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Abstract
Background: CD8α enhances the responses of antigen-specific CTL activated through TCR
through binding MHC class I, favoring lipid raft partitioning of TCR, and inducing intracellular
signaling. CD8α is also found on dendritic cells and rat macrophages, but whether CD8α enhances
responses of a partner receptor, like TCR, to activate these cells is not known. TCR and FcR, use
analogous or occasionally interchangeable signaling mechanisms suggesting the possibility that
CD8α co-activates FcR responses. Interestingly, CD8α+ monocytes are often associated with rat
models of disease involving immune-complex deposition and FcR-mediated pathology, such as
arthritis, glomerulonephritis, ischaemia, and tumors. While rat macrophages have been shown to
express CD8α evidence for CD8α expression by mouse or human monocytes or macrophages
was incomplete.

Results: We detected CD8α, but not CD8β on human monocytes and the monocytic cell line
THP-1 by flow cytometry. Reactivity of anti-CD8α mAb with monocytes is at least partly
independent of FcR as anti-CD8α mAb detect CD8α by western blot and inhibit binding of MHC
class I tetramers. CD8α mRNA is also found in monocytes and THP-1 suggesting CD8α is
synthesized by monocytes and not acquired from other CD8α+ cell types. Interestingly, CD8α
from monocytes and blood T cells presented distinguishable patterns by 2-D electrophoresis. Anti-
CD8α mAb alone did not activate monocyte TNF release. In comparison, TNF release by human
monocytes stimulated in a FcR-dependent manner with immune-complexes was enhanced by
inclusion of anti-CD8α mAb in immune-complexes.

Conclusion: Human monocytes express CD8α. Co-engagement of CD8α and FcR enhances
monocyte TNF release, suggesting FcR may be a novel partner receptor for CD8α on innate
immune cells.

Background
CD8α is a surface glycoprotein typically found on a sub-
population of CTL [1]. CD8α enhances responses insti-

gated through the TCR by binding MHC class I and
signaling through the src kinase lck and the adaptor pro-
tein Linker for Activation of T cells (LAT) [2]. The classical
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co-receptor model of CD8 suggests CD8 enhances CTL
activation by binding the same MHC class I-peptide as
TCR [3]. Other evidence suggests CD8 is recruited to the
site of T cell activation [4,5]. and can enhance T cell
responses even when it does not bind at detectable levels
to the same MHC class I-peptide as TCR (e.g. CD8
enhances activation of T cells with an MHC class II specific
TCR [6,7]).

CD8 on T cells co-activates responses initiated by TCR, but
no such co-activating role has been described for CD8 on
other CD8+ cells like dendritic cells [8], NK cells [9,10].,
mast cells [11] or macrophages (Mφ) [12]. Interestingly,
the Fcγ chain, a component of several FcR [13], NK recep-
tors [14], and ILT1 [15] can substitute for CD3ζ in TCR
expression [16,17].; signaling [18] and T cell activation
[19,20] Reciprocally, CD3ζ can substitute for Fcγ in FcR
signaling [21]. Fcγ chain is an ancestral homologue of the
CD3ζ chain [22]. Furthermore, CD3ζ-/-η-/- mice use Fcγ
in TCR signaling and CD8-dependent CTL cytotoxicity
[19], strongly suggesting CD8 can function with Fcγ in the
absence of CD3ζ or η. In fact, human but not mouse
mature T cells often express Syk and Fcγ alongside ZAP-70
and CD3ζ and in at least some mature effector T cells Syk
and Fcγ replace ZAP-70 and CD3ζ in TCR signaling
[23,24]

The cell types that express CD8α differ among mice, rats
and humans. While human [9] and rat NK cells express
CD8α, mouse NK cells do not [25]. Rat Mφ express CD8α
[12], however, our efforts and those of others to detect
CD8α protein on mouse monocytes and Mφ have been
unsuccessful [26,27]. A portion of CD8α and all the CD8β
found on mouse dendritic cells is derived from T cells
[28]. As transfer of transmembrane proteins between cells
is frequently detected, like CD8 in the case above, it is nec-
essary to determine the source and functionality of CD8α
when it is detected on a new cell type or in a new species.
Since this study was started, two studies identified binding
of anti-CD8α mAb at high levels to a small percentage of
human monocytes during immune responses [29,30]
Unfortunately neither study queried whether lower levels
of CD8α were constitutively found on monocytes, dem-
onstrated the cellular origin of the CD8α found on mono-
cytes, or demonstrated a function for CD8α on
monocytes.

In this report, we provide evidence that human mono-
cytes express CD8α and that CD8α can enhance responses
mediated through FcR.

Results
CD8α and not CD8β is present on human peripheral blood 
monocytes
Performing flow cytometry on PBMC, a subpopulation of
lymphocytes (FSC/SSC gated) expressed high levels of
CD8α and CD8β, as expected (Figure 1B, anti-CD8α mAb
OKT8 and Figure 1C, anti-CD8β-dependent mAb
2ST8.5H7). Six anti-CD8α mAb also bound monocytes at
levels greater than three times the geometric mean of iso-
type mAb (Figure 1B, gated for analysis by expression of
high levels of CD14 [31] and characteristic FSC/SSC scat-
ter [Figure 1A]). The monocytic cell line THP-1 bound
CD8α mAb at levels comparable to blood monocytes
(data not shown). CD8β was not detected on monocytes
with mAb 2ST8.5H7 (Figure 1C) or 5F2 (not shown), sug-
gesting they do not express CD8αβ (mAb 2ST8.5H7) or
putative CD8ββ dimers (mAb 5F2) [32]. Accordingly,
mRNA for CD8β was detected in total PBMC containing
CD8αβ+ T cells, but not in highly enriched monocytes
(data not shown).

CD64 does not contribute to anti-CD8α mAb binding to 
monocytes
To examine whether Fc receptors contributed to binding
of anti-CD8α mAb to monocytes we first tested the contri-
bution of CD64, the high affinity FcR. CD64 binds immu-
noglobulin with 100-fold or more the affinity of other
FcγR [33], is the only FcγR that binds monomeric Ig [34]
and preferentially binds mouse IgG2a antibodies com-
pared to mouse IgG1 [35]. Accordingly, as human mono-
cytes express significant amounts of CD64 [31] mouse
IgG2a has a 100–1000 fold higher affinity for binding
human monocytes than mouse IgG1 [36]. Incubating
monocytes with human Ig preparations [37] (not shown)
or a mAb which blocks binding of Ig to CD64 (clone 10.1)
[38] slightly decreased binding of IgG2a isotype control
mAb (11–27% geometric mean) and did not decrease
binding of anti-CD8α mAb (Figure 2A).

CD8α is detected in monocytic cell line and >99% human 
monocytes independent of FcR
To test whether CD8α is detected in human monocytes by
a method generally acknowledged to be independent of
FcγR binding to IgG we performed western blot for CD8α.
Proteins at 32 kDa, consistent with CD8α were detected
with anti-CD8α mAb D9 by western blot (Figure 2B) of
thymus lysate, blood lymphocytes, immature monocytes
(THP-1), mature ex vivo monocytes (>99% CD14hi,
CD3ζ[-ve], enrichment Figure 4A), and Mφ differentiated
with GM-CSF from blood monocytes, but not in lung epi-
thelial cells (A549, negative control). Similarly, a 32 kDa
protein was found by western blot with anti-CD8α mAb
B9.11 in PBMC and THP-1 (Figure 2B). These data suggest
that anti-CD8α mAb binding to monocytes is due to the
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presence of CD8α protein and not non-specific binding to
FcγR.

Peripheral localization of CD8α on human monocytes: 
confocal microscopy
To confirm the expected localization of CD8α to the cell
periphery on monocytes we performed two-color confo-
cal microscopy of permeabilized PBMC (Figure 3). All
anti-CD8α mAb detected CD8α at the periphery of
CD14hi monocytes and some CD3hi T cells (Figure 3B–E
mAb B9.11 is shown, and is representative of results
obtained with LT8, OKT8, 32-M4, 51.1, and Nu-Ts/c).
CD8α was also observed intracellularly in some mono-
cytes with a distribution resembling CD14, suggesting
that similar to NK cells [39] a small proportion of CD8α

may be found intracellularly in monocytes, perhaps in
recycling endosomes.

Human monocytes express CD8α mRNA
The monocytic cell line THP-1 must synthesize CD8α as
no other sources of CD8α are available (FBS was CD8α
negative by parallel western blot). In contrast ex vivo
monocytes may acquire CD8α from other CD8α+ cells in
the body. The presence of CD8α mRNA would suggest
that monocytes can synthesize the CD8α protein associ-
ated with them. Due to the sensitivity of RT-PCR for
mRNA from contaminating cells, we studied the cultured
monocytic line THP-1 in addition to highly enriched
monocytes (negative for T cell/NK cell specific CD3ζ
mRNA, >99% FSC/SSC and CD14hi monocytes, Figure

CD8α is detected by flow cytometry on CD14hi monocytes from human peripheral bloodFigure 1
CD8α is detected by flow cytometry on CD14hi monocytes from human peripheral blood. Anti-CD8α mAb bind monocytes 
by flow cytometry. A, Monocytes were gated by characteristic FSC/SSC scatter (left panel) and expression of high levels of 
CD14 (right panel) for all flow cytometry studies in this article. B, A population of lymphocytes, gated by characteristic FSC/
SSC scatter, bind high levels of anti-CD8α. Blood monocytes gated in A, bind anti-CD8α mAb. Geometric means of mono-
clonal antibody binding are shown. Results are representative of five experiments. C, Anti-CD8β mAb bind lymphocytes but 
not monocytes.

IgG1 B9.11 LT8

IgG2a 32-M4 OKT8 51.1

3.5 23.6 36.0

7.6 24.5 26.1 21.3

CD8αααα

OKT8IgG2a
B.

0% 23.1%

CD8αααα

FSC

C
D

14
-P

E

A.

Isotype mAb for anti-CD8α

6.31 4.99

Ly
m
ph

oc
yt
es

M
on

oc
yt
es

SS
C

29.8%0.3%

IgG2a 2ST8.5H7

CD8ββββLy
m
ph

oc
yt
es

M
on

oc
yt
es

C.
Page 3 of 16
(page number not for citation purposes)



BMC Immunology 2007, 8:12 http://www.biomedcentral.com/1471-2172/8/12
4A). CD8α mRNA was detected in peripheral blood
mononuclear cells (containing CD8α+ T cells [positive
control]), THP-1 monocytic cell line, and highly purified
blood monocytes, but not in a lung epithelial cell line
(A549) as expected (Figure 4B).

CD8α on monocytes binds MHC class I
Whatever the eventual cellular derivation of CD8α pro-
tein found on ex vivo monocytes, its ability to function
(e.g. bind MHC class I) and impact monocyte responses is
practically relevant. We tested whether CD8α on human
monocytes contributes to monocyte binding to MHC
class I. We expected that anti-CD8α mAb would not block
all tetramer binding to human monocytes because mem-
bers of the immunoglobulin-like-transcript (ILT/CD85)

family (ILT2, 4) expressed by monocytes bind MHC class
I tetramers, interact with regions on MHC class I that over-
lap with CD8α and thus compete with CD8α for binding
of MHC class I [40].

Thymocytes from CD8β knockout mice bind MHC class I
tetramers and overexpression of CD8α enhances this
CD8-dependent binding [41], suggesting that despite the
heightened ability of CD8αβ (at least in an unsialylated
form on thymocytes [42,43]) to bind MHC class I tetram-
ers, CD8αα is also capable of mediating tetramer binding
to T cells.

HLA-*0201 tetramers bound to nearly all CD14hi mono-
cytes (Fig 5A). Tetramers complexed with two different

Binding of anti-CD8α mAb to monocytes is independent of FcRFigure 2
Binding of anti-CD8α mAb to monocytes is independent of FcR. A, Blockade of Ig binding to CD64 with anti-CD64 mAb 
decreases binding of isotype mAb but not anti-CD8α mAb to monocytes. Bracketed numbers are geometric means of indi-
cated peaks. B, Western blot with anti-CD8α D9 detects a 32 kDa protein as expected for CD8α in THP-1, peripheral blood 
lymphocytes, thymus lysate, peripheral blood monocytes (>99%), GM-CSF differentiated Mφ, PBMC, thymus, and a CTL clone 
but not in the lung epithelial line A549 (CD8α negative control). Right, anti-CD8α mAb B9.11 detects a 32 kDa protein as 
expected for CD8α in THP-1 and peripheral blood lymphocytes. 1–1.5 × 106 cell equivalents were loaded in each lane.
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CD8α is detected by confocal microscopy on peripheral blood monocytes and lymphocytes with several anti-CD8α mAbFigure 3
CD8α is detected by confocal microscopy on peripheral blood monocytes and lymphocytes with several anti-CD8α mAb. A, 
CD3-FITC and CD14-FITC binding to PBMC (Green). B-E, Anti-CD8α mAb (D, E) binding to monocytes and lymphocytes in 
comparison to isotype mAb (B, C) (Red). Results are representative of other anti-CD8α mAb (OKT8, 51.1, 32-M4, Nu-Ts/c, 
and B9.11).
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peptides bound similarly to monocytes (data not shown).
In agreement with others [44,45]., we found that anti-
CD8α clone B9.11 inhibited HLA tetramer binding (Fig-
ure 5B, 11.6%). Another anti-CD8α clone, D9, also inhib-
ited tetramer binding (Figure 5B, 18.6%, p < 0.05).
Finally, tetramer binding was not affected by clone 32-M4
(despite its ability to bind CD8α on monocytes), or iso-
type control mAb (Figure 5B). Other studies of MHC class
I tetramer binding to CD8α using several anti-CD8α mAb
have also shown that tetramer binding may be unaffected,
inhibited or enhanced by anti-CD8α mAb, depending on
which anti-CD8α clone is used, and TCR affinity
[43,46,47].

While our evidence suggests CD8α contributes to MHC
class I tetramer binding by human monocytes, the

observed dimunition of tetramer binding may be via an
effect on the kinetics or stability of tetramer binding to
other receptors for MHC class I.

Fewer Sialylated 34 kDa Versions of CD8α are found on 
Monocytes Compared to T cells
Previous publications have demonstrated notable differ-
ences in immunoprecipitated CD8α by 2-D electrophore-
sis. Some authors detected immunoprecipitated CD8α
from thymus as restricted spots of pI ~ 6 [48]. In contrast,
others detected immunoprecipitated CD8α from blood at
numerous spots ranging from pI 6–9.5 [49], and molecu-
lar weights of 32 to 34 kDa [50]. We tested whether CD8α
from monocytes in comparison to blood lymphocytes
exhibit a distinct pattern of sialylation or other post-trans-
lational pattern detectable by 2-D electrophoresis.

Human monocytes express CD8α mRNAFigure 4
Human monocytes express CD8α mRNA. Right, purification of monocytes (>99% CD14hi after sorting) was also confirmed by 
attempting to detect the T and NK cell transcript, CD3ζ, in monocytes. A 293 bp fragment of CD3ζ mRNA was detected in 
PBMC, containing T cells, but not monocytes, the monocytic line THP-1, or lung epithelial cells (A549) after 50 cycles. B, A 379 
bp CD8α mRNA fragment was detected by RT-PCR in THP-1, >99% CD14hi monocytes, PBMC, but not in a lung epithelial cell 
line, (A549) using intron-spanning primers, and 35 cycles of cDNA amplification. Detection of β-actin mRNA confirmed RNA 
extraction and RT-PCR was performed successfully.
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CD8α on human peripheral blood monocytes mediates MHC class I bindingFigure 5
CD8α on human peripheral blood monocytes mediates MHC class I binding. A, Dark histogram is background fluorescence of 
CD14hi monocytes, light histogram represents binding of PE-labeled tetramers. B, Bar graph is pooled results of gated CD14hi 

monocytes from three different donors in separate experiments. Inhibition of tetramer binding is expressed as percent 
decrease in mean fluorescence intensity of tetramer binding due to pretreatment with anti-CD8α mAb compared to isotype 
mAb (* p < 0.05, non-paired t-test).
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A polyclonal anti-CD8α antibody detected discrete spots
across 2-D gels from the predicted pI of unglycosylated
CD8α (~9) to pI 6–7, at Mr from 32–34 kDa (Figure 5), as
shown by others [49]. Much of the heterogeneity detected
with anti-CD8α polyclonal antibody could be eliminated
by treatment with neuraminidase, suggesting it is due to
sialylation of CD8α (Figure 6A). Notably, monocytes had
less of the sialylated 34 kDa forms of CD8α than T cells in
samples from three individuals (Figure 6A). In contrast,
anti-CD8α clone D9 detected a single protein spot (32
kDa, ~pI 6), in a pattern similar to that found by others
[48]. To confirm that the protein recognized at 32 kDa pI
6 was CD8α we sequenced it by MALDI-QTOF from 2-D
gels (see Additional file 1). Neuraminidase treatment

diminished but did not eliminate the protein spot recog-
nized by anti-CD8α clone D9 and gave rise to faint basic
spots similar to those observed with polyclonal anti-
CD8α antibody after neuraminidase treatment. D9 may
preferentially recognize particular glycosylation/sialyla-
tion patterns of CD8α (Figure 6B,C).

In our experiments large differences in 2-D electrophoresis
patterns for CD8α (e.g. between D9 and polyclonal anti-
CD8α Ab) are due to the specificity of different antibodies
recognizing CD8α, and not a result of differences in the
cell type expressing CD8α. Nonetheless, using the same
polyclonal antibody, subtle differences in CD8α were
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Subtle differences in CD8α between monocytes and lymphocytes detected by 2-D electrophoresisFigure 6
Subtle differences in CD8α between monocytes and lymphocytes detected by 2-D electrophoresis. A, Western blot with a 
polyclonal anti-CD8α antibody after 2-D electrophoresis of ex vivo monocytes and lymphocytes. Cell lysates of lymphocytes 
and monocytes from one donor were separated by adherence, halved and treated (bottom panels) or not treated (top pan-
els) with neuraminidase before analysis. B, Western blot with anti-CD8α mAb D9. C, Neuraminidase treatment and western 
blot with D9 of lymphocyte lysate. Results are representative of experiments with three donors.
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found between monocytes and lymphocytes by 2-D elec-
trophoresis.

Anti-CD8α mAb amplifies monocyte responses to immune-
complexes through FcγR
TCR and FcR use analogous and sometimes interchangea-
ble signaling mechanisms to activate cells [20], and
CD3ζη-null mice can use Fcγ to reconstitute CD8/TCR-

dependent CTL cytotoxicity[23]. We investigated if CD8α
on monocytes might be involved in responses to
immune-complexes mediated by FcγR. To this end, we
used a common immune-complex-FcγR activation sys-
tem.

Treatment of monocytes with monomeric non-specific
IgG2a mAb induced a slight increase in monocyte TNF pro-
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duction (Figure 7A,B). This is likely due to the ability of
the high affinity FcγR, CD64, found on the majority of
monocytes to bind monomeric mouse IgG2a [36]. Mono-
meric anti-CD8α mAb did not increase monocyte TNF
production more than control IgG2a mAb (Figure 7A,B).
When monocytes were stimulated with preformed
immune-complexes (isotype mAb cross-linked with anti-
mouse Ig), CD14hi monocytes produced moderate
amounts of intracellular TNF (Figure 7A,B). Formation of
immune-complexes with anti-CD8α mAb (32-M4 cross-
linked with anti-mouse Ig) rather than isotype mAb,
resulted in production of 2-fold more TNF by monocytes
(Figure 7A,B). Immune-complexes containing anti-CD8α
mAb D9 did not significantly increase monocyte TNF pro-
duction above control immune-complexes, indicating
that monocyte TNF release is not significantly stimulated
by any immune-complex containing a mAb that binds to
the monocyte surface. It is not surprising that only one of
two anti-CD8α mAb enhanced FcγR-dependent
responses, because when others have screened several
anti-CD8α mAb in parallel for effects on CTL cytotoxicity,
or CD8-MHC class I binding (see above), the effect ranged
from substantial inhibition to no effect depending on the
particular anti-CD8α mAb clone [51-53]

Enhanced activation of monocytes incubated with
immune-complexes containing anti-CD8α mAb in com-
parison to immune-complexes with isotype control was
also found when TNF release (1376 pg/mL versus 468 pg/
mL, p < 0.05 [data not shown]), CD69 upregulation, or
CD14 downregulation was measured (Figure 7C).

Blockade of FcR with excess Fc fragments nullified TNF
release instigated by isotype and anti-CD8α immune-
complexes (Figure 7), suggesting the immune-complex
system used is FcγR-dependent, as expected. As CD8α
enhancement of TNF production is inhibited by Fc frag-
ments and does not occur with monomeric anti-CD8α
mAb, the ability of anti-CD8α mAb to enhance responses
of human monocytes appears to depend on co-engage-
ment of FcR.

Discussion
The present study demonstrates expression of CD8α by
monocytic cells, and suggests that CD8α, in addition to
co-activating TCR responses may have a previously unac-
knowledged role in co-activating FcγR responses.

Previous to the present study no evidence existed to dem-
onstrate that human monocytes synthesized CD8α.
Human PBMC can appear CD14+/CD8αhi in HIV infected
individuals, but this population is due to acquisition of
CD14 from monocytes, by T cells, that are mostly CD8α+
[54,55]. A similar effect may explain previous claims of
CD8α on monocytes subsequent to dengue virus infec-

tion [30]. Other studies have demonstrated that macro-
phages and dendritic cells can acquire CD8α from T cells,
without themselves synthesizing it [28]. Thus, the detec-
tion of CD8α protein on monocytes in other studies [29]
does not demonstrate that CD8α is expressed by, or more
importantly, functional on monocytes.

We provide strong evidence that human monocytes con-
stitutively express CD8α at low levels. Notably, CD8α was
observed in monocytes, and the monocytic cell line THP-
1 by western blot confirming the presence of CD8α in
these cells without possible contribution of FcγR. Moreo-
ver, detection of CD8α mRNA in THP-1, CD8α protein on
THP-1 and 32 kDa CD8α in lysate of continuously cul-
tured THP-1, demonstrates that these monocytic cells
must transcribe CD8α mRNA and translate CD8α protein.

We find that monocytes have less 34 kDa sialylated forms
of CD8α compared to T cells. The Mr difference between
32 and 34 kDa forms of CD8α may be due to glycosyla-
tion other than sialylation [50] (Figure 5), or palmitoyla-
tion of CD8α)[56] at three eligible membrane-proximal
cysteines [57]. Monocytes and T cells may express differ-
ent glycosylation or palmitoylation enzymes that account
for predominant accumulation of 32 or 34 kDa CD8α.
Phosphorylation of CD8α, or oxidation of the free
cysteine in the CD8α Ig-domain may explain pI differ-
ences of CD8α remaining after neuraminidase treatment.
Sialylation of CD8α [58], like CD8β [42], changes during
T cell development, and potentially upon T cell activation.
Differential sialylation and palmitoylation of CD8 are
known to modulate its ability to bind MHC class I and
induce T cell activation [42,43,59] Unfortunately, we can-
not relate the differences in CD8α we observe between
monocytes and T cells to their comparative ability to bind
MHC class I and co-activate signaling.

The ability of CD8 to enhance T cell responses in a TCR-
dependent manner was defined over twenty years ago.
Since then, CD8α expression by several cell types that lack
the TCR such as human NK cells [9], dendritic cells [60],
rat macrophages [12] and mast cells [61] has been estab-
lished. Some evidence has suggested a role for CD8α in
apoptosis and survival (e.g. [39]) however a viable model
has not emerged to define when and how CD8α activa-
tion by its ubiquitous MHC class I ligand may be control-
led on these cells that lack the TCR.

MHC class I-like protein TL, which exhibits a restricted
expression pattern and a high binding affinity for mouse
CD8αα, but not CD8αβ [62] could hypothetically control
activation of CD8αα+ monocytes or dendritic cells. One
model has proposed that mouse CD8αα may downregu-
late T cell responses and promote generation of memory
T cells by binding TL [63,64] however, evidence that
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CD8α enhances monocyte TNF production in a FcγR-dependent mannerFigure 7
CD8α enhances monocyte TNF production in a FcγR-dependent manner. Monocytes were incubated with anti-CD8α or iso-
type mAb alone or in immune-complexes. Excess Fc fragment was used to block FcγR. TNF production was measured by intra-
cellular flow cytometry after 5 h (gated on CD14hi monocytes). A. Histograms are representative results. B. Bar graph 
represents average geometric mean of intracellular TNF from four separate experiments with monocytes from different 
donors. Standard error of the mean is designated by error bars. *: p < 0.05 non-paired t-test. C. CD69 and CD14 regulation 
induced by immune-complexes (IC) is enhanced by CD8α ligation (representative example).
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CD8αα has a role in generation of memory T cells is con-
troversial [65-67]. Similarly, while one study suggests an
inhibitory role of CD8αα on proliferation and cytotoxic-
ity of T cells (but an enhancement of cytokine release)
[68], several studies demonstrate the ability of CD8αα to
enhance T cell cytotoxicity and other responses [69-73]. In
the absence of a equivalent of TL in humans that binds
CD8αα with high affinity, the applicability of this model
to humans is even more problematic.

Interestingly, some evidence previous to this report sug-
gested CD8 may be able to co-activate responses of FcγR.
Many of the components of FcR and TCR signaling are
homologous or interchangeable, such as Fcγ and CD3ζ
chain, ZAP-70 and Syk [74,75]., or LAT [76]. For instance,
Fcγ and CD3ζ are conserved ancestral duplicates [77] that
can substitute for each other in activation of mast cells, γδ
or αβ T cells [18,20,23] LAT binds CD8α, and is phospho-
rylated upon macrophage activation through FcγR [76] or
upon Fcγ-dependent activation in mast cells and platelets
[78]. A more direct suggestion that CD8 can co-activate
Fcγ-chain dependent signaling through TCR was provided
by the demonstration of CD8 involvement in TCR-medi-
ated cytotoxicity in Fcγ+, CD3ζη-/- CTL [19]. What is
more, Fcγ and Syk are naturally expressed by many mature
and immature T cells in humans (less so in mice), and
participate in TCR-signaling [23], suggesting that in vivo
even on T cells CD8 may have a role in activating Fcγ
responses[24]. In sum, reasonable although little
acknowledged evidence existed that CD8 participated in
Fcγ chain-linked responses in T cells. However, no evi-
dence had shown whether CD8 could enhance Fcγ chain
responses that were not mediated through TCR thereby
expanding this model to include possible functions of
CD8 on monocytes, NK cells, dendritic cells, or mast cells.

We and others have previously demonstrated that CD8α
on rat Mφ and NK cells signals through Syk and src tyro-
sine kinases [79], consistent with TCR and FcγR signaling,
but in the absence of TCR [80,81] Here, we find that anti-
CD8α mAb enhances TNF production of monocytes
exposed to immune complexes in an Fc-dependent man-
ner, mirroring the ability of CD8α to enhance T cell acti-
vation in a TCR-dependent manner. This evidence
suggests CD8α enhances FcγR responses, through at least
one of several potential mechanisms. In experiments pre-
sented here CD8α may promote initial contact and bind-
ing stability of anti-CD8α mAb containing immune-
complexes with FcγR. In the same way, CD8α may pro-
mote binding of FcγR to MHC class I-expressing cells
coated with immune-complexes in cancer, viral infection
or autoimmune disease. Alternatively, or in addition, sig-
naling through CD8α may enhance activation of FcγR sig-
naling in our experiments. While we have not directly
demonstrated that CD8α signaling enhances FcγR signal-

ing, previous evidence supports this possibility and sug-
gests it merits further investigation. If CD8α signaling can
enhance FcγR signaling then hypothetically CD8α may
enhance responses of other receptors that both CD3ζ and
Fcγ can function with such as NKp30, and NKp46 [14] in
NK cells, and FcεRI in mast cells [21].

Our evidence suggests monocyte responses instigated
through immune-complexes and FcR can be amplified by
co-engagement of CD8α. Interestingly, in rats CD8α+
monocytes and Mφ are found at sites of tissue damage in
immune-complex mediated glomerulonephritis [82],
arthritis [83], tumor [84], experimental allergic encepha-
lomyelitis (a model of multiple sclerosis) [85], and
ischaemia-reperfusion injury [86]. TNF is an important
mediator in many of these diseases [87,88] As monocyte
TNF production is enhanced by co-activation of CD8α
and immune-complexes, CD8α on monocytes may aggra-
vate some autoimmune and acute inflammatory condi-
tions characterized by tissue deposition of immune-
complexes.

In summary, we find that human monocytes express
CD8α and that monocyte CD8α is differentiable from
that on T cells by 2-D electrophoresis. We provide evi-
dence that CD8α on monocytes amplifies responses initi-
ated through FcR, suggesting for the first time a co-
activator role for CD8 on cells without the TCR.

Methods
Antibodies
Isotype control antibodies were mouse IgG1 and IgG2a
(Sigma, St. Louis, MO), IgG2a-FITC, and -PE, (Caltag, Bur-
lingame, CA). Anti-CD8α mAb used were: D9 and 32-M4
(Santa Cruz, Santa Cruz, CA) LT8 (Serotec, Raleigh, NC),
B9.11 (Beckman-Coulter Canada Inc., Mississauga, ON),
and Nu-Ts/c (Nicherei Corp., Tokyo, Japan). Polyclonal
anti-human CD8α Ab (H160) was obtained from Santa
Cruz. Anti-CD8α mAb 51.1 (gift of Dr. D. Burshtyn, Uni-
versity of Alberta) and OKT8, and anti-rat MHC class I
mAb OX18 (European Collection of Cell Cultures, Salis-
bury, UK) were purified from hybridoma supernatant by
protein G affinity chromatography. Anti-CD8β-antibod-
ies were obtained from Beckman-Immunotech (clone
2ST8.5H7-PE, Mississauga, Canada) and Serotec (clone
5F2). Anti-CD3-FITC and anti-CD14-FITC/PE were
obtained from Caltag. Anti-mouse Ig-FITC (STAR70) was
obtained from Serotec. Anti-CD69 mAb and matching
isotype control were obtained from BD Biosciences. Anti-
mouse Ig-HRP was purchased from Pierce (Rockford, IL).

Cell recovery and culture
The promonocytic cell line THP-1 was maintained in
American Type Culture Collection recommended media
(RPMI 1640 medium, 2 mM L-glutamine, 1.5 g/L sodium
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bicarbonate, 4.5 g/L glucose, 10 mM HEPES, 1.0 mM
sodium pyruvate 0.05 mM 2-mercaptoethanol, and 10%
fetal bovine serum [FBS]). CTL clones [68] were a gift of
Dr. Chris Bleackley (University of Alberta).

Human blood (100 mL) was collected into heparanized
tubes. Red blood cells were sedimented by addition of 7
mL 6% dextran (Sigma) in RPMI 1640 per 35 mL blood
(0.5 h, room temperature). PBMC were enriched on
Ficoll-Paque Plus (Amersham Biosciences, Oakville, ON,
Canada) and washed three times in PBS. Monocytes were
further enriched by three methods. Greater than 80%
enriched monocytes were obtained from a Percoll gradi-
ent [89] for studies of monocyte activation. Monocytes
enriched by Percoll were further purified (>99%) by anti-
CD14-PE flow sorting for western blot and RT-PCR analy-
sis. Mφ were differentiated from adherent monocytes (1 h,
37 C) with 500 ng/mL GM-CSF (Biosource, Camarillo,
CA) for 3 d.

Flow cytometry
Cells on ice were blocked with 5% milk, 0.1% bovine
serum albumin (BSA) in PBS. In some experiments
human Ig (50 µg/mL, Bethyl Laboratories Inc., Mont-
gomery, TX) was used to minimize binding of mAb to
FcR. Cells were treated with 10 µg/mL isotype mAb or
anti-CD8α mAb, washed three times and incubated with
anti-mouse Ig-FITC Ab (1/100, STAR70, Serotec). Anti-
CD8β mAb 2ST8.5H7 directly conjugated to PE was used
at 10 µg/mL and compared to IgG2a-PE. Cells were
washed three times and incubated with 1/10 normal
mouse serum before addition of anti-CD14-FITC (1/50).

To analyse the contribution of high affinity FcγRI to anti-
CD8α mAb binding to monocytes, PBMC were pre-incu-
bated for 30 min with anti-CD64 mAb clone 10.1 (10 µg/
mL, BioLegend, San Diego, CA), which blocks binding of
Ig to CD64 [38]. Cells were washed and incubated with
IgG2a-PE (10 µg/mL, BD Biosciences) or 32-M4-PE (10
µg/mL, Santa Cruz). Cells were washed and data was col-
lected on a FACScan.

All flow cytometry analysis was performed with WinMDI
and CellQuest Pro (BD Biosciences) programs. Mono-
cytes were gated by characteristic FSC/SSC scatter and high
expression of CD14.

Confocal Microscopy
PBMC were adhered to poly-L-lysine coated coverslips for
0.5 h, fixed with 4% paraformaldehyde (10 min) and per-
meabilized with 0.1% triton-X-100 in PBS (10 min). Cells
were blocked (10% FBS, 3% BSA, 30 min) before staining
with anti-CD8α mAb (10 µg/mL). Cells were washed
three times (5 min, 2 mL PBS) between each reagent. Cells
were sequentially incubated with anti-mouse-Ig-rhodam-

ine red (Molecular Probes, Eugene, OR), 1/10 normal
mouse serum and anti-CD14-FITC or anti-CD3-FITC
(Caltag). Images were obtained using an Olympus
FV1000 confocal microscope (Carsen Group, Markham,
ON) with Fluoview software.

Western Blot
Cells were lysed in 1% Triton X-100 for 20 min. Lysate was
centrifuged for 5 min at 1000 g to eliminate non-solubi-
lized material. Before loading on gels remaining lysate
was diluted 2-fold with Laemmli buffer (BioRad), 2% 2-
mercaptoethanol was added and samples were boiled for
5 min. Similar amounts of cell lysate (1–1.5 × 106 cell
equivalents) were loaded per lane on 4–20% SDS-PAGE
denaturing gels (Bio-Rad Readygel). Wet protein transfers
to PVDF were performed at 100 V for 1 h. PVDF was
blocked for 1 h with 5% milk in TBS, 0.1% Tween-20 and
subsequently blotted with 0.2 µg/mL primary antibody.

RT-PCR
Total RNA was isolated using the Qiagen RNeasy kit. RNA
was reverse-transcribed with Superscript II reverse tran-
scriptase (Invitrogen, Carlsbad, CA) using oligo(dT) as
primers. The cDNA concentration was estimated by
absorbance for each sample and diluted to 100 ng/25 ul
of reaction volume. The number of cycles was optimized
to be in the exponential phase of the reaction by perform-
ing the reaction at different cycles. Densitometric analysis
of the gels was performed to select optimal PCR cycle
numbers. Thereafter, PCR was performed in 20 µl reac-
tions with primer pairs (25 µM) below. Intron-spanning
primers of the sequence 5'-TTTCGGCGAGA-
TACGTCTAACCCTGTGC-3' and 5'-TTTAGCCTC-
CCCCTTTGTAAAACGGGCG-3' were used to generate a
CD8α cDNA fragment of 379 bp [70]. Intron-spanning
primers generating a 209 bp product for CD8β were 5'-
GGTGAAGAGGTGGAACAGGA-3' and 5'-CTTGAGGGT-
GGACTTCTTGG-3'. A β-actin cDNA fragment of 326 bp
was produced using intron-spanning primers of sequence
5'-GGC ATC CTC ACC CTG AAG TA-3' and 5'-AGG GCA
TAC CCC TCG TAG AT-3'. PCR amplification was per-
formed for 35 cycles of 1 min at 94 C, 1 min at 60 C and
2 min at 72 C, and a final cycle of 72 C for 10 min to com-
plete polymerization. PCR products were run on a 1.5%
agarose gel containing ethidium bromide. Intron-span-
ning primers were used and samples were treated with 84
U/µL DNase I before RT-PCR to avoid interference of con-
taminating DNA in purified RNA.

Samples used to amplify CD8α mRNA were also ampli-
fied with intron-spanning CD3ζ RT-PCR primers (5'-
GCACAGTTGCCGATTACAGA-3' and 5'-
GCCACGTCTCTTGTCCAAA-3', 293 base pair product)
for 50 cycles, performed as above.
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2-D electrophoresis
Lymphocytes and monocytes were enriched by collecting
non-adherent and adherent cells respectively after 1 h in
culture flasks. Lymphocyte and monocyte lysates were
prepared using the 2-D cleanup kit (Bio-Rad) and resus-
pended in IPG strip rehydration buffer (Bio-Rad) with 2%
carrier isoelectric point (pI) 3–10 ampholytes (Bio-Rad).
Lysates were focused on 7 cm pI 3–10 strips (Bio-Rad).

Monoclonal antibody affinity chromatography
OKT8 at 5–10 mg/mL in 0.1 M HEPES pH 7.5 was cou-
pled to pre-washed N-hydroxysuccinimidyl-activated aga-
rose beads (Sigma) at 4 C for 1 h. Remaining active sites
were blocked by incubating in the presence of 0.1 mL 1 M
ethanolamine pH 8 at 4 C for 1 h. Rat cultured mast cell
line (RCMC, MHC class I purification) or human thymus
(CD8 purification) was lysed with 1% triton X-100 in PBS
with Complete Mini anti-protease cocktail tablets (Roche
Applied Science, Laval, PQ, Canada). Supernatant
remaining after 1000 g, 12,000 g, and 100,000 g centrifu-
gations was loaded on columns. Columns were sequen-
tially washed with 30 volumes lysis buffer, 20 volumes 10
mM Tris 0.5% triton X-100 300 mM NaCl pH 8, 20 vol-
umes 10 mM sodium phosphate 0.5% triton X-100 450
mM NaCl pH 10, and eluted with 0.05 M diethylamine
0.5% triton X-100 650 mM NaCl pH 11.5. 1.5 mL frac-
tions were collected into 50 µL 1 M Tris HCl pH 6.7.

MALDI-QTOF
Bands were excised and an automated in-gel tryptic diges-
tion was performed on a Mass Prep Station (Water, USA).
The gel pieces were de-stained, reduced (DTT), alkylated
(Iodoacetamide), digested with trypsin (Promega
Sequencing Grade Modified) and the resulting peptides
extracted from the gel and analyzed via LC/MS/MS. LC/
MS/MS was performed on a CapLC HPLC (Waters, USA)
coupled with a Q-ToF-2 mass spectrometer (Waters, USA).
Tryptic peptides were separated using a linear water/ace-
tonitrile gradient (0.2% Formic acid) on a Picofrit
reversed-phase capillary column, (5 micron BioBasic C18,
300 Angstrom pore size, 75 micron ID × 10 cm, 15 micron
tip) (New Objectives, MA, USA), with an in-line PepMap
column (C18, 300 micron ID × 5 mm), (LC Packings, CA,
USA) used as a loading/desalting column. Protein identi-
fication from the generated MS/MS data was done search-
ing the NCBI non-redundant database using Mascot
Daemon (Matrix Science, UK). Search parameters
included carbamidomethylation of cysteine, possible oxi-
dation of methionine and one missed cleavage per pep-
tide.

MHC class I binding
PE labeled HLA-A*0201 tetramers assembled [71] with
two peptides selected by the SYFPEITHI search engine,
Mycobacterium tuberculosis antigen 85-B 143–152 (KLVAN-

NTRL) and a diabetes-specific epitope of glutamic acid
decarboxylase 114–123 (VMNILLQYVV) were a gift of Dr.
John Elliott (University of Alberta). All washes and incu-
bations of cells were done in ice cold PBS with 0.02%
NaN3. 1 × 106 human PBMC were incubated 15 min with
1.5 µg tetramers before the addition of CD14-FITC for 15
min. Before flow cytometry analysis cells were washed
three times. In some experiments cells were incubated
with 40 µg/mL anti-CD8α mAb or isotype control for 30
min prior to addition of tetramers.

Immune-Complex Stimulation of Monocytes and TNF 
Measurements
Monocytes were treated with isotype or anti-CD8α mAb
(10 µg/mL), or immune-complexes. All mAb were nega-
tive for endotoxin using the LAL assay (Sigma-Aldrich).
Immune-complexes were prepared by combining isotype
mAb or anti-CD8α mAb (10 µg/mL) with anti-mouse Ig
(20 µg/mL) for 15 min before addition to monocytes.
Monocytes enriched on a Percoll gradient were incubated
with immune-complexes for 5 h at 0.2 × 106 cells/well of
a 96 well plate (Becton Dickinson, 35172). Anti-human
TNF-PE mAb, fixation and permeabilization buffers, and
monensin were from ebioscience (San Diego, CA). Intrac-
ellular TNF was detected according to supplier recommen-
dations. Monensin (2 µM) was added 2 h after immune-
complexes.

Stimulation of monocytes with immune-complexes was
inhibited by pretreating monocytes with 50 µg/mL puri-
fied mouse IgG Fc fragment (Jackson Immunoresearch,
West Grove, USA) to block binding of immune-complexes
to FcR. In these experiments free binding sites of anti-
mouse Ig antibody in immune-complexes that might oth-
erwise bind Fc fragments on pretreated monocytes, were
pre-blocked with 50 µg/mL purified Fc fragment.

TNF release was measured by ELISA after activation of
monocytes for 18 h using 2 µg/mL anti-human TNF mAb
as a capture antibody (clone 28401, R&D Systems, Minne-
apolis, MN) and biotinylated anti-human TNF (BAF210,
R&D systems) as a detection antibody. Signal was detected
with streptavidin-HRP (Vector Labs, Burlingame, CA) and
o-phenylenediamine.

Measurement of CD14 and CD69 Expression
After 18 h activation cells were stained with CD14-FITC/
CD69-PE or isotype controls and fixed (ebioscience fixa-
tion buffer) before analysis on a FACScan.

Abbreviations
AM (alveolar macrophage), Mφ (macrophage), geometric
mean (Gm), immunoglobulin-like-transcript (ILT), isoe-
lectric point (pI), Linker for Activation of T cells (LAT),
peripheral blood mononuclear cell (PBMC)
Page 13 of 16
(page number not for citation purposes)



BMC Immunology 2007, 8:12 http://www.biomedcentral.com/1471-2172/8/12
Authors' contributions
DG designed and analyzed experiments, wrote the manu-
script and performed flow cytometry, western blots, 2-D
electrophoresis, confocal microscopy, MHC binding and
monocyte activation assays. MMP helped perform confo-
cal microscopy and designed, performed and analyzed
RT-PCR results for CD8β and CD3ζ. YS performed 2D
blots with polyclonal antibodies and analyzed results.
MCYN performed RT-PCR for CD8α and some flow
cytometry and western blot. ADB designed and analyzed
experiments, revised and approved this document. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
Supported by Canadian Institutes of Health Research (CIHR) and Alberta 
Lung Association operating grants (ADB), an Alberta Lung Association Stu-
dentship award to DG and summer studentship award (MN) from the 
Alberta Heritage Foundation for Medical Research

References
1. Ledbetter JA, Evans RL, Lipinski M, Cunningham-Rundles C, Good

RA, Herzenberg LA: Evolutionary conservation of surface mol-
ecules that distinguish T lymphocyte helper/inducer and
cytotoxic/suppressor subpopulations in mouse and man.  J
Exp Med 1981, 153:310-323.

2. Bosselut R, Zhang W, Ashe JM, Kopacz JL, Samelson LE, Singer A:
Association of the adaptor molecule LAT with CD4 and CD8
coreceptors identifies a new coreceptor function in T cell
receptor signal transduction.  J Exp Med 1999, 190:1517-1526.

3. Janeway CA Jr: The T cell receptor as a multicomponent sig-
nalling machine: CD4/CD8 coreceptors and CD45 in T cell
activation.  Annu Rev Immunol 1992, 10:645-674.

4. Thome M, Duplay P, Guttinger M, Acuto O: Syk and ZAP-70 medi-
ate recruitment of p56lck/CD4 to the activated T cell recep-
tor/CD3/zeta complex.  J Exp Med 1995:1997-2006.

5. Thome M, Germain V, DiSanto JP, Acuto O: The p56lck SH2
domain mediates recruitment of CD8/p56lck to the acti-
vated T cell receptor/CD3/zeta complex.  Eur J Immunol
1996:2093-2100.

6. Miceli MC, von Hoegen P, Parnes JR: Adhesion versus coreceptor
function of CD4 and CD8: role of the cytoplasmic tail in core-
ceptor activity.  Proc Natl Acad Sci USA 1991, 88:2623-2627.

7. Glaichenhaus N, Shastri N, Littman DR, Turner JM: Requirement
for association of p56lck with CD4 in antigen-specific signal
transduction in T cells.  Cell 1991, 64:511-520.

8. Winkel K, Sotzik F, Vremec D, Cameron PU, Shortman K: CD4 and
CD8 expression by human and mouse thymic dendritic cells.
Immunol Lett 1994:93-99.

9. Perussia B, Fanning V, Trinchieri G: A human NK and K cell sub-
set shares with cytotoxic T cells expression of the antigen
recognized by antibody OKT8.  J Immunol 1983, 131:223-231.

10. Moebius U, Kober G, Griscelli AL, Hercend T, Meuer SC: Expres-
sion of different CD8 isoforms on distinct human lym-
phocyte subpopulations.  Eur J Immunol 1991, 21:1793-1800.

11. Lin TJ, Hirji N, Nohara O, Stenton GR, Gilchrist M, Befus AD: Mast
cells express novel CD8 molecules that selectively modulate
mediator secretion.  J Immunol 1998, 161:6265-6272.

12. Hirji N, Lin TJ, Befus AD: A novel CD8 molecule expressed by
alveolar and peritoneal macrophages stimulates nitric oxide
production.  J Immunol 1997, 158:1833-1840.

13. Davis RS, Dennis G Jr, Odom MR, Gibson AW, Kimberly RP, Burrows
PD, Cooper MD: Fc receptor homologs: newest members of a
remarkably diverse Fc receptor gene family.  Immunol Rev
2002, 190:123-136.

14. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC,
Biassoni R, Moretta L: Activating receptors and coreceptors
involved in human natural killer cell-mediated cytolysis.  Annu
Rev Immunol 2001, 19:197-223.

15. Nakajima H, Samaridis J, Angman L, Colonna M: Human myeloid
cells express an activating ILT receptor (ILT1) that associ-
ates with Fc receptor gamma-chain.  J Immunol 1999:5-8.

16. Petersson K, Ivars F: Early TCR alpha beta expression pro-
motes maturation of T cells expressing Fc epsilon RI gamma
containing TCR/CD3 complexes.  J Immunol 2001,
166:6616-6624.

17. She J, Simpson SJ, Gupta A, Hollander G, Levelt C, Liu CP, Allen D,
van Houten N, Wang B, Terhorst C: CD16-expressing CD8alpha
alpha+ T lymphocytes in the intestinal epithelium: possible
precursors of Fc gammaR-CD8alpha alpha+ T cells.  J Immunol
1997, 158:4678-4687.

18. Qian D, Sperling AI, Lancki DW, Tatsumi Y, Barrett TA, Bluestone JA,
Fitch FW: The gamma chain of the high-affinity receptor for
IgE is a major functional subunit of the T-cell antigen recep-
tor complex in gamma delta T lymphocytes.  Proc Natl Acad Sci
USA 1993, 90:11875-11879.

19. Liu CP, Lin WJ, Huang M, Kappler JW, Marrack P: Development
and function of T cells in T cell antigen receptor/CD3 zeta
knockout mice reconstituted with Fc epsilon RI gamma.  Proc
Natl Acad Sci USA 1997, 94:616-621.

20. Rodewald HR, Arulanandam AR, Koyasu S, Reinherz EL: The high
affinity Fc epsilon receptor gamma subunit (Fc epsilon RI
gamma) facilitates T cell receptor expression and antigen/
major histocompatibility complex-driven signaling in the
absence of CD3 zeta and CD3 eta.  J Biol Chem 1991,
266:15974-15978.

21. Howard FD, Rodewald HR, Kinet JP, Reinherz EL: CD3 zeta subu-
nit can substitute for the gamma subunit of Fc epsilon recep-
tor type I in assembly and functional expression of the high-
affinity IgE receptor: evidence for interreceptor comple-
mentation.  Proc Natl Acad Sci USA 1990, 87:7015-7019.

22. Ra C, Jouvin MH, Blank U, Kinet JP: A macrophage Fc gamma
receptor and the mast cell receptor for IgE share an identical
subunit.  Nature 1989, 341:752-754.

23. Krishnan S, Warke VG, Nambiar MP, Tsokos GC, Farber DL: The
FcR gamma subunit and Syk kinase replace the CD3 zeta-
chain and ZAP-70 kinase in the TCR signaling complex of
human effector CD4 T cells.  J Immunol 2003, 170:4189-4195.

24. Chu DH, van Oers NS, Malissen M, Harris J, Elder M, Weiss A: Pre-
T cell receptor signals are responsible for the down-regula-
tion of Syk protein tyrosine kinase expression.  J Immunol 1999,
163:2610-2620.

25. Kieffer LJ, Bennett JA, Cunningham AC, Gladue RP, McNeish J,
Kavathas PB, Hanke JH: Human CD8 alpha expression in NK
cells but not cytotoxic T cells of transgenic mice.  Int Immunol
1996, 8:1617-1626.

26. Leon B, Martinez dH, Parrillas V, Vargas HH, Sanchez-Mateos P,
Longo N, Lopes-Bravo M, Ardavin C: Dendritic cell differentia-
tion potential of mouse monocytes: monocytes represent
immediate precursors of CD8- and CD8+ splenic dendritic
cells.  Blood 2004, 103:2668-2676.

27. Nault G: Expression of CD8 on mouse alveolar macrophages.
In Thesis (MSc) Edmonton, Alberta, University of Alberta; 2003. 

Additional file 1
Protein recognized by anti-CD8α mAb D9 is CD8α. CD8α was enriched 
from human thymus lysate by immunoaffinity chromatography with anti-
CD8α mAb OKT8. OKT8-reactive fractions were analyzed by western 
blot with anti-CD8α mAb D9 (left), and silver stain (right) after 2-D 
electrophoresis. Alignment of western blot and silver stain gels allowed 
extraction of D9-reactive spots from silver stained gels for peptide sequenc-
ing by MALDI-QTOF (lower panel).
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