown.

proliferation of human intestinal MCs cultured in the
presence of high doses of SCF and, even more import-
antly, in the presence of SCF +IL-4. We further found
that IFN-y does not have an impact on the apoptosis
rates of human intestinal MCs cultured in the presence
of 50 ng/ml of SCF with or without IL-4. In contrast, we
found that IFN-y reduces apoptosis in MCs cultured in
the presence of suboptimal concentration of SCF or in
medium alone. These findings explain some of the
discrepancies observed in previous studies. IFN-y in-
hibits the development of MCs in vitro by inhibiting
proliferation and inducing apoptosis of MC progenitors
[11,15,27]. However, the effects of IFN-y on differenti-
ated MCs seemed to be contradictory in different stud-
ies. IFN-y has been shown to act on human cord-blood-
derived MCs in one study by decreasing survival and
proliferation [16] and in another study by promoting
survival and inhibiting apoptosis [17]. The main differ-
ence in the two study protocols is the presence of
100 ng/ml SCF in the MC cultures in the first report in
contrast to the complete lack of growth factors during
IFN-y exposure in the latter publication. Therefore, our
data confirm the results of both studies and reveal the
divergent effects of IFN-y on MC survival depending on
the cross-talk with other growth factors. A recent study
suggested that IFN-y does not affect the growth of hu-
man peripheral blood-derived MCs. In this study MCs
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Figure 7 Histamine and LTC, release from intestinal MCs after
IgG-crosslinking. MCs were cultured with SCF and with or without
IFN-y (100 ng/ml) for 2 days. The last 24 h plasma IgG (10 pg/ml)
was added to the culture medium if indicated. Then, MCs were
washed and challenged with an anti-lgG mAb or and isotype control
mADb for 60 min. FceRI-crosslinking induced by mAb 22E7 served as
positive control and non-treated MCs as negative control. (A) Histamine
(n=6) and (B) LTC,4 (n =4) were measured in the supernatants. Means +
SEM are shown. *p < 0.05 (in comparison to medium control if not
indicated otherwise).

were differentiated for 8 weeks in the presence of SCF
and then further cultured with SCF and SCF + IFN-y for
additional 7 days. Proliferation was tested by CSFE-
dilution within the last 7 days of the culture [15]. We
found that intestinal MCs cultured in the presence of
SCF only proliferate slowly. Consequently, the effect of
IFN-y on proliferation was readily detectable by measur-
ing [*H] thymidine incorporation, whereas significant
differences in MC numbers were found only after 14 days
of culture. Also in the study performed by Kulka and
Metcalfe the differentiated MCs exhibited a low prolifer-
ation rate and in the presence of SCF only 28.5% of the
cells divided within the 7 day of the investigation period.
In the presence of SCF + IFN-y the division rate dropped
to 19.3% [15]. Inhibition of proliferation of around 30%
correlates very well with the findings in our study.



Sellge et al. BMC Immunology 2014, 15:27
http://www.biomedcentral.com/1471-2172/15/27

The in vivo effect of IFN-y on MCs is supposedly in-
fluenced by the microenvironment such as the local con-
centrations of other growth factors such as SCF or IL-4.
These factors vary in physiological and different patho-
physiological conditions. One might expect that [FN-y
counter-regulate massive MC proliferation in Th2-type
inflammatory diseases or dysregulated c-kit (SCF recep-
tor) activation as it has been found in mastocytosis. In-
deed, IFN-y treatment has been shown to improve the
clinical symptoms of a mastocytosis patient [28]. On the
other hand, increased IFN-y levels such as found in
autoimmune diseases may stabilize or even elevate MC
numbers in a less proliferation permissive environment.
This may explain the high MC numbers frequently
found in typical Thl disorders such as rheumatoid arth-
ritis [29] or psoriasis [30].

Recent studies employing mouse models have empha-
sized the role of FcyR-dependent activation of MCs in
the development of immune-complex associated auto-
immune diseases [3,31]. However, mouse MCs express
only the low-affinity IgG receptors FcyRII and FcyRIII,
but not the high-affinity FcyRI. We show here that hu-
man intestinal MCs cultured in the presence of SCF
alone express low levels of FcyRI. IFN-y treatment
strongly increased its expression. Our findings are in agree-
ment with recent immuno-histological studies demonstrat-
ing that in a small subset of intestinal MCs FcyRI is
expressed during homeostasis, but that the frequency of
FcyRI" MCs is strongly increased in patients with Crohn’s
disease, a disease which is associated with increased IFN-y
levels [32]. The FcyRI" expression profile in intestinal MCs
is very similar to what has been reported for MCs derived
from peripheral and cord blood as well as skin and synovial
MCs, which express no or very low levels of FcyRI" after
culture with SCF [14,33-35]. However, in peripheral blood-
dervied MCs FcyRI expression can be induced by IFN-y
[14], and immuno-histological studies showed that skin
MC:s are negative for FcyRI expression during homeostasis,
while FcyRI expression can be detected in MCs of tissue
samples derived from patients with psoriasis [36]. After
sensitization with IgG, we detected the binding of IgG1 and
IgG3 on the surface of MCs, which was increased after
IFN-y exposure. Monomeric IgG only bind to the high af-
finity FcyRI with the highest affinities for IgG1 and IgG3,
whereas low affinity FcyRII and III preferentially bind IgG
complexes [37]. Enhanced binding of IgG1l and IgG3 to
MCs cultured in the presence of IFN-y is, therefore, very
likely caused by the increased expression of FcyRL We
found that IgG-crosslinking triggers histamine release only
in IFN-y-treated MCs, but not in MCs cultured without
IFN-y. This confirms recent studies showing that peripheral
blood-derived MCs cultured in the presence of IFN-y re-
lease histamine and de-novo produced eicosanoids such as
LTC, and PGD, and several cytokines such as IL-3, IL-5,
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IL-6, IL IL-13, TNE, and GM-CSF after IgG-crosslinking
[14,38]. In contrast to peripheral blood-derived MCs, intes-
tinal MCs released LTC, upon IgG-crosslinking without
IFN-y pre-culture. The amount of LTC, release was not in-
creased in IFN-y-treated MCs. This suggests that LTC,
production can be induced by low level FcyRI aggrega-
tion, whereas the threshold for the induction of MC
degranulation is higher and requires more pronounced
FcyRI-dependent signals.

Furthermore, we found that intestinal MCs express
mRNA for FcyRIla and FcyRIIc, but not FcyRIIL. FcyRIIb
was expressed in 40% of the MC isolates. The expression of
FcyRIla mRNA was downregulated by IFN-y, which corre-
lated with increased detection of FcyRII surface expression
using a Pan-FcyRII mAb. The expression profile of low-
affinity FcyRs differs in MCs derived from different sources.
Peripheral-blood derived MCs express FcyRIla, FcyRIIb,
and FcyRIIL, but no FcyRIlc [39]. Cord-blood derived MCs
encode mRNA for FcyRIIa, FcyRIIb, and FcyRlIIc, but no
FcyRIIL; however, only FcyRIIb protein expression could be
detected [34]. In contrast, skin MCs express only FcyRIla
and no FcyRIIb, FcyRllc, and FcyRIII [33]. Synovial MCs
express FcyRIla, FcyRIIb, and FcyRlIlc, and no FcyRIIL,
however; they dowregulate FcyRIIb expression upon
culture [35]. The low-affinity IgG receptors FcyRlla,
FcyRIIc, FcyRIII are activating receptors that signal as
FcyRI via immunoreceptor tyrosin-based activation mo-
tifs (ITAM) and are aggregated by immune-complexes.
They are expressed on many innate immune cells and
exert various effector pathways, such as phagocytosis,
antibody-dependent cellular cytotoxicity, and the re-
lease of chemotactic and pro-inflammatory mediators
[40]. Human skin and synovial MCs, however not
peripheral-blood derived MCs, have been shown to de-
granulate and secrete eicosanoids and cytokines upon
aggregation of FcyRIla [33,35,39]. However, recently
FcyRIla has been suggested to decrease IgE-mediated
activation of basophils by a yet undefined mechanism
[41]. FcyRIIb is an inhibitory Fc receptor and transmits its
signals via immunoreceptor tyrosin-based inhibitory motifs
(ITIM) [42]. FcyRIIb inhibits IgE-induced activation of
human basophils and cord blood-derived MC [34,43]. Poly-
morphisms in the promoter and transmembrane region
causes decreased expression of FcyRIIb and are linked to
lupus erythematosus. We found inconsistent expression of
FcyRIIb in human intestinal MCs which may be explained
by genetic variability of the donors [44]. The cellular re-
sponse after aggregation of low-affinity IgG receptors on in-
testinal MCs has not been addressed in the current study
and requires further investigation.

Conclusion
In summary, we define IFN-y as an important regulator
of human intestinal MCs. IEN-y provides inhibitory
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signals such as blocking extensive MC proliferation and
activating signals such as decreasing apoptosis in starv-
ing MCs, inducing the expression of FcyRI and MHC
class II molecules, and rendering MCs more responsive
to IgG-crosslinking. This differential regulation of MCs
might be of particular importance for MC function dur-
ing Thl-type mediated diseases [3,31].

Methods

Isolation, purification, and culture of human intestinal MCs
MCs were isolated from surgical tissue specimens
(macroscopically normal tissue) derived from individuals
who underwent bowel resection because of cancer. Written
informed consent was obtained from all patients at least
24 h before surgery. The study was approved by the local
ethical committee of the Medical School of Hannover,
Germany, where the study was performed. The methods of
mechanical and enzymatic tissue dispersion yielding single
cell preparations have been described [45]. After overnight
culture of the cell suspension in culture medium
(RPMI 1640 supplemented with 10% heat-inactivated
fetal calf serum, 25 mM HEPES, 2 mM glutamine,
100 pg/ml streptomycin, 100 pg/ml gentamycin, 100
U/ml penicillin, and 0.5 pg/ml amphotericin; all from
Invitrogen, Karlsruhe, Germany) c-kit expressing MCs
were enriched by positive selection using magnetic cell
separation (MACS™ system, Miltenyi Biotech, Bergisch-
Gladbach, Germany) and the anti-c-kit mAb YB5.B8
(5 ng/ml, PharMingen, Hamburg, Germany) as described
[45]. The fraction containing the c-kit-positive cells (MC
purity 50-90%) was cultured at a density of 1 — 2 x 10°
MC/ml in the presence of SCF (50 ng/ml, Amgen,
Thousand Oaks, CA) for two weeks to obtain >98% pure
MCs. MCs were harvested, washed, and further cultured
for 3—14 days in 96-well plates (2 x 10%*/well) without cy-
tokines or in the presence of SCF, IL-4 (Novartis, Vienna,
Austria) and/or IFN-y (Imukin, Boeringer Ingelheim
Pharma GmbH & Co., Ingelheim, Germany) at indicated
concentrations. Once a week half of the culture medium
was exchanged and cytokines were supplemented again.

Detection of apoptosis and proliferation

Apoptotic MCs were visualized by FACS using APC-
conjugated annexin V (Becton Dickinson) Caspase 3/7 ac-
tivity was measured with the Apo-ONE™ Homogeneous
Caspase 3/7 Assay (Promega, Madison, WI). For the ana-
lysis of cell proliferation MCs were cultured in 96-well
plates (2 x 10* per condition) in the presence of indicted
cytokines for 3 or 7 days. The cultures were pulsed with
1 pCi of [*H] thymidine (Amersham International,
Amersham, UK) per well for the final 12 h. The cells were
harvested on unifilter plates by using an automatic cell har-
vester (FiltermateTM196). [°H] thymidine corporation was
measured as counts per min on a Beckman Topcount.
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RNA preparation and RT-PCR

Total RNA was prepared from 5-10 x 10* MCs and
RT-PCR was performed as described [22]. The following
primers were used for RT-PCR: glyceraldehyde 3-
phosphate dehydrogenase (GAPDH; 5'-CAT CAC CAT
CTT CCA GGA GC-3’; 5'-GAG GCA GGG ATG ATG
TTC TG-3); IFNGRI (5'-CCA TCT CGG CAT ACA
GCA AA-3; 5'-CTC AGT GCC TAC ACC AAC TA-
3'); FcyRI (5'-CTT CTA CAT GGG CAG CAA GA-3';
5-GTT CTC TGG GTG ACA ATA CG-3'); FcyRIla
(5'-CAG CAT GGG CAG CTC TTC-3'; 5'-CAC ATG
GCA TAA CGT TAC-3'); FcyRIIb1/2 (5'-ATT GTT
GCT GCT GTA GTG GCC-3; 5'-GAA ACC TTC
TCT TTT GGA ACT-3"); FcyRlIlc (5'-TCT AGA TGA
CCA CAT GGC ATA ACG-3; 5'-CCT GGA CGT
CAA ATG ATT GCC ATC-3"); FcyRII (5'-CTT CTG
GGA TAA GTG GAC TC -3; 5'-CTT CAT GGT TAG
TGG TTC GTC-3).

Flow cytometry

FACS staining was performed as described recently [7].
MCs were labeled with primary antibodies anti-CD16-PE
(Becton Dickinson, San Jose, CA), anti-CD32-PE, anti-
CD64-PE, anti-CD89 (Caltag Laboratories, Hamburg,
Germany), FceRI a-chain (mAb 22E7, Hoffmann-La
Roche, kindly provided by R. Chizzonite), anti-HLA-DR,
(DAKO A/S, Glostrup, Denmark) or appropriate isotype
controls. Cells were washed and if purified primary Ab
were used incubated with FITC-conjugated goat anti-
mouse IgG1 (Southern Biotechnology, Birminghman, AL).
FACS analysis was performed using the FACSCalibur™ sys-
tem (Becton Dickinson). Analysis were performed using the
FlowJo software (Treestar, Inc. Ashland, OR).

Analysis of I9gG binding to MCs

MCs were incubated for 60 min at 37°C with purified
human myeloma IgG1, IgG2, IgG3, or IgG4 (500 pg/ml
in Hepes/BSA buffer; myeloma IgG purchased from
Calbiochem, SanDiego, CA) or were left untreated.
After washing anti-human IgG1l (clone]JDC-1), anti-
human IgG2 (cloneG18-21), anti-human IgG3 (clo-
neG18-3), or anti-human IgG4 (clone]DC-14) (all from
Becton Dickinson) were applied for 30 min at 4°C. Samples
were washed and incubated with an FITC-conjugated goat
anti-mouse IgG1l mAb (Southern Biotechnology). Binding
of IgG subtypes were verified by FACS.

Mediator release assay

For FceRI crosslinking, 2 x 10* MCs were stimulated
using the mAb 22E7 (100 ng/ml, 30 min, 37°C) directed
against the high-affinity FceRI a-chain. For IgG-
crosslinking, MCs were cultured in RPMI for 24 h in the
presence of 10 pg/ml human plasma IgG (Calbiochem;
plasma IgG were centrifuged before at 20,000 x g for
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40 min at 4°C to remove aggregated molecules). Samples
were washed twice and 2 x 10* MCs were resuspended
in 400 pl HACM buffer (20 mM HEPES, 125 mM NacCl,
5 mM, KCl, 0.5 mM, 1 mM CaCl,, 1 mM MgCl,, 0,1%
BSA). Surface bound IgG was crosslinked by an anti-
human IgG mAb (1 pg/ml, 30 min, 37°C, Becton
Dickinson). Histamine (RIA, Coulter-Immunotech,
Hamburg, Germany) and leukotriene C, (LTC,, ELISA,
Biotrend, Cologne, Germany) were measured in the
supernatants.

Statistics

All data in text and figures are expressed as mean *
SEM. Statistical differences between groups were deter-
mined using two-tailed Student’s t test.
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