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Abstract

Background: The function of CD57* CD4* T cells, constituting a major subset of germinal center
T (GC-Th) cells in human lymphoid tissues, has been unclear. There have been contradictory
reports regarding the B cell helping function of CD57* GC-Th cells in production of
immunoglobulin (lg). Furthermore, the cytokine and co-stimulation requirement for their helper
activity remains largely unknown. To clarify and gain more insight into their function in helping B
cells, we systematically investigated the capacity of human tonsil CD57* GC-Th cells in inducing B
cell Ig synthesis.

Results: We demonstrated that CD57* GC-Th cells are highly efficient in helping B cell production
of all four subsets of Ig (IgM, IgG, IgA and IgE) compared to other T-helper cells located in germinal
centers or interfollicular areas. CD57* GC-Th cells were particularly more efficient than other T
cells in helping GC-B cells but not naive B cells. CD57* GC-Th cells induced the expression of
activation-induced cytosine deaminase (AID) and class switch recombination in developing B cells.
IgG1-3 and IgAl were the major Ig isotypes induced by CD57* GC-Th cells. CD40L, but not IL-4,
IL-10 and IFN-y, was critical in CD57* GC-Th cell-driven B cell production of Ig. However, IL-10,
when added exogenously, significantly enhanced the helper activity of CD57* GC-Th cells, while
TGF-B1 completely and IFN-y partially suppressed the CD57* GC-Th cell-driven Ig production.

Conclusions: CD57*CD4* T cells in the germinal centers of human lymphoid tissues are the
major T helper cell subset for GC-B cells in Ig synthesis. Their helper activity is consistent with
their capacity to induce AID and class switch recombination, and can be regulated by CD40L, IL-4,
IL-10 and TGF-p.

Background (CSR) from IgM to IgG, IgA, and IgE [4-8], processes that
In germinal centers (GC), B cells undergo clonal expan-  are dependent on helper T cells [9-11]. Antibodies to the
sion, somatic hyper-mutation in the variable region of = CD57 epitope (HNK-1) have been used to identify a T cell
antibody genes [1-3] and class switch recombination  type in germinal centers in human tonsils, spleen and

Page 1 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15694005
http://www.biomedcentral.com/1471-2172/6/3
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Immunology 2005, 6:3

lymph nodes. These cells are CD4+ T cells [12-14], exhibit
a memory phenotype (CD45RO+*CD45RA") [15] and are
not cytolytic [16]. CD57+ GC-Th cells proliferate only
when they are TCR-activated in the presence of IL-2
[17,18]. CD57+ GC-Th cells express the B-cell zone hom-
ing chemokine receptor CXCR5 but not the T cell zone
homing chemokine receptor CCR7, a pattern consistent
with their specific localization in GC [19]. Based upon
their non-polarized cytokine profile, localization in GC
and potential helper activity, it has been proposed that
CD57+ GC-Th cells may constitute a novel effector T cell
subset distinct from other well known effector T cell sub-
sets such as Th1 and Th2 cells [20]. Using a gene expres-
sion profiling study, we determined that CD57+ GC-Th
cells are remotely related to other memory/effector T cells
in global gene expression [21]. The microarray study also
revealed that CD57+ GC-Th cells have the unique capacity
to produce CXCL13, a follicle chemokine implicated in
recruitment of CXCR5+ cells [22,23] and development of
follicles/GCs [24]. Because of their specific localization in
germinal centers, the activities of CD57+ GC-Th cells on B
cell proliferation and antibody production have been
studied by several groups of scientists [19,25-27]. The
results of these previous studies reveled unique features of
CD57+ GC-Th cells, but, when combined, they are incon-
clusive and widely vary from negative to neutral or posi-
tive in assessing the helper activities of CD57+ GC-Th cells.

To clarify and gain more insight into their function in
helping B cells, we systematically investigated the capacity
of human tonsil CD57+ GC-Th cells in inducing B cell Ig
synthesis in naive vs. germinal center B (GC-B) cells in
comparison with other T cell subsets in human tonsils.
We show that CD57+ GC-Th cells are more efficient than
other germinal center or interfollicular T cells in support-
ing B cell production of Ig. CD57+ GC-Th cells, when com-
pared to other T cells, have better helper activity for GC-B
cells than for naive B cells. CD57+ GC-Th cells induced the
expression of activation-induced cytosine deaminase
(AID) and CSR in developing B cells. CD40L, but not
other major cytokines, is critical for the helper activity of
CD57+ GC-Th cells. IL-10 positively and TGF-f1 nega-
tively regulate the helper activity of CD57+ GC-Th cells.

Results

Distribution and identification of T helper cell subsets in
tonsils

We examined the distribution of T helper cell subsets in
human tonsils based upon the expression of CD4, CD57
and CD69. As reported previously [12,19,28,29], most
CD57+ CD4+ T cells are located in germinal centers sur-
rounded by IgD+* naive B cells (Fig. 1). Small numbers of
CD57+T cells were also present in the interfollicular areas
(IFA or T cell-rich zone) surrounding GC. Although some
are found in IFA, CD69* CD4+ T cells were also preferen-
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tially found in GC (Figure 1C). In contrast, the T cells in
IFA were mostly negative for CD69 expression. Therefore,
CD57, CD69 and CD4 are useful markers to identify
CD57+ GC-Th cells and other T cell subsets differentially
localized in tonsils: CD4+CD57+ cells (mainly in GC),
CD4+CD57-CD69+ cells (mainly in GC and a minor pro-
portion in IFA), and CD4+CD57-CD69- cells (mainly in
IFA).

CD57* GC-Th cells are highly efficient in supporting Ig
production by B cells

Based upon the information obtained in Figure 1, the
total tonsil CD4+ T cell population was fractionated into
CD57+ GC-Th cells (all of these cells are CD69+), total
CD57- T cells, CD57-CD69+ T cells and CD57-CD69- T
cells (Figure 2). We compared the B cell helping activity of
CD57+ GC-Th cells with that of other CD4+T cell subsets.
We co-cultured each of the isolated T cell subsets with syn-
geneic tonsil CD19+ B cells in the presence of SEB, a super-
antigen that conjugates MHC class II molecules and TCR
(Figure 3). B cell receptors were cross-linked by Ab to
human Ig p chain and human Ig (H + L) chain prior to cul-
ture to provide BCR activation signals mimicking the anti-
gen signals in vivo. CD57+ GC-Th cells were most efficient
in inducing B cell production of IgM, IgG, IgA and IgE
among the T cell subsets examined. CD57- CD69+T cells,
many of which are located in GC in a manner similar to
CD57+ GC-Th cells, were able to induce the production of
antibodies but at significantly lower levels compared to
CD57+ GC-Th cells (Figure 3A). T cell stimulation, in this
study by SEB, was required for efficient induction of the B
cell helper activity as it enhanced Ig production up to
~1000 (not shown).

GC-B cells are the preferred target cells for the helper
activity of CD57* GC-Th cells

Because of their specific localization in germinal centers,
the physiological target cells for CD57+ GC-Th cells would
be GC-B cells rather than naive B cells. We compared the
helper activities of CD57+ GC-Th cells and CD57- CD69+/
-CD4+T cell subsets for B cells. In this study, we fraction-
ated CD19+ B cells into two groups: IgD+*CD38- naive B
and CD38+IgD+/- GC B cells as shown in Figure 2B. CD57+
GC-Th cells, when co-cultured with GC-B cells, were sig-
nificantly more efficient than CD57-CD69+ T cells in
inducing the production of all four isotypes of Ig (Figure
3C). However, when co-cultured with naive B cells,
CD57+ GC-Th cells were not significantly different from
CD57-CD69+T cells in their induction capacity of Ig (Fig-
ure 3B). Again, the helper activities of total CD57-T cells
and CD57-CD69-T cells for naive and GC-B cells were very
low.

The relative composition of IgM, IgG, IgA and IgE pro-

duced in response to CD57+ GC-Th cells in the cultures
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Distribution of CD4* T helper cells in tonsils. Frozen tonsil sections were stained with anti-IgD (PE, red) or anti-CD57 (FITC,
green) and isotype control antibodies in panel group A to show the background staining of the system. In panel group B, sec-
tions were stained with anti-CD57 (FITC), anti-IgD (PE) and anti-CD4 (APC). In panel group C, sections were stained with
anti-CD57 (FITC), anti-CD69 (PE) and anti-CD4 (APC). Two different sections were shown in each group of panels. Stained
sections were analyzed with a confocal microscope. GC-Th cells can be divided into CD57* and CD57- T cells, both of which
are CD69*. A few CD69* or CD57* T cells are found outside of GC. Most CD4* T cells in the interfollicular areas (IFA or T
cell-rich zone) are CD57-and CD69-. GCs are surrounded by the ring of mantle zones (MZ) filled with IgD* cells. A represent-
ative set of images from three different specimens are shown.
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Isolation of human tonsil T cell and B cell subsets examined in this study. T cell subsets and B cell subsets were isolated from
tonsils as described in the materials and methods section and were used in this study. The frequencies of the populations in
total tonsil CD4* T or CD19* B population are |15-25% for CD4+*CD57* GC-Th cells, 50-60% for CD57-CD69* T cells, 20—
30% for CD57-CDé69- T cells, 40-60% for CD19*CD38-IgD* naive B cells and 30—40% for CD19*CD38*IgD- GC-B cells.
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Figure 3

CD57* GC-Th cells are more efficient than other tonsil CD4* T cell subsets in helping B cells. (A) CD4* T cell subsets were
cultured with total tonsil CD19* B cells for 7 days in the presence of SEB. Naive B cells (C) or GC-B cells (D) were cultured
with equal numbers of CD57+*GC-Th cells or other T cell subsets (CD57-, CD57-CDé69* and CD57-CDé69- T cells) for 7 days
followed by ELISA for IgM, IgG, IgA and IgE. Data from 5 independent experiments were combined and the averages are shown
with standard errors. Relative production levels to CD57* GC-Th cells are shown. *Significant differences from CD57+* GC-Th
cells. The absolute Ig production levels (ng/ml) in panel A (GC-Th + Total B cells) were 5737 £ 1764 (IgM), 2111 + 1185 (IgG),
577 + 186 (IgA), and 4.8 + 2.1 (IgE). The absolute Ig production levels (ng/ml) in panel B (GC-Th cells + naive B cells) were
2045 + 697 (IgM), 63 £ 21 (IgG), 40 £ 23 (IgA), and 2.9 * 1.2 (IgE). The average levels (ng/ml) of Ig produced in the cultures of
GC-Th cells and GC B cells were 750 + 279 (IgM), 175 £ 52 (1gG), 51 + 13 (IgA), and 1.0 £ 0.5 (IgE). (D) Isotype composition
of the Ig induced by CD57* GC-Th cells. Naive B cells or GC-B cells were cultured with equal numbers of CD57+*GC-Th cells
or CD57-CD69* T cells for 7 days followed by ELISA for IgM, IgG, IgA and IgE. Data from 4 independent experiments were
combined and the averages are shown with standard errors. *Significant differences between naive and GC-B cells, but not
between the two T cell subsets, were observed.
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with GC-B vs. naive B cells was determined. CD57+ GC-Th
cells drove the production of IgM, IgG, IgA and IgE in
descending order (Figure 3D). Class-switched Ig isotypes
such as IgG and IgA were more produced in GC-B cell cul-
tures than in naive B cell cultures. There was no statisti-
cally significant difference between the two T cell subsets
(CD57+ GC-Th cells and CD4+*CD57-CD69+T cells) in the
composition of Ig that they induced.

CD57* GC-Th cells induce AID expression and class switch
recombination in B cells

AID expression in the maturating B cells in GC is neces-
sary for CSR and somatic hypermutation. We examined
whether CD57+ GC-Th cells have the capacity to induce
AID in B cells. Naive B cells were co-cultured with CD57+
GC-Th cells, and AID expression was examined (Figure
4A). CD57* GC-Th cells induced AID in activated B cells
with peaks around days 3-4. CD57+ GC-Th cells were able
to induce the expression of productive VyDJ-Cy; Ig tran-
scripts. The major subtypes of Ig transcripts in response to
CD57+ GC-Th cells were I1gG3, IgG2, IgG1 and IgA1 (Fig-
ure 4B). When the peak expression levels of AID and the
productive V;DJ;-Cy; 18G3 transcript (the most readily
detected Ig transcript) were compared, AID expression
preceded the expression of IgG3 transcript by 1-2 days in
culture (Figure 4C).

Ig class switch recombination between tandemly repeated
S regions located 5' to each C;; gene generates switch cir-
cles. We used a nested PCR technique designed to specifi-
cally detect switch circles but not genomic Ig sequences.
Freshly isolated GC-B, but not naive B cells, contained
switch circles, which were detected as smeared multiple
bands on agarose gels as expected. Naive B cells cultured
with CD57+ GC-Th cells generated detectable switch cir-
cles in a time-dependent manner (Figure 4D). We also
used a DC-PCR technique [30] to detect y3 and al1/2
switch circles (Figure 4E). Again, GC-Th cells induced
switch circles in the naive B cells cultured with GC-Th
cells.

CD40L signal is necessary for, while cytokines modulate,
the helper activity of CD57* GC-Th cells

Cytokines and CD40L regulate B cell maturation and Ig
production. We examined whether CD40L, IL-4, IL-10
and IFN-y play any roles in the CD57+ GC-Th cell-driven
B cell production of Ig. In cultures with naive B cells, the
blockage of CD40L by neutralizing antibody completely
suppressed the helper activity of CD57+ GC-Th cells in
inducing the B cell production of IgM, IgG1, IgA and IgE
(Figure 5A). In this case, IgG1 was measured instead of
total IgG to avoid cross-reaction of the polyclonal captur-
ing antibody for IgG with the neutralizing antibodies to
cytokines. Blockage of IL-4 partially but specifically sup-
pressed the production of IgE, but it did not significantly
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suppressed other isotypes. In contrast, blockage of IFN-y
enhanced the production of IgM, IgG1 and IgA but not
IgE. Since CD40L is essential for the helper activity of
CD57+ GC-Th cells, we examined CD57+ GC-Th cells and
other T cells for the expression of surface CD40L. Freshly
isolated CD57+ GC-Th cells expressed CD40L, which
became up-regulated upon T cell activation within hours
(data not shown), whereas CD4+CD57-CD69- interfollic-
ular T cells did not express CD40L at significant levels.
There was no significant difference in the expression of
surface CD40L between CD57+and CD57- CD69+ cells.

In the cultures with GC-B cells, blocking of CD40L again
completely suppressed the B cell helping activity of
CD57+ GC-Th cells (Figure 5B). However, IL-4 neutraliza-
tion did not significantly affect the IgE production
induced by CD57+ GC-Th cells, an activity different from
that for naive B cells. For GC-B cells, IFN-y neutralization
significantly increased the production of IgA as it did for
naive B cells. The effects of IFN-y neutralization on other
Ig isotypes were smaller. While a slight decrease of IgE
production in the cultures of GC-B cells and CD57+ GC-
Th cells was observed, neutralization of endogenous IL-10
did not have any statistically significant effect on CD57+
GC-Th cell-driven Ig production in the cultures of either
naive or GC-B cells.

Exogenously-added IL-10 enhances while TGF-5I
completely suppresses the B cell helping activity of CD57*
GC-Th cells

To further examine the regulatory effect of cytokines, 1L-4,
IL-10, IFN-y and TGF-B1 were exogenously added to the
cultures of CD57+ GC-Th cells with B cells (Figure 5C and
5D). In cultures of CD57+ GC-Th cells with naive B cells,
exogenously added IL-4 enhanced the production of some
subsets of Ig, but this effect was small and not statistically
significant (Figure 5C). However exogenously added IFN-
y significantly suppressed the production of IgG, IgA and
IgE. IL-10, when added exogenously, was highly efficient
in enhancing the production of the four subsets of Ig.
TGF-B1 completely suppressed the B cell-helping capacity
of CD57+ GC-Th cells for naive B cells.

In cultures of CD57+ GC-Th cells with GC-B cells, IL-10
was again highly effective in enhancing the helper activity
of CD57+ GC-Th cells, while TGF-B1 completely sup-
pressed it (Figure 5D). IFN-y partially but significantly
suppressed the production of IgM, 1gG, IgA and IgE. Exog-
enous IL-4 added to the cultures had no effect on the
CD57+ GC-Th cell-driven Ig production in this condition
(Figure 5D), which is in line with the negligible effect of
anti-IL-4 on GC-B cells in Figure 5B.
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Figure 4

CD57* GC-Th cells have the capacities to induce AID expression and to support CSR in B cells. |gD*CD38- naive B cells were
cultured with CD57* GC-Th cells for indicated time periods followed by RT-PCR analysis for (A) AID expression and (B) CSR.
The sizes of specific PCR products are 152 bp (IgM); 416 bp (IgG1, G2, G3), 904 bp (IgG4); 904 bp (IgAl); 891 bp (IgA2); and
179 bp (IgE). Shown are productive recombination products. (C) The expression kinetics of AID and productive IgG3 tran-
scripts over an 8 day period are shown together in a graph. In this panel, normalized expression levels calculated after dividing
the levels of AID amplification by (-actin levels are shown. The time gap to reach the peak levels of the expression between
AID and productive IgG3 transcripts is shown by an arrow. Representative data from at least three independent experiments
are shown (panels A and B). (D) Identification of extrachromosomal reciprocal DNA recombination products. Naive B cells
were cultured with CD57* GC-Th cells for indicated time periods and were processed to isolate genomic DNA. Fresh GC-B
cells were examined for positive controls. The switch circles were detected by a nested PCR method. Representative data out
of three independent experiments are shown. (E) Detection of switch circles by a DC-PCR technique. Naive B cells, CD38*
GC-B cells and naive B cells cultured with GC-Th cells for 5 days were examined for the presence of y3 and al/2 switch
circles.
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Figure 5

CD40L and cytokines in regulation of the helper activity of CD57* GC-Th cells. (A and B) Effects of endogenous CD40L and

cytokines on the helper activity of CD57* GC-Th cells were determined. In cultures of CD57* GC-Th cells with naive or GC-
B cells, neutralizing antibodies to IL-4, IL-10, IFN-y or CD40L or control antibodies (mouse IgG|) were added. *Significant dif-
ferences from the control group (control antibody). (C and D) Effects of exogenously added cytokines on the helper activity of
CD57* GC-Th cells were determined. To cultures of CD57* GC-Th cells with naive or GC-B cells, IL-4, IL-10, IFN-y and TGF-
B1 were added separately. Cells were cultured for 7 days followed by ELISA for IgM, IgG, IgA and IgE. Relative Ig secretion lev-
els (the medium control = |) obtained from 9 independent experiments were combined, and averages and standard errors are
shown. *Significant differences from the control group (medium).
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Discussion

CD57+ GC-Th cells are unique CD4+T cells. They express
the follicle homing receptor CXCRS5 but lack the T cell area
localization receptor CCR7 [19], and reside specifically in
germinal centers [12-14]. CD57+ GC-Th cells proliferate
only when appropriate signals such as TCR, CD28 and IL-
2 are provided [17,18]. GC-Th cells are widely dissemi-
nated and diverse in their TCR sequence [31]. CD57+ GC-
Th cells can express CD40L, ICOS and CXCL13 but are
non-polarized T cells in their cytokine profile [21]. It has
been controversial and unclear whether CD57+ GC-Th
cells are intrinsically more efficient in helping B cells than
other T cells or they are simply localized in germinal cent-
ers without any significant differences from other T cells
in their capacity as helpers. In this report, we systemati-
cally investigated the effector function of CD57+ GC-Th
cells in regulation of B cell immunoglobulin production
and its regulation.

When compared for their helper activities in inducing Ig
synthesis by total B cells, CD57+ GC-Th cells were most
efficient among the T cell subsets in tonsils. CD57+ GC-Th
cells were particularly more efficient in their helper
activity for GC-B cells vs. naive B cells. CD57-CD69+ T
cells were equally efficient to CD57+ GC-Th cells in induc-
ing naive B cell differentiation for Ig production, while
they were less effective than CD57+ GC-Th cells in helping
GC-B cells. This preference of CD57+ GC-Th cells for GC-
B cells is physiologically relevant, since both the helper T
cell subset and target B cells are specifically present in ger-
minal centers. Therefore, CD57+ GC-Th cells would con-
stitute an ideal T helper subset that can drive GC-B cell
differentiation in germinal centers.

The effects of cytokines such as IL-4, IL-10, IFN-y and
CD40L on B cells in humans and mice have been well
documented. It is considered that CD40L is a critical fac-
tor [4,11,32-37], and IL-4 and IL-10 are positive factors in
regulation of B cell Ig production [38-44]. IFN-y induces
class switch to certain isotypes while it inhibits to others
[45,46]. In this study of the helper activity of CD57+ GC-
Th cells, the positive role of IL-4 in promoting Ig produc-
tion was valid only for IgE, but not IgG and IgA in the cul-
tures of naive B cells with CD57+ GC-Th cells (Figure 5).
GC-B cells were even more resistant to the neutralization
of IL-4 than naive B cells in CD57* GC-Th-cell driven Ig
production. This smaller than expected effect of IL-4 may
be due to the fact that there is not much IL-4 to neutralize
in the cultures of GC-Th cells. This also suggests that GC-
Th cells may provide helper signals to GC-B cells that are
not significantly affected by IL-4.

AID [47] is a molecule essential for somatic hypermuta-
tion, CSR and Ig gene conversion [48-54]. We showed in
this study that CD57+ GC-Th cells can induce AID expres-
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sion (Figure 4A). This capacity is consistent with their
ability to induce class switch recombination, which can be
detected within a few days in the cultures of naive B cells
with CD57+ GC-Th cells. CD57+ GC-Th cells can induce
the expression of productive IgG1-3 and IgA1 transcripts.
However, CD57+ GC-Th cells were inefficient in induction
of IgE (Figure 3, 4 and 5), which is consistent with their
poor production capacity of IL-4 [19].

CD40L appears to be essential for the helper activity of
CD57+ GC-Th cells. CD40L was required for the synthesis
of all Ig isotypes in all the conditions tested regardless of
whether the target B cells for CD57+ GC-Th cells were
naive or GC-B cells. While neutralization of IL-10 did not
have any significant effect on the CD57+ GC-Th cell-
driven Ig synthesis, exogenous IL-10 was highly effective
in enhancing the Ig synthesis in our study. This could be
due to insufficient neutralization of the IL-10 produced by
CD57+ GC-Th cells, which are known to produce IL-10
upon TCR activation [19]. Another possibility is that
higher concentration of IL-10 than the level produced by
CD57+ GC-Th cells may be necessary to significantly
enhance the Ig response. Exogenous IFN-y negatively
regulates the CD57+ GC-Th cell-driven Ig synthesis, sug-
gesting the potential roles of Th1 cells or other IFN-y pro-
ducing cells in regulation of the CD57+ GC-Th cells' helper
activity. TGF-B1 plays dual roles: it is a switch factor for
IgA and a potent immunosuppressive cytokine that inhib-
its Ig synthesis [55]. We did not detect any switching effect
but were able to detect its suppressive activity for the
CD57+ GC-Th cell response. This could be due to the fact
that the culture conditions (e.g. the saturating concentra-
tion of TGF-B) employed in our study appear to favor the
detection of the suppressive function of TGF-B. Taken
together, these results imply that Th1, Th2 and regulatory
T cells, if present in germinal centers, could positively or
negatively control the function of CD57+ GC-Th cells in
regulation of humoral immune responses. Indeed, there
are regulatory T cells in GCs that express surface TGF-$
and can effectively suppress the function of CD57+ GC-Th
cells [56].

Conclusions

Our results demonstrated the capacity of CD57+ GC-Th
cells in supporting CSR and Ig synthesis in B cells, and
revealed the factors that regulate their activity, thereby
substantiating the so-far inconclusive function of CD57+
GC-Th cells. The fact that these T cells have preferential
and efficient helper activity for GC-B cells and are specifi-
cally localized in GCs in large numbers suggests that
CD57+ GC-Th cells are probably the major T helper subset
responsible for supporting B cell differentiation for Ig pro-
duction in germinal centers.
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Methods

Cell isolation

Mononuclear cells were prepared by density gradient cen-
trifuge on histopaque 1077 (Sigma-Aldrich, St. Louis)
from human tonsil pathological specimens obtained
from young patients (3-10 yr) undergoing tonsillectomy
to relieve obstruction of respiratory passages and improve
drainage of the middle ear at Sagamore Surgical Center
(Lafayette, IN). The use of human pathological specimens
in this study was approved by the institutional review
board at Purdue University. CD4+ T cells (purity >97%)
were isolated by depleting non-CD4+ T cells using a mag-
netic bead depletion method (Miltenyi Biotec, Auburn,
CA). After staining of the isolated CD4+T cells with appro-
priate antibodies, CD57+ GC-Th cells (purity >95%) were
isolated by a positive magnetic selection method
(Miltenyi Biotec). CD4+CD57-CD69+ and CD4+CD57
CD69- T cell subsets (purity >95%) were further isolated
from the CD57- T cell fraction by magnetically selecting
CD69+T cells (Miltenyi Biotec). Total B cells were isolated
by rosetting with 2-amino-ethylisothiouronium bromide
(AET)-treated sheep red blood cells followed by CD4+T
cell depletion (CD19* cells > 99.5%). Naive B cells
(CD19+IgD+ cells >99%) were isolated from the total B
cell fraction by depleting CD38+T cells followed by posi-
tive magnetic selection of IgD+* B cells. CD19+CD38+IgD+/
- GC-B cells (purity >95%) were isolated from the tonsil
CD19+ B cells as described before [57] using anti-CD44,
anti-IgD antibodies and pan-mouse IgG beads (Dynal,
Brown Deer, WI).

Cell culture

All cell cultures were performed in RPMI1640 medium
supplemented with 10% FBS, gentamycin, streptomycin,
and penicillin. To cross-link the B cell receptors, isolated
B cells were incubated for 2 h at 4 °C with Sepharose-con-
jugated rabbit Ab to human Ig p chain and human Ig (H
+ L) chain (Irvine Scientific, Santa Ana, CA; mixed 1:1 at 2
pg/ml), and then washed with cold PBS. 105T and 10> B
cells were co-cultured, unless indicated otherwise, in each
well of 48-well plates in the presence of Staphylococcal
enterotoxin B (SEB; 1 pg/ml, Sigma-Aldrich, St. Louis,
MO). Cells were incubated in 5% CO? incubators at 37°C
for 3-8 days. Recombinant IL-4, IL-10, and TGF-B1 were
purchased from R&D systems (Minneapolis, MN).
Recombinant IFN-y was obtained from BD Pharmingen
(San Diego, CA). Purified CD154-blocking antibody (24-
31) was obtained from Ancell Corporation (Bayport,
MN). IL-4-blocking antibody (MP4-25D2) was purchased
from BD Pharmingen. Blocking antibodies for IFN-y
(25718.111) and IL-10 (23738.111), and IgG1 isotype
control antibody (11711.11) were purchased from R&D
systems. All antibodies and reagents added to culture were
azide-free. Cytokines were added at saturating concentra-
tions: IL-4 (40 ng/ml), IL-10 (40 ng/ml), IFN-y (200 ng/
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ml) and TGF-B1 (10 ng/ml). Neutralizing antibodies were
added at following concentrations: anti-CD40L (20 pg/
ml), anti-IL-4 (5 pg/ml), anti-IL-10 (5 pg/ml), anti-IFN-y
(2.5 pg/ml) and isotype antibody (5 pg/ml).

Flow cytometry analysis

T cells were stained with anti-human CD57 (NK-1; FITC,
BD Pharmingen), anti-human CD69 (FN-50; FITC, BD
Pharmingen), anti-human CD4 (S3.5; R-PE, Caltag Labo-
ratories, Burlingame, CA), and anti-human CD3 (UCHT1;
APC, BioLegend, San Diego, CA). B cells were stained with
anti-CD19 (4G7; PerCP, BD Pharmingen), anti-human
IgD (IAb-2, FITC, BD Pharmingen), anti-human CD38
(HTT2; R-PE, BD Pharmingen), and anti-human CD3
(UCHT1; APC, BioLegend). Stained cells were analyzed
using a 4-color FACSCalibur™ (BD Biosciences).

In situ fluorescent immunohistochemistry

Frozen sections of tonsils were acetone-fixed and stained
using antibodies to CD57 (BD Biosciences - Pharmingen;
clone NK-1, labeled with FITC), CD69 (BD Biosciences —
Pharmingen; clone FN50, labeled with FITC), IgD (BD
Biosciences - Pharmingen; clone IA6-2, labeled with PE)
and/or CD4 (Caltag Laboratories; clone S3.5, labeled with
APC). Stained sections were analyzed using a confocal
microscopy system (Bio-Rad MRC 1024UV and Nikon
Diaphot 300 microscope) at Purdue Cytometry Lab.

ELISA

Culture supernatants were assayed by ELISA as previously
described [19]. The sensitivity of this ELISA system is
greater than 5 ng/ml, 300 pg/ml, 30 pg/ml, 600 pg/ml,
and 15 pg/ml for IgM, IgG, IgG1, IgA and IgE, respectively.

Detection of productive VD], -C,, Ig transcripts and
reciprocal DNA recombination products

Total RNA was extracted from cultured cells with Trizol
reagent (Invitrogen, Carlsbad, CA), and was reverse-tran-
scribed into cDNAs with SuperScript™ First-Strand Synthe-
sis System for RT-PCR (Invitrogen) according to the
manufacturer's protocol. The primer pairs used in this
study were designed by Cerutti et al. [37]: IgM, FR3 for-
ward (5'-GAC ACG GCT GTG TAT TAC TGT GCG-3') and
Cu reverse (5'-CCG AAT TCA GAC GAG GGG GAA AAG
GGT T-3'); IgG1, FR3 forward and Cyl reverse (5'-GTT
TTG TCA CAA GAT TTG GGC TC-3'); IgG2, FR3 forward
and Cy2 reverse (5'-GTG GGC ACT CGA CAC AAC ATT
TGC G-3'); IgG3, FR3 forward and Cy3 reverse (5'-TTG
TGT CAC CAA GTG GGG TTT TGA GC-3'); IgG4, FR3 for-
ward and Cy4 reverse (5'-ATG GGC ATG GGG GAC CAT
TTG GA-3'); IgA1, FR3 forward and Cal reverse (5'-GGG
TGG CGG TTA GCG GGG TCT TGG-3"); IgA2, FR3 for-
ward and Ca?2 reverse (5'-TGT TGG CGG TTA GTG GGG
TCT TGC A-3'); IgE, FR3 forward and Ceg reverse (5'-CGG
AGG TGG CAT TGG AGG-3'); human B-actin, actin for-
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ward (5'-ATG TIT GAG ACC TTC AAC AC-3') and actin
reverse (5'-CAC GTC ACA CIT CAT GAT GG-3'). PCR
reactions were performed on serially diluted cDNA sam-
ples using an Eppendorf master cycler (denaturation at
95°C for 15 s, annealing at 55°C for 45 s and extension at
72°C for 30°C; 30-35 cycles). Extrachromosomal switch
circles were detected by a nested PCR strategy as previ-
ously described by others [37]. Briefly, genomic/extra-
chromosomal DNA was isolated from fresh or cultured B
cells using a QIAamp DNA Mini Kit (Qiagen, Valencia,
CA) and was used as templates for amplification of Sy1-
Sw, Sy2-Sp, Sy3-Sp, Sy4-Sp and Sa-Sy. The PCR products
were subject to second PCR using internal forward 5' Sy or
5'lal/2i and reverse 3'Spi or 3'yi primer pairs. This
method has been verified for specificity using positive
controls [37]. Additionally, we amplified genomic B-actin
gene as a control using 5'-GTA CCA CTG GCA TCG TGA
TGG ACT-3' (G-actin-forward-1 primer) and 5'-ATC CAC
ACG GAG TAC TTG CGC TCA-3' (G-actin-reverse-1) for
the first PCR; and 5'-AGA AGA GCT ACG AGC TGC CTG
AC-3' (G-actin-forward-2) and 5'-TGA GGA CCC TGG
ATG TGA CAG CT-3' (G-actin-reverse-2) for the second
PCR. Additionally, we used a DC-PCR technique [30,58]
to demonstrate the presence of switch circles (y3 and a1/
2) in human B cells. Please see the reference [30] for
primer sequences.

RT-PCR analysis for AID expression

Total RNA was extracted from freshly isolated or cultured
cells using Trizol reagent (Invitrogen, Carlsbad, CA), and
was reverse-transcribed into cDNAs with SuperScript™ 11
Reverse Transcriptase. RT-PCR amplification of AID was
performed using the two primers: AID-forward (5'-GAT
GAA CCG GAG GAA GTIT TC-3') and AID-reverse (5'-TCA
GCCTTG CGG TCC TCA CAG-3'), which generated a spe-
cific 351 bp PCR product after 30 cycles of PCR reaction
(30sat94°C, 30sat 60°C, and 60 s at 72°C). B-actin was
also amplified as a control.

Statistical analysis
Student's paired t-test was used. P values smaller than 0.05
were considered significant.

List of abbreviations used

GC, germinal center; GC-Th cells, germinal center T helper
cells; GC-B cells, germinal center B cells; AID, activation-
induced cytosine deaminase; CSR, class switch recombi-
nation; SEB, staphylococcal enterotoxin B.
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