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Abstract

Background: CC Chemokine Receptor 3 (CCR3), the major chemokine receptor expressed on
eosinophils, binds promiscuously to several ligands including eotaxins I, 2, and 3. Even though the
only cells that consistently accumulate following eotaxin administration in vivo are myeloid cells
(primarily eosinophils), other cell types have recently been shown to express CCR3. It is therefore
important to elucidate the molecular mechanisms regulating receptor expression.

Results: In order to define regions responsible for CCR3 transcription, a DNAse hypersensitive
site was identified in the vicinity of exon |. Coupled with our previous data implicating exon | in
CCR3 transcription, we hypothesized that transcription factors bind to exon-I. Electrophoretic
mobility shift analysis revealed that nuclear proteins in eosinophilic cells bound to exon I.
Furthermore, antibody interference and mutation studies demonstrated GATA-| binding to exon
I. In order to test the |.6-kb CCR3 promoter element (that includes exon |) for in vivo function,
this region was used to generate transgenic mice that expressed a reporter protein. Strong
transgene expression was achieved, with the pattern of expression suggesting a broad acting
promoter.

Conclusion: The transcription factor GATA-1 binds to CCR3 exon |. The |.6-kb CCR3
promoter element, that includes exon 1, is a strong promoter in vivo.

Background

CCR3, the eotaxin receptor, is the major chemokine recep-
tor expressed on eosinophils, basophils and a subpopula-
tion of Th2 lymphocytes [1-10]. Recently, CCR3 has been
shown to be upregulated on neutrophils and monocytoid
U937 cells by interferons in vitro and to be expressed by
endothelial cells, epithelial cells and mast cells [11-16].
The relevance of these findings and the function of CCR3

on non-leukocytes remain to be elucidated since the only
cells that consistently accumulate following eotaxin
administration in vivo are myeloid cells (primarily eosi-
nophils) [17-20].

To date, the complete mRNA and genomic organization
of only a limited number of chemokine receptors has
been described [21-26]. These studies have shown that the
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5' untranslated region (5'UTR) can be complex and con-
tain up to 11 exons as in the CXCR2 gene. As a result, alter-
native splicing and transcription directed by multiple
promoters can give rise to variable mRNA isoforms. The
function of these 5' untranslated exons has not been
examined except for a single study focused on CCR2,
demonstrating a transcriptional role for exon 1 [24]. We
have previously characterized the genomic structure and
promoter function of the human CCR3 gene [27]. The
CCR3 gene contains at least 4 exons that give rise to mul-
tiple mRNA species by alternative splicing. The first 1.6 kb
of the 5' flanking region of exon 1 had strong promoter
activity in eosinophilic, lymphoid and respiratory epithe-
lial cell lines. Deletion analysis revealed differential regu-
lation of the CCR3 promoter in eosinophilic and
epithelial cell lines suggesting the presence of lineage-spe-
cific elements. Interestingly, exon 1 enhanced the activity
of the promoter. Since our initial characterization, two
other groups have studied the CCR3 promoter [28,29];
however, their studies focused on lymphocytic and mono-
cytic cell lines, respectively, rather than eosinophils.
Scotet et al. [29] demonstrated that the human CCR3 pro-
moter is active in vitro in lymphocytic cell lines. They also
demonstrate a role for chromatin remodeling in the regu-
lation of CCR3 expression in Th2 cells. Vijh et al. [28]
demonstrated that the human CCR3 promoter is active in
monocytic cell lines and defined the minimal promoter
that consists of a downstream promoter element (DPE), a
common element in Drosophila genes, but rare in human
genes. This element is upstream (50 bp) of the exon 1
sequence studied in the current report.

It has been reported that 5' untranslated exons, and some-
times introns, can regulate the expression of genes in two
different ways. An untranslated sequence can act as a tis-
sue-specific translational regulator. A striking example is
the gonadotropin releasing hormone gene which is tran-
scribed in multiple tissue, but cannot be translated due to
the lack of specific intron removal [30]. Alternatively,
untranslated regions (UTR) can facilitate transcription of
a gene. Examples include a GATA-1 site in the 5'-UTR of
the y-globin gene, an HNF-1 site in the plasminogen gene
and a C/EBP site in the CCR2 gene [24,31,32]. While the
mechanism of action is not completely clear, it is thought
that transcription factors binding to untranslated regions
affect transcription of the gene through interactions with
the RNA transcription complex. The role of untranslated
exons in the CCR3 gene has not been studied. In this
report, DNase I hypersensitivity identified a major hyper-
sensitive site located in the vicinity of untranslated exon 1.
Furthermore, the transcription factor GATA-1 is shown to
bind to untranslated exon 1, suggesting a potential mech-
anism for the regulation of CCR3 transcription by this
exon. Finally, using a transgenic approach, we demon-

http://www.biomedcentral.com/1471-2172/6/7

strate that the 1.6 kb 5' flanking region of CCR3 (includ-
ing exon 1) has promoter activity in vivo.

Results

DNase I hypersensitivity in the CCR3 locus

We aimed to define regulatory regions in the CCR3 gene
by a gene-wide search. Thus, we performed DNase I hyper-
sensitivity of CCR3 in primary human eosinophils. The
entire 24 kb of the CCR3 gene were screened for DNase I
hypersensitivity using probes specific for Eco RI and Hind
III fragments (Figure 1A and data not shown). Only one
hypersensitive site was noted; this was in the area of exon
1 (Figure 1B). Similar results were obtained with nuclei
from the eosinophilic AML14.3D10 cell line (data not
shown). This cell line does not express CCR3 unless
induced with butyric acid and IL-5; suggesting that chro-
matin remodeling in the HS1 site precedes CCR3 tran-
scription. Thus, our analysis revealed areas of active
chromatin remodeling in the vicinity of exon 1 suggesting
that this area may be important for CCR3 transcription.

Binding of nuclear proteins to exon | of the CCR3 gene
DNase I hypersensitivity indicated that a region consistent
with exon 1 is active in CCR3 transcription. Together with
our previous data showing that untranslated exon 1 has
an important role in CCR3 transcription [27], we hypoth-
esized that nuclear proteins bind to exon 1, and in turn
regulate the transcription of CCR3. In order to test this
hypothesis, a double-stranded oligonucleotide probe that
corresponds to bp +10 to +60 of the CCR3 gene was pre-
pared, referred to as E1-FL (exon 1- full length, Figure 2A).
This is the exact sequence that was deleted in the CCR3(-
exonl).pGL3 plasmid that demonstrated decreased activ-
ity compared to the full length 1.6 kb construct [27].
Nuclear extracts from AML14.3D10 cells were incubated
with the probe and resolved on a polyacrylamide gel. Two
bands were visible (Figure 2B). The upper band was elim-
inated when 150x molar excess of the unlabelled probe
was used (CC: E1-FL in Figure 2B), indicating that this is
the specific band. In order to precisely localize the region
responsible for factor binding, overlapping cold competi-
tors were used: E1-A spanning from +10 to +31, E1-B
spanning from +25 to +46 and E1-C spanning from +40
to +60. The specific band was eliminated with E1-B and
E1-C cold competitors indicating that the factor binds in
the region between +25 and +60 (Figure 2B). In summary,
these data indicate the presence of proteins in the nuclei
of AML14.3D10 cells that bind to CCR3 exon 1 between
bp 25 and 60.

Binding of GATA-I to exon | of the CCR3 gene

In order to define the proteins capable of binding to CCR3
exon 1, the exon 1 sequence was analyzed using the pub-
licly available TFSEARCH engine. This analysis indicated
the presence of consensus DNA-binding sites in the exon
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DNase | hypersensitivity studies. In (A), a schematic representation of the CCR3 gene is shown. Exons | through 4 (EI —
E4) are depicted as boxes; open box represents the open reading frame, while the closed box represents the untranslated
region. The position of Hind Il (H) and Eco RI (RI) restriction sites is depicted with arrows and probes used for DNase |
hypersensitivity are depicted as lines above the genomic fragment. The position of hypersensitive site is depicted as HSI. In (B),
Southern blot analysis for the HS site is shown. Nuclei from the primary human eosinophils were digested with indicated doses
of DNase | for 5 minutes at 30°C. Following DNA purification and digestion with restriction enzymes (shown in figure is Eco
RI), DNA was electrophoresed on an agarose gel and transferred to nylon membranes. Following hybridization with genomic
probes, membranes were exposed to film. Size markers are shown on the right. Ethidium bromide staining of the gel is also

shown.

1 region for several transcription factors (i.e. GATA,
AML1, SRY, S8 etc.). Proteins of the GATA family have
been detected in eosinophils (specifically GATA-1, GATA-
2 and low levels of GATA-3) [33]. Additionally, GATA-1
transactivates the EOS47 promoter, an eosinophil-specific
promoter, through a site in the 5'UTR [34]. Therefore, we
hypothesized that proteins of the GATA family bind to
sites in exon 1. In order to address the binding of GATA

proteins to CCR3 exon 1, we prepared oligonucleotides
corresponding to probe E1-B and -C with the GATA site
mutated. As demonstrated in Figure 3A, when used as cold
competitor, the GATA mutant oligonucleotide was not
capable of interfering with the binding of nuclear factors
to either CCR3 exon 1 probe E1-B or probe E1-C. Addi-
tionally, we used a GATA consensus oligonucleotide with
binding sites for GATA proteins. This oligonucleotide
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Figure 2

Binding of transcription factors to CCR3 exon I. In (A), a schematic representation of the CCR3 exon region used for
electrophoretic mobility shift assays is shown. EI-FL is the exon | full-length probe. Overlapping short probes are called El-A,
El-B and EI-C, respectively. The DNA sequence is shown with GATA sites boxed. In (B), EMSA assay with the full-length
probe and extracts from eosinophilic AML14.3D 10 cells is shown. As cold competitors (CC), the full-length probe and short
probes El-A through C were used. The arrow depicts the specific band. A representative experiment, of three similar experi-
ments, is shown.
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Binding of GATA factors to CCR3 exon 1. In (A), EMSA assay with probes El-B (left panel) and EI-C (right panel) and
nuclear extracts from AML14.3D10 cells is shown. Three cold competitors were used in each case: the probe itself (EI1-B-WT
and EI-C-WT, respectively), the probe with the GATA site mutated (E|-B-mut and EI-C-mut, respectively) and the GATA
consensus oligonucleotide (GATA cons). A representative experiment, of three similar experiments, is shown. In (B), EMSA
assay with the full-length probe (EI-FL) and extracts from eosinophilic AML14.3D 10 cells in the presence or absence of anti-
bodies against GATA-| is shown. The arrow depicts the specific band. In (C), EMSA assay with probes El-B (left panel) and El-
C (right panel) and nuclear extracts from AML14.3D 10 cells and cold competitor probe itself (CC: EI-B and CC: EI-C, respec-
tively) or anti-GATA-I antibody (GATA-I atb) is shown.
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completely abolished binding of nuclear factors to both
CCR3 exon 1 probes E1-B and E1-C (Figure 3A). Together,
these data indicate that GATA proteins, present in nuclear
extracts of AML14.3D10 cells, are capable of binding to
CCR3 exon 1 sequence.

In order to delineate which GATA factors are binding to
exon 1, nuclear extracts from AML14.3D10 cells were
incubated with the radiolabelled full-length CCR3 exon 1
probe in the presence or absence of anti-GATA-1 anti-
body. As seen in Figure 3B, the GATA-1 antibody was able
to interfere with the binding of the protein factor from the
nuclear extracts to the radiolabelled probe. In order to
more precisely localize to which part of exon 1 GATA-1 is
capable of binding, overlapping oligonucleotide probes
were radiolabelled and incubated with nuclear extracts
from AML14.3D10 cells in the presence and absence of
the GATA-1 antibody. This treatment efficiently inhibited
the binding of probes E1-B and -C to the nuclear factor
(Figure 3C). These data indicate that GATA-1, present in
nuclear extracts of AML14.3D10 cells, is at least one of the
factors capable of binding the CCR3 exon 1 between bp
25 and 60.

Characterization of the CCR3 promoter in vivo

We have previously characterized the human CCR3 pro-
moter in vitro [27]. In order to determine if this region had
promoter activity in vivo and to assess cell-specificity, we
generated transgenic mice expressing the reporter gene
EGFP under the control of the CCR3 promoter (Figure
4A). 1.6 kb of the promoter and 60 base pairs of exon 1
were cloned upstream of the EGFP gene. Seven transgenic
founder lines were identified. Two of the founder lines did
not transmit the transgene to their offspring and one line
did not show transgene expression as determined by
Northern blotting and RT-PCR (data not shown). In four
of the lines the level and pattern of transgene expression
varied suggesting integration site effects. Two of the lines
(4.1 and 4.2) displayed minimal mRNA expression and
were not further analyzed. In contrast, the other two lines
(3.1 and 3.2) showed high expression of the transgene in
multiple tissues. Line 3.1 displayed varying levels of
mRNA expression in all organs tested: lungs, kidneys, jeju-
num, thymus, bone marrow, and spleen, with highest
expression in the thymus (by Northern blot analysis, Fig-
ure 4B and RT-PCR, data not shown). While we expected
the transcript to be about 1 kb in size (Figure 4A), two
bands ~4 and 5 kb were apparent. Since this was not the
case with other lines, we suspect it is integration-site spe-
cificand another gene may have been transcribed together
with GFP. However, the size of the RT-PCR amplified frag-
ment was of the expected size and the protein was detect-
able by immunohistochemistry (see below) thus
implying that this did not affect the translation of the pro-
tein and integrity of the epitope for the antibody. Expres-
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sion in the lungs, jejunum, thymus and kidney was
confirmed by anti-GFP immunohistochemistry (Figure
4C and data not shown). In the jejunum, staining was
present predominantly in stromal cells (Figure 4C). Of
note, eosinophils normally reside in the gastrointestinal
tract and are located in the stroma of the jejunum. How-
ever, in the lungs, which are normally devoid of eosi-
nophils at baseline, there was GFP expression that was
confined to the alveolar lining consistent with predomi-
nant expression in type I pneumocytes (Figure 4C). In the
thymus, compared to staining without primary antibody
(data not shown), all thymocytes stained positive for GFP.
Additionally, in the kidney all cells were positive, both in
the medulla and cortex (data not shown). Line 3.2 dis-
played a different pattern of transgene expression. North-
ern blot analysis revealed expression in multiple organs
with the lungs and kidneys expressing the highest levels
(Figure 4B). Consistent with this, protein was detected by
immunohistochemistry at high levels in lungs and kid-
neys and only marginally in the jejunum (Figure 4C and
data not shown). While staining in the lungs was compa-
rable to line 3.1, only a minority of stromal cells and no
epithelial cells were stained in the jejunum. In the kidney,
almost all cells expressed the transgene in the medulla,
while in the cortex staining was prominent in the glomer-
uli. There was no anti-GFP staining observed in wild type
mice (Figure 4C). No changes in expression were found
when the transgene was crossed with CD2.IL-5 transgenic
mice (data not shown). In summary, the 1.6 kb of the 5'
flanking region of the CCR3 gene has strong promoter
activity in vivo. However, both the level and pattern of
expression vary between founder lines and lack cell specif-
icity. Thus, the identified region of the CCR3 promoter
contains a broadly active promoter with hematopoietic
and non-hematopoietic activity.

Discussion

In this report, DNase I hypersensitivity implicated
untranslated exon 1 in regulating CCR3 transcription. Fur-
thermore, nuclear proteins derived from eosinophilic cells
were shown to bind CCR3 exon between nucleotides +25
to +60. Using unlabelled competitors and antibodies, pro-
teins of the GATA family, specifically GATA-1, were shown
to bind to this region. Taken together, these data suggest
that untranslated exon 1, via GATA-1, has a regulatory role
in CCR3 transcription. Finally, we demonstrate that the
1.6-kb CCR3 promoter element, that includes exon 1, is
broadly active in vivo.

The HS1 site was located in the vicinity of exon 1. Com-
bined with our previous results demonstrating dimin-
ished promoter activity when exon 1 is deleted from the
promoter construct, these data suggested that 5' untrans-
lated exon 1 may have a regulatory function. It has been
reported that the 5' untranslated exons may contain
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Figure 4

The CCR3/EGFP transgenic mice. In (A), a schematic representation of the transgenic construct is shown. The genomic
fragment encoding 1.6 kb of the CCR3 promoter including 60 bp of exon | (El), was cloned into the Hind Il and Bam HlI sites
upstream from the EGFP gene in the pEGFPI vector. The positions of restriction sites are indicated. In (B), Northern blot anal-
ysis of multiple tissues from transgenic mice is shown. RNA was isolated from the spleen, lung, thymus, kidney and jejunum of
CCR3/EGFP transgenic mice (lines 3.1 and 3.2). 10 ug total RNA was electrophoresed on an agarose gel, transferred to nylon
membranes and probed with the SV40 polyA probe in order to detect expression of the transgene. Position of 28S and 18S is
depicted with arrows. Ethidium bromide staining of the gel is also shown. In (C), immunohistochemistry using an anti-GFP anti-
body is shown. Organs were collected, frozen sections obtained and anti-GFP immunohistochemistry performed. Positive
staining is represented as black precipitate.
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sequences that facilitate transcription of the gene. Exam-
ples include a GATA-1 site in the 5'-UTR of the y-globin
gene, an HNF-1 site in the plasminogen gene, a PU.1 site
in the PU.1 gene and a C/EBP site in the CCR2 gene
[24,31,32,35]. Thus, we hypothesized that nuclear pro-
teins bind to exon 1. Our EMSA analysis, coupled with
cold competitors and specific antibodies, indicates that
proteins of the GATA family, specifically GATA-1 bind to
the CCR3 exon 1. Thus, GATA-1 binding to exon 1 may
regulate CCR3 transcription. Alternatively, GATA-1 bind-
ing to exon 1 may affect transcription start site function,
RNA stability or translation. These possibilities will be
addressed in future studies.

It is important that this data be viewed with what is
known about other myeloid-specific promoters, that have
often proven to be difficult to function independently in
vivo. For example, constructs using the 5' flanking region
of myeloid-specific genes have not been useful for trans-
genic work (such as the CD14 promoter [36], the c-kit
promoter [37], or the 1.7 kb CD11b promoter [38]). Bet-
ter success was obtained when the entire gene, including
the open reading frame, was used (e.g. the human cathe-
psin G, chicken lysozyme and c-fps/fes transgenic con-
structs [39-41]). These constructs were at least 6 kb in size
and contained all exons and introns and several kb of 5'
and 3' flanking sequence. Presumably, these larger con-
structs contained the locus control region (LCR)-
sequences that have the ability to dominantly control
gene expression in any chromosomal region. This in turn
allows for a high degree of consistency among independ-
ent mouse lines with regard to cell specificity, level of
expression and proportionality to gene copy number.
These regions may be located at several different sites in
the gene, including introns and coding exons; thus,
screening with DNase I hypersensitivity is usually the first
method employed to identify these regions. Transgenic
mice expressing the EGFP reporter gene under the control
of the CCR3 promoter demonstrate that the 1.6 kb pro-
moter and 60 bp of exon 1 of the CCR3 gene confer strong
promoter activity in vivo. However, these sequences do not
contain the entire LCR, since expression of the reporter
gene was variable among multiple founder lines. DNase I
hypersensitivity studies discovered one hypersensitive site
in the CCR3 locus. The HS1 site was apparently not suffi-
cient for integration-site independent effects, since it is
contained in the promoter construct used. Thus, future
studies will need to broaden the search for the CCR3 LCR.
It is important to note that the true cellular specificity of
CCR3 has not been established. While this gene product
is often considered to be specific for inflammatory cells
involved in allergic inflammation (eosinophils, mast
cells, and possibly Th2 cells), several reports have docu-
mented expression by other cell types including addi-
tional leukocytes (e.g. dendritic cells), as well as tissue
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cells (epithelial and endothelial cells) [11-16,42]. Thus, it
remains to be determined if our observation that the
CCR3 promoter has broad activity in vivo represents the
true endogenous activity.

Since CCR3 is expressed strongly on eosinophils, analysis
of the signals that induce its expression may give insight
into the molecular mechanisms for the commitment of
myeloid progenitors to the eosinophil lineage. It is gener-
ally believed that transcription factors are the final com-
mon pathway driving differentiation and that
hematopoietic commitment to different lineages is driven
by alternative expression of specific combinations of tran-
scription factors [43,44]. Although no eosinophil-specific
transcription factors have been reported, eosinophil com-
mitment appears to be regulated by GATA-1, PU-1 and C/
EBP proteins [34,45-48]. Consistent with this, DNA bind-
ing sites for these transcription factors are found in several
eosinophil-selective promoters, such as the promoter for
major basic protein (MBP), IL-5 receptor alpha (IL-5Ra)
chain and Charcot-Leyden crystal (CLC) protein. Specifi-
cally, ectopic overexpression of GATA-1 in chicken mye-
loblasts leads to transdifferentiation into eosinophils or
thromboblasts depending on the dose used [47]. GATA-1
transactivates several eosinophil-selective promoters [48]
including the avian EOS47 promoter in which the GATA-
1 site is located downstream of the transcription start site
[34].

Conclusion

In summary, in this report we have demonstrated that: 1)
DNase 1 hypersensitivity studies implicate untranslated
exon 1 in CCR3 transcription; 2) proteins of the GATA
family, specifically GATA-1, bind to untranslated exon 1
in the CCR3 gene; and 3) the 1.6 kb 5' flanking region of
the CCR3 gene is broadly active as a promoter in vivo.

Methods

Cell culture

The AML14.3D10 cell line (kindly provided by C.C. Paul,
Dayton VA Medical Center, Dayton, OH) [49,50] was
grown in RPMI 1640 (Gibco BRL, Gaithersburg, MD) con-
taining 10% fetal calf serum (FCS, Gibco BRL), 50 uM 2-
mercaptoethanol (Sigma, St. Louis, MO), 0.1 mM nones-
sential amino acids (Gibco BRL), 1 mM sodium pyruvate
(Sigma), and penicillin-streptomycin (Gibco BRL). Eosi-
nophils were isolated by anti-CD16 negative selection
from granulocyte preparations of healthy or atopic volun-
teers as described previously [51].

DNase | hypersensitivity

Nuclei were derived from cell lines and primary cells using
a polyamine buffer containing 0.34 M sucrose, 13.3 mM
Tris (pH7.5), 53.2 mM KCl, 13.3 mM NaCl, 2 mM EDTA,
0.5 mM EGTA, 0.133 mM spermine, 0.5 mM spermidine,
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0.1% TritonX-100, 2 mM MgCl, and freshly prepared 2-
mercaptoethanol and phenylmethylsulfonyl fluoride
(PMSF). Nuclei were then centrifuged at 2300 g for 30
min over a cushion of 1.2 M sucrose and washed twice
prior to resuspension in DNase I digestion buffer (60 mM
KCl, 5 mM MgCl,, 15 mM Tris (pH7.5), 0.1 mM EGTA,
0.5 mM DTT and 5% glycerol). Nuclei were resuspended
at a concentration of 2-4 x 10° nuclei/ml and gentle
DNase I digestion was carried out in a volume of 0.2 ml
with 0 to 100 units of DNase I (Roche) for 5 minutes at
30°C. Following DNase I treatment, nuclei were lysed and
DNA purified by phenol/chloroform extraction and etha-
nol precipitation. DNA was digested with appropriate
restriction enzymes (Eco RI and Hind III) and
electrophoresed on a 0.8% agarose gel. Following transfer
to nylon membranes, hybridization was performed using
standard procedures. Probe fragments were made by PCR
from genomic DNA. Figure 1 depicts the CCR3 gene struc-
ture and restriction fragments and their corresponding
probes that were used to span the entire gene.

Preparation of nuclear extracts from cultured cells
Cultured cells were washed twice with ice cold phosphate
buffered saline (PBS, Gibco BRL). 2.5 x 10¢ cells were
lysed in lysis buffer [100 mM N-2-hydroxyethylpipera-
zine-N'-2-ethanesulfonic acid (HEPES), pH 7.9, 10 mM
KCl, 0.1 mM EDTA, 1.5 mM MgCl,, 0.2% Nonidet P-40,
1 mM dithiothreitol (DTT), and 0.5 mM PMSF], briefly
vortexed at a moderate speed, then incubated on ice for 5
minutes. Sample was centrifuged and the pellet was next
resuspended in 20 pl of extraction buffer (20 mM HEPES,
pH 7.9, 420 mM NaCl, 0.1 mM EDTA, 1.5 mM MgCl,,
25% glycerol, 1 mM DTT, and 0.5 mM PMSF), mildly vor-
texed, and incubated on ice for 15 minutes. Samples were
centrifuged to pellet the nuclear debris. Supernatants were
placed in silicon coated microcentrifuge tubes and stored
at -80°C until further use.

Synthetic oligonucleotides

Single-stranded oligonucleotides based on the sequence
of untranslated exon 1 of the CCR3 promoter were syn-
thesized by Integrated DNA Technologies, Inc. (Cor-
alville, IA). One full length 51 base pair (+10 to +60)
oligonucleotide (GGTACCACTGGTCITCTTGTGCTTATC-
CGGGCAAGAACTTATCGAAATACA) and three overlap-
ping oligonucleotides (+10 to +31, +25 to +46, and +40 to
+60) and their reverse complements were produced (Fig-
ure 2). Two of the overlapping fragments contained puta-
tive GATA binding sites (underlined). Two mutants and
their complements were also made which changed the
GATA sequence TATC to TTGA. This mutation does not
change the GC content of the oligonucleotides, nor does
it create a new transcription factor site for any of the tran-
scription factors represented in the publicly available
TFSEARCH engine. Each oligonucleotide was resus-
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pended to a concentration of 50 uM in TE buffer (10 mM
Tris-Cl, pH 7.4, and 0.1 mM EDTA, Sigma). Complimen-
tary single-stranded oligonucleotides were annealed at a
concentration of 10 mM in restriction enzyme buffer M
(10 mM Tris-Cl, 10 mM MgCl,, 50 mM NaCl, and 1 mM
dithioerythritol, Roche Molecular Biochemicals, Indiana-
polis, IN). Samples were placed in a 95°C dry heat block
for 5 minutes and then the block was removed from the
unit and allowed to cool slowly to room temperature. The
double-stranded oligomers were diluted to 1 uM with TE
buffer and 30 ng were end-labelled using [y-32P]ATP
(NEN Life Science, Boston, MA) and T4 polynucleotide
kinase (Gibco BRL). Probe was purified over Quick Spin
G-25 Sephadex columns (Roche) and recovered in a vol-
ume of 50 pl.

Electrophoretic mobility shift assay (EMSA)

Protein content of the nuclear extracts were determined by
Bradford (Coomassie) assay (Pierce, Rockford, IL). Total
protein (5 pg) was incubated on ice for 10 minutes with
2X EMSA bulffer (24% glycerol, 0.08 pg/ml poly dI-dC, 24
mM HEPES, pH 7.9, 8 mM Tris-Cl, pH 7.9, 2 mM EDTA,
2 mM DTT, 50 mM KCl, and 10 mM MgCl, ), and when
indicated, with 150 fold excess of cold competitor oligo-
nucleotide. Radiolabelled oligo probe was added to each
sample and incubation continued for an additional 10
minutes on ice. For antibody supershift assays, anti-
GATA-1 antibody (clone C20, Santa Cruz Biotechnology,
Santa Cruz, CA) was added following the addition of the
probe and samples incubated on ice for one hour. In con-
trol experiments, isotype-control antibodies did not have
a significant effect. The DNA-protein complexes were then
resolved on a non-denaturing 5% acrylamide gel [29:1
acrylamide/bis-acrylamide, 0.5X TBE buffer (44.5 mM
Tris, 44.5 mM borate, and 1 mM EDTA), and 25% glyc-
erol] at constant current of 30 mA for approximately 60
minutes. Gels were dried on blotting paper and exposed
to x-ray film.

Generation and analysis of transgenic lines

1.6 kb of the CCR3 promoter, including 60 bp of untrans-
lated exon 1, was subcloned into the pEGFP vector (Clon-
tech, Palo Alto, CA). The transgenic construct containing
the promoter, reporter gene enhanced green fluorescent
probe (EGFP) and the SV40 polyadenylation signal (Fig-
ure 4) were liberated by Afl II and Hind III digestion and
injected into the pronucleus of fertilized eggs from FVB/N
mice by the Transgenic Core Facility at Cincinnati Chil-
dren's Hospital Medical Center. Transgenic mice were
identified by Southern blot analysis after digestion with
BamHI, using the SV40 poly A fragment as a probe. Lines
were tested for expression of the transgene in multiple
organs by Northern blotting and RT-PCT. The SV40 poly
A fragment was used as a probe for Northern blotting.
PCR  primers for EGFP were as follows:
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5'ATGGTGAGCCAAGGGCGAG3' and
5'CTTGTACAGCTCGTCCATG3'. RNA integrity and RT
efficiency was verified by performing PCR for B-actin on
the same cDNA samples. Primers used were as follows:
5'GGAATCCTGTGGCATCCATGAAACT3' and
5'TAAAACGCAGCTCAGTAACAGTCCGS3'.

Anti-GFP immunohistochemistry

Immunohistochemistry was performed on frozen sections
essentially as described [52]. Briefly, following endog-
enous peroxidase quenching, slides were blocked and
stained with a rabbit-anti-GFP antibody (AB3080 at 1:400
dilution, Chemicon International, Temecula, CA). The
slides were washed and incubated with biotinylated goat
anti-rabbit antibody and avidin-peroxidase complex
(Vectastain ABC Peroxidase Elite kit, Vector Laboratories).
The slides were then developed by nickel diaminobenzi-
dine, enhanced nickel cobalt chloride to form a black pre-
cipitate and counterstained with nuclear fast red.
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