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Abstract
Background: All four PARs are present in the urinary bladder, and their expression is altered
during inflammation. In order to search for therapeutic targets other than the receptors
themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary
bladders.

Methods: For this purpose, we used a protein/DNA combo array containing 345 different TF
consensus sequences. Next, the TF selected was validated by EMSA and IHC. As mast cells seem
to play a fundamental role in bladder inflammation, we determined whether c-kit receptor deficient
(Kitw/Kitw-v) mice have an abrogated response to PAR stimulation. Finally, TFEB antibody was used
for CHIP/Q-PCR assay and revealed up-regulation of genes known to be downstream of TFEB.

Results: TFEB, a member of the MiTF family of basic helix-loop-helix leucine zipper, was the only
TF commonly up-regulated by all PAR-APs. IHC results confirm a correlation between
inflammation and TFEB expression in C57BL/6 mice. In contrast, Kitw/Kitw-v mice did not exhibit
inflammation in response to PAR activation. EMSA results confirmed the increased TFEB binding
activity in C57BL/6 but not in Kitw/Kitw-v mice.

Conclusion: This is the first report describing the increased expression of TFEB in bladder
inflammation in response to PAR activation. As TFEB belongs to a family of TFs essential for mast
cell survival, our findings suggest that this molecule may influence the participation of mast cells in
PAR-mediated inflammation and that targeting TFEB/MiTF activity may be a novel approach for the
treatment of bladder inflammatory disorders.
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Background
Attesting to the importance of inflammation in disease, a
trans-NIH Inflammation Working Group was formed
recently to collect input on proposed research areas within
the overarching theme of "Inflammation as a Common
Mechanism of Disease" [1]. In general, inflammation
plays a role in most bladder pathologies, including blad-
der cancer [2-5], and represents a defensive reaction to
injury caused by physical damage, chemical substances,
micro-organisms, or other agents [1,2]. In particular, sev-
eral lines of evidence suggest that neurogenic bladder
inflammation involves the participation of mast cells and
sensory nerves. We previously demonstrated a key role for
mast cells and their products in bladder inflammation [6-
8]. As a consequence of inflammation, products of mast
cell degranulation, such as tryptase, can be found in the
urine of both bladder cancer and cystitis patients [9]. In
addition to tryptase, other serine proteases, such as
thrombin and trypsin, are produced during tissue damage
and make important contributions to tissue responses to
injury, repair, cell survival, inflammation [10-13], and
pain [14-18]. Tissue responses to these enzymes are mod-
ulated by protease-activated receptors (PARs), a unique
class of G protein-coupled receptors that use a fascinating
mechanism to convert an extracellular proteolytic cleav-
age event into a trans-membrane signal. These receptors
carry their own ligands, which remain cryptic until
unmasked by receptor cleavage (for a review, please see
references [14,17,19,20]).

Four PARs have been cloned so far, and all are co-
expressed in the mouse bladder urothelium [21] and
human urothelial cells [22]. In addition to the urothe-
lium, PAR1 and PAR2 are also expressed in mouse detru-
sor muscle, and PAR4 is expressed in mouse peripheral
nerves and plexus cell bodies [21,22]. The expression of
PARs is altered during inflammation [21]. Additional evi-
dence for the participation of PARs in the bladder inflam-
matory response was the finding that known pro-
inflammatory stimuli, such as LPS, substance P, and anti-
gen challenge, induce an increase in PAR4 RNA within
hours of stimulation [23]. Moreover, up-regulation of
PAR protein levels have been shown to be part of rat blad-
der responses to cyclophosphamide [24].

PAR1- and to a lesser extent PAR2-deficient mice exhibit a
reduced response to bladder inflammation induced by E.
coli lipopolysaccharide (LPS), substance P, and antigen
[22]. The latter indicate that these receptors are upstream
of a cascade of events leading to bladder inflammation
[22,25]. In addition, regardless of the pro-inflammatory
stimuli, the urinary bladder inflammatory transcriptome
includes a sub-set of genes that are dependent on PAR
activation [26].

Despite the evidence of PAR involvement in inflamma-
tion, pain, healing, and cancer in animal models, there
seems to be no published clinical study regarding the effi-
cacy of PAR antagonists. In order to search for therapeutic
targets other than receptors themselves, we set forth to
determine the transcription factors downstream of PAR
activation as the next step in elucidating the network of
responses at the molecular level to PAR activation. For this
purpose, we introduced a new approach for the study of
the transcriptional regulation downstream PAR activation
(Figure 1). This top-down approach started by selecting a
candidate TF out of 345 different TF consensus sequences
present in a protein/DNA combo array (Panomics). Next,
PAR-induced alteration in this TF binding was validated
by EMSA and IHC was used to confirm its expression in
the urinary bladder. Finally, an antibody recognizing this
TF was used for CHIP/Q-PCR assay and revealed up-regu-
lation of downstream genes.

Methods
Animals
All animal experimentation described here was performed
in conformity with the "Guiding Principles for Research
Involving Animals and Human Beings" (The studies have
been reviewed and approved by the institutional review
committee protocols 05-088I and 05-081). Genetically
mast cell-deficient WBB6F1-Kitw/Kitw-v and normal
C57BL/6 mice were purchased from Jackson Laboratories
(Bar Harbor, ME).

Induction of cystitis
Acute cystitis was induced as we described previously
[21,23,27-29]. Briefly, 8–10 week old female mice were
anesthetized with isoflurane using a precision vaporizer,
then transurethrally catheterized (24 Ga.; 3/4 in; Angi-
ocath, Becton Dickson, Sandy, Utah), and the urine was
drained by applying slight digital pressure to the lower
abdomen. The urinary bladders were instilled on two con-
secutive days with 200 μl of one of the following sub-
stances: PAR-activating peptides (PAR1-AP = SFFLRN
[30]; PAR2-AP = SLIGRL [30]; PAR4-AP = AYPGKF [31],
and control inactive peptide = LRGILS [30]). All peptides
were used at 10 μM concentration [22]. Substances were
infused at a slow rate to avoid trauma and vesicoureteral
reflux [18]. To ensure consistent contact of substances
with the bladder, infusion was repeated twice within a 30-
min interval and a 1-ml Tb syringe was maintained on the
catheter end retaining the intravesical solution for at least
1 hour. Afterwards, the catheter was removed and the
mice were allowed to void normally. Twenty-four hours
post the second instillation, animals were euthanized by
cervical dislocation and bladders were rapidly removed
and frozen for immunohistochemistry or placed in cold
PBS with protease (Protease Inhibitor Cocktail, Sigma, St.
Louis, MO) and phosphatase inhibitors (20 mM sodium
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fluoride, 1 mM β-glycerophosphate, and 1 mM sodium
orthovanadate) for separation of the urothelium/submu-
cosa away from the detrusor smooth muscle.

Separating the mucosa from the detrusor smooth muscle 
[32]
To decrease the complexity of using whole bladder
homogenates, the bladder mucosa was separated from the
detrusor smooth muscle, as described [32]. Briefly, imme-
diately after removal from the animal, bladders were
placed in PBS with protease inhibitors on ice and visual-
ized under a dissecting microscope (Nikon SMZ 1500)
and the detrusor smooth muscle was separated by blunt
dissection away from the mucosa which contained the
epithelium and sub-epithelial layers. Isolated layers were
flash frozen and stored at -80°C until processing. Tissues
were pulverized in a spring-loaded tissue pulverizer (Bio-
Pulverizer, Biospec Products, Bartlesville, OK) and chilled
with liquid nitrogen. Nuclear and cytosolic extracts were
prepared using the Pierce NE-PER kit that enables step-
wise separation and preparation of cytoplasmic and
nuclear extracts from bladder tissue, as described [26].
Addition of the first two reagents (Pierce's proprietary
information) to the pulverized tissue causes disruption of

cell membranes and release of cytoplasmic contents. After
recovering the intact nuclei from the cytoplasmic extract
by centrifugation at 16,000 × g for 5 minutes, the nuclei
are lysed with a third reagent (Pierce's proprietary infor-
mation) to yield the nuclear extract. Extracts obtained
with this product generally have less than 10% contami-
nation between nuclear and cytoplasmic fractions – suffi-
cient purity for most experiments involving nuclear
extracts. A western blot was prepared using the nuclear
and cytosolic extracts and probed for the nuclear proteins
histone H3 and lamin A/C. No nuclear contamination
was shown in the cytosolic fractions (data not shown).
Protein concentrations were determined with a Micro
BCA kit (Pierce, Rockford, IL) per manufacturer's instruc-
tions.

Analysis of transcriptional regulatory network by protein/
DNA combo arrays
Minimum Information About Microarray Experiments –
MIAME [33].

Objective
To determine the transcriptional regulatory elements
(TRE) downstream of the activation of PAR receptor. For

Molecular ApproachFigure 1
Molecular Approach. A top-down approach was used to determine transcription factors involved in the response of the mouse 
bladder to pro-inflammatory PAR-APs. This approach started by selecting a candidate TF out of 345 different TF consensus 
sequences present in a protein/DNA combo array (Panomics). Next, PAR-induced alteration in this TF binding was validated by 
EMSA and IHC was used to confirm its expression in the urinary bladder. Finally, an antibody recognizing this TF was used for 
CHIP/Q-PCR assay and revealed up-regulation of downstream genes.

Table 1: PRIMERS FOR CHIP/Q-PCR

SYMBOL DESCRIPTION MOUSE REF FORWARD PRIMER REVERSE PRIMER

Cyclin D1 Cyclin D1 NM_007631 agagcttagggctcgtctgg agcgtccctgtcttctttca
Ctsk Cathepsin K NM_007802 atgttgaggggacagaggtg gcttctgggcatggagtagt
Eif4ebp2 eukaryotic translation 

initiation factor 4E
NM_010124 gctccacccttcaacacttc gggagggacaatatggaagc

Wt1 Wilms tumor homolog NM_144783 gccagagaggagggtgtctc ATTCACACAgcagccctagc
Serpine1 serine (or cysteine) 

proteinase inhibitor, clade
NM_008871 ttccggctcacatctggtat ATTGGCTCTTGTTGGC

TGTC
Igf1r insulin-like growth factor I 

receptor
NM_010513 aaagtgccttgcgtagcagt tttcgcagtgtggtggaaag

E-Cadherin cadherin 1 NM_009864 tcgggagactgaaacaggag agagggtcttgggattgcat
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this purpose, female C57BL6 mice (n = 3 per group) were
instilled two times, 30 minutes part, with: control pep-
tide, PAR1-AP, PAR2-AP, or PAR4-AP, every other day for
3 days. All peptides were used at 10 μM concentration.
Mice were euthanized 24 hours after the last instillation
and the urinary bladders were isolated, and the mucosa
was separated from the detrusor muscle, as described
above.

Array Design
Nuclear extracts from the bladder mucosa were obtained
as detailed below for EMSA assays and analyzed by pro-

tein/DNA combo arrays containing 345 unique consen-
sus-binding sequences per array [34].

Hybridization
To investigate the relative binding of TREs to their unique
consensus sequences, we used the TransSignal protein/
DNA combo array with spin column preparation (catalog
no. MA1215) from Panomics (Fremont, CA) [34]. Array
analysis was performed as per the manufacturer's instruc-
tions using nuclear extracts from mouse bladders before
and after exposure to PAR-APs or control peptide. Nuclear
extracts were prepared using the Panomics nuclear extrac-
tion kit (catalog no. AY2002) as per the manufacturer's
instructions. Fifteen micrograms of nuclear extract were
isolated before and after challenge, and they were incu-
bated with 10 μl of TransSignal probe mix (Panomics)
containing 345 biotin-labeled double-stranded DNA oli-
gonucleotides. TFs bound to the double-stranded oligo-
nucleotides were recovered by using the Panomics spin
column. The biotin-labeled oligonucleotides specifically
bound to the TREs were eluted and hybridized to the
TransSignal array membrane containing oligonucleotides
(representing 345 consensus binding sites for TREs) over-
night at 42°C. The blots were then washed and incubated
with a horseradish peroxidase (HRP)-conjugated strepta-
vidin according to the manufacturer's instructions. The
resulting spots were visualized on a FluorChem Imager
(Alpha Innotech, San Leandro, CA). The images were
quantified with AlphaEase FC software (Alpha Innotech)
and the results were analyzed as described below.

Data normalization and analysis
We used the same methodology developed for analysis of
cDNA microarrays [8,23,27,35,36]. Briefly, the raw data
obtained with all Panomic membranes was first queried
to determine only TFs expressed above background, as
described for cDNA microarrays, and each expressed data
was then log10 transformed. In addition, pairs of groups
(control vs challenged) were adjusted to all data and then
to each other using a robust regression analysis. Normali-
zation was conducted using an iterative nonlinear curve-
fitting procedure, as described [37]. This procedure
assumes that intensities corresponding to TFs not
expressed by the tissue will be normally distributed, and
computes the mean and standard deviation (SD). Next,
we normalized each expression profile to its own back-
ground (defined by adjusting a mean = 0 and SD = 1 of the
distribution of non-expressed TFs). For further analysis,
data obtained after normalization of each profile to its
own background were log-transformed with substitution
of negative values by the minimal logarithmic value
obtained within positive values. Next, a robust regression
analysis was conducted on expressed TFs. This analysis
was based on the fact that, in a linear regression analysis
between two compared samples, the majority of TFs are

Up-regulated TFs downstream of PAR activationFigure 2
Up-regulated TFs downstream of PAR activation. 
C57BL/6 mice were instilled on two consecutive days, with 
200 μl of a 10 μM solution of the PAR1-AP, PAR2-AP, PAR4-
AP, or control peptide. Twenty four hours after instillation, 
the bladders were removed, placed on ice with peptidase 
inhibitors, and the urothelium/submucosa was isolated. 
Nuclear extracts from the bladder mucosa were analyzed by 
protein/DNA combo arrays containing 345 unique consen-
sus-binding sequences per array [34]. TF expression was nor-
malized to its own background (defined by adjusting a mean 
= 0 and SD = 1 of the distribution of non-expressed TFs). 
For further analysis, data obtained after normalization of 
each profile to its own background were log-transformed 
with substitution of negative values by the minimal logarith-
mic value obtained within positive values. Next, a robust 
regression analysis was conducted on expressed TFs and 
only TF with a ratio > 3.0 between PAR and control are rep-
resented.

PAR2-AP PAR4-AP

UP REGULATION

PAR1-AP
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equally expressed and, therefore, randomly distributed
around the regression line with a small portion of differ-
entially expressed "outliers." The contribution of outliers
to the regression analysis was down-weighted in an itera-
tive manner. All expression profiles of both control and
experimental groups were then rescaled to a common
standard: the averaged profile of the control group. Our
procedure for outlier exclusion was based on the selection
of equally expressed TFs with close to normal distributed
residuals (measured as deviations from the regression
line). Only transcriptional factors exhibiting a ratio
greater than 3.0 between control and treated groups are
being presented.

Electrophoresis motility assays (EMSAs)
A commercially available double-stranded TFEB probe
corresponding to the adenovirus major late promoter core
sequence (5'-G TAG GCC ACG TGA CCG GG-3', 3'-C ATC
CGG TGC ACT GGC CC-5', Santa Cruz Biotechnology,
Santa Cruz, CA) was constructed by end-labeling a dou-
ble-stranded probe with γ32P ATP (3000 Ci/mmole; GE
Healthcare) and T4 polynucleotide kinase (New England
Biolabs) and then purified using a G-50 column (GE
Healthcare). A second probe corresponding to the μE3

immunoglobulin enhancer site (5'-GAT CTG GTC GTG
TGG CAA GGC-3', 3'-CTA GAC CAG TAC ACC GTT CCG-
5'; Santa Cruz Biotechnology) was also tested but it was
found to have a much lower binding affinity as previously
described by others [38] (data not shown).

Nuclear extracts (10 μg) from the bladder mucosa and
detrusor muscle were placed in 10 mM Tris HCl pH 7.9,
100 mM KCl, 5 mM MgCl2, 1 mM EDTA, 5% glycerol,
0.02% NP-40, 1 μg poly dI-dC, 1 mM DTT with protease
and phosphatase inhibitors were added to 10,000 cpm
labeled TFEB consensus oligonucleotide and incubated at
room temperature for 20 minutes. Cold reactions con-
tained 100× unlabeled TFEB consensus oligonucleotide.
For super-shift reactions, 10 μg of nuclear extract was pre-
incubated for 30 minutes on ice with 1.5 μg TFEB anti-
body (Abcam, Cambridge, MA). Reactions were resolved
on a 5% native acrylamide gel with 0.5 × TBE at 300 V for
2 hours. Gels were vacuum-dried and visualized on Kodak
Biomax MS Film and quantified using ImageJ Software
(NIH) [39].

TFEB Immunofluorescence
Frozen bladders were processed for routine immunohisto-
chemistry according to published methods [27]. All rea-
gent incubations and washes were performed at room
temperature. Normal blocking serum (Jackson Immu-
nolabs) was placed on all slides for 45 min and sections
were incubated with primary antibody (Goat anti-TFEB N-
term 2–14, ab2636 Abcam) at concentrations of 1, 2, and
4 μg/ml. Controls include omission of the primary anti-
body. Slides were washed and incubated with secondary
antibodies (Alexa Fluor 546 donkey anti-goat IgG,
A11056, Invitrogen). Slides were washed, counterstained
with DAPI and coverslipped with Shur/Mount (TBS)
mounting media. All tissues were imaged at room temper-
ature using Axiovision 4.6 and a Zeiss axiocam HRm high-
resolution CCD camera. Selected sections were visualized
and photographed using a Zeiss LSM510 Laser Scanning
Confocal with META (Thornwood, NY). TFEB fluores-
cence was analyzed in triplicate by Image analysis of the
urothelial cell layer. Images were analyzed with Image-Pro
Analyzer® (Media Cybernetics Inc.; Silver Spring, MD) and
the area expressing positive cells for TFEB at 200× magni-
fication was calculated as percent of the total urothelial
cell area. Results are presented as average and standard
error of the mean.

Target validation by Q-PCR of Chromatin Immunoprecipitation 
(CHIP)-Based Assays
Target validation was sought for 7 genes known to have an
E-box based on the evidence on the literature (E-cadherin,
serpine 1, IGF1R, WT1, cyclin D1, and cathepsin K) or our
own observation Eif4ebp2 [32]. Female C57BL/6J mice (n
= 20 per group) were anesthetized (ketamine 200 mg/kg

Down-regulated TFs downstream of PAR activationFigure 3
Down-regulated TFs downstream of PAR activation. 
Down-regulated TFs were calculated as described in Figure 2 
and only TF with a ratio < 3.0 between PAR and control pep-
tide are represented.
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Relative expression of TFs in response to PAR1, PAR2, and PAR4 activationFigure 4
Relative expression of TFs in response to PAR1, PAR2, and PAR4 activation. Both up- and down-regulated tran-
scription factors altered by a factor greater than 3 are represented. Listed TFs are summarized on Table 2.
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and xylazine 2.5 mg/kg, i.p.), and instilled on two consec-
utive days with 200 μl of one of the following substances:
PAR2-AP [SLIGRL [30]] or control inactive peptide
[LRGILS [30]]. Twenty-four hours after instillation, mice
were euthanized with pentobarbital (200 mg/kg, i.p.) and
the whole bladders removed rapidly and frozen.

Frozen bladders were shipped to Genpathway [40] for
querying the chromatin for detection and quantification
of TFEB binding upstream of specific genes using chroma-
tin immunopreciptation (ChIP) combined with real time
PCR (Q-PCR) (Genpathway's FactorPath Query assay)

[41]. The whole bladders, contained both the mucosa and
detrusor layers, were exposed briefly to formaldehyde for
cross-linking of the proteins and DNA together, followed
by sonication to fragment the DNA into pieces of approx-
imately 300–500 bp. The same TFEB antibody used for
IHC (Abcam, Cambridge, MA) was then used to precipi-
tate the TFEB-DNA complexes. The Ab-protein-DNA com-
plexes were purified using beads coupled to protein G.
The DNA was isolated from the complexes using a combi-
nation of heat to reverse cross-linking, RNase and pro-
teases, and then purified using phenol extraction and
EtOH precipitation. The final ChIP DNAs were then used

Table 2: Transcriptional Factors altered by PAR-AP stimulation of the mouse bladder mucosa as detected by Protein/DNA combo 
array.

Upregulated

AP-1 Fos, FosB, Fra1, Fra2, Jun, JunB [82]
AP-2 Activator protein 2 [83]
Brn-3 POU4F1: POU domain, class 4, transcription factor 1 [84]
GAS/ISRE Gamma-interferon activation site [85]
GATA-3 GATA binding protein3 (globin transcription factor 3) [86]
HNF-4 Hepatocyte nuclear factor 4 [87]
HOX4C homeo box4C [88]
Oct-1 POU2F1: POU domain, class 2, transcription factor 1 [89]
p53 TP53: tumor protein p53 [90]
PBX1 pre-B-cell leukemia transcription factor 1 [91]
PTF1 pancreas specific transcription factor [92]
RORE RAR-related orphan receptor [93]
Tax/CREB TAX & CREB complex-responsive protein [94]
TFEB TFEB is a the b-HLH-LZ closely related to TFE3 [38]
Thy-1 BP Thy-1binding protein [38]

Down Regulated

AIC, CBF Apolipoprotein AI (ApoAI) promoter c region, CCAAT-binding factor ([95]
ARP COUP-beta; apolipoprotein AI; NR2F2 ([95]
ATF/CRE Activating transcription factor [96]
CREB2 cyclic AMP response element binding protein 2 [97]
Fra-1/JUN Fos-related antigen [98]
Freac-7 Forkhead box L1 [99]
Gfi-1 Growth factor independent 1 [100]
HFH-2 Forkhead box D3 [101]
HNF-1A Hepatocyte nuclear factor 1 [102]
HOXD9 HOXD9,10 [88]
HSE Heat shock transcription factor [103]
kBF-A kappa immunoglobulin enhancer binding protein [104]
Lactoferrin BP Lactoferrin enhancer binding region for estrogen receptor [105]
LF-A2 Liver-specific transcription factor [106]
LXRE1 Nuclear receptor subfamily 1, group H, member 2 [107]
MTF MRE-binding transcription factor-1 [108]
NF-1 CTF; NF-I; TGGCA-binding protein [109]
Pax2 Pax-2 DNA-binding transcription factor [110]
Pax5 Pax-5 DNA-binding transcription factor [111]
Snail Zinc-finger transcription factor Snail [112]
T3R c-ErbA; thyroid hormone receptor [113]
TEF1 TEF 1 box [114]
WAPBP Whey acidic protein binding protein [115]
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as templates for Q-PCR reactions using primer pairs spe-
cific for each genomic region of interest. Q-PCR was car-
ried out using Taq polymerase (iQ SYBR Green Supermix,
Bio-Rad). Primer pairs were designed using Primer 3 [42].
Details of the primer sequences and the Genebank acces-
sion numbers are given in Table 1. The designed primers
shared 100% homology with the target sequence but no
significant homology with other sequences.

Q-PCRs reactions were run in triplicate and the averaged
Ct values were transferred into copy numbers of DNA
using a standard curve of genomic DNA with known copy
numbers. The resulting TFEB binding values for each
genomic region were also normalized for primer pair
amplification efficiency using the Q-PCR values obtained
with Input DNA (unprecipitated genomic DNA). Results

are presented as binding events detected per 1000 cells for
each genomic region tested and compared to an untran-
scribed region used as a negative control. The difference
between two mean values was analyzed with an unpaired
Student's t-test (GraphPad Prism software version 4.0;
GraphPad Software, Inc. San Diego, CA). A nominal p
value less than 0.05 was considered statistically signifi-
cant.

Materials
PAR1-AP, PAR2-AP, and PAR4-AP and control peptide
were synthesized at the Molecular Biology Resource Facil-
ity, William K. Warren Medical Research Institute,
OUHSC, as carboxyl-terminal amides, purified by high-
pressure liquid chromatography, and characterized by
mass spectroscopy. Peptide solutions were made fresh in

Representative photomicrograph of the expected morphology of the urinary bladder in a cross-sectionFigure 5
Representative photomicrograph of the expected morphology of the urinary bladder in a cross-section. Figure 5A is a com-
posite of 18 H&E stained photomicrographs of the same cross-section at original magnification of 100× and illustrates the 
localization of the different layers: urothelium and submucosa, as well as the detrusor muscle. Black wavy line indicates the 
urothelium/submucosal layer. Figure 5B is a high magnification of the mouse bladder urothelium showing a multi-layered 
urothelium with apical umbrella cells (yellow arrow).
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Representative photomicrograph of the bladder urothelium isolated from a C57BL/6 mouse challenged with PAR2-AP (10 μM)Figure 6
Representative photomicrograph of the bladder urothelium isolated from a C57BL/6 mouse challenged with PAR2-AP (10 μM). 
White circle indicates the expression of TFEB, particularly in the nucleus (DAPI-positive) of the urothelial cells.
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PBS from powder. PAR3-AP was not used in this research
because of lack of specificity.

Results
Protein/DNA combo array
PAR1-activating peptide (AP), PAR2-AP, PAR4-AP, and
control peptide were instilled into the mouse bladder at
the concentration of 10 μM. This treatment induces a
strong and reproducible bladder inflammation, whereas

no inflammation was observed in mice instilled with 10
μM control peptide [22]. We used a protein/DNA combo
array that separated bound DNA/protein complexes from
unbound probe. The biotin-labeled probe/protein was
hybridized to a membrane containing 345 transcription
factor consensus sequences. As this assay closely resem-
bles the membrane cDNA arrays, we used the same meth-
odology developed by our collaborator (ID) to analyze
the results [27,35,43]. Figure 2 illustrates the TFs that were

Representative photomicrograph of the mouse bladder urothelium isolated and stained with DAPI and secondary antibodyFigure 7
Representative photomicrograph of the mouse bladder urothelium isolated and stained with DAPI and secondary antibody.
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at least 3-fold up-regulated and Figure 3 represents those
TFs that were 3-fold down-regulated by each PAR-AP.
Table 2 summarizes all TFs. The relative magnitude of the
different TF signals between PAR-APs is illustrated in Fig-
ure 4. These results strongly suggested that TFEB, a mem-
ber of the MiTF family of bHLH-Zip transcription factors,
was the only TF commonly altered by PAR1-AP, PAR2-AP,
and PAR4-AP and therefore, occupied the center of Venn
diagram (Figure 2).

Immunohistochemistry
To confirm whether the urinary bladder expresses TFEB,
we used a commercially available antibody to localize its
expression. Figure 5A–B represents the expected morphol-
ogy of the urinary bladder in a cross-section. Figure 5A is
a composite of 18 H&E stained photomicrographs of the
same cross-section at low magnification (×100), and illus-
trates the localization of the different layers: urothelium
and submucosa, as well as the detrusor muscle. Figure 5B
is a high magnification of the mouse bladder urothelium
showing a multi-layered urothelium with apical umbrella
cells (arrow). Figure 6 is a representative image of a blad-
der isolated from a mouse challenged with PAR2-AP (10
μM), which indicates the expression of TFEB, particularly
in the nucleus (DAPI-positive) of the urothelial cells. Fig-
ure 7 is a representative photomicrograph of the mouse
bladder stained with secondary antibody. Figures 8A–I are
representative photomicrographs illustrating TFEB expres-
sion in the bladder cross sections. Figures 8A–C show the
constitutive expression of TFEB in the urinary bladders
isolated from mice stimulated with the control peptide,
including the urothelium (Figures 8A–C) and detrusor
muscle. A higher magnification insert depicts the expres-
sion in the smooth muscle (Figure 8B). Figures 8D and 8E
are representative images of tissues isolated from PAR1-
AP-treated mice and illustrate an overwhelming TFEB
expression throughout the urothelial layer, including
umbrella cells (Figure 8E). Figures 8F–G and 8H–I are rep-
resentative of responses to PAR2-AP and PAR4-AP, respec-
tively. Overall, our results indicate a constitutive,
although low, expression of TFEB in the control bladder
urothelium. Bladder instillation with PAR-APs induced a
substantial induction of TFEB expression, primarily in the
urothelium, that was clearly observed in response to
PAR2-AP and PAR4-AP, and to a lesser extent, with PAR1-
AP. Figure 9 presents the quantification of 3 replications
of TFEB immunohistochemistry.

Absence of PAR-induced bladder inflammation in c-kit-
deficient mice
Direct evidence for an essential role for mast cells in cysti-
tis was reported by our laboratory in animal models of
bladder inflammation [7,8,44]. However, the responses
to PAR-APs were not investigated. Therefore, we com-
pared the bladder inflammatory responses to PAR1-AP in

wild type and Kitw/Kitw-v mice. As shown in Figure 10,
PAR1-AP induces inflammation in wild type mice, con-
sistent with our previous published results [21,22]. This
inflammation was characterized by intense inflammatory
infiltrate in the submucosa and vasodilation (Figure 10A).
In contrast, Kitw/Kitw-v did not develop an inflammatory
response to PAR1 activation (Figure 10B).

Electrophoretic mobility shift assay (EMSA)
We used the same binding sequence present in the Pan-
omics array [34], as the TFEB EMSA probe. Our results
indicate that intravesical instillation of C57BL/6 mice
with all PAR-APs increased the binding activity to the
TFEB probe primarily in extracts of the bladder mucosa
(Figure 11A). In contrast, no significant increase was
observed in mast cell deficient Kitw/Kitw-v mice challenged
with PAR1-AP (Figure 11C). In addition to TFEB, other
members of the microphthalmia (MiTF)-TFE subfamily of
basic helix-loop-helix leucine zipper (bHLH-ZIP) tran-
scription factors are known to bind to this E-Box sequence
[45-47]. Therefore, we used a TFEB antibody to reveal a
specific TFEB activity, as illustrated by the super shift
bands in tissues isolated from C57BL/6 (Figure 11B) and
Kitw/Kitw-v mice (Figure 11D). Next, we determined the
variability of the EMSA by performing additional experi-
ments in tissues isolated from C57BL/6 mice that were
challenged with the control peptide and PAR1-AP (10
μM), Figure 12. ImageJ software was used to quantify the
EMSA signals and the integrated density is presented on
Figures 13A–C

Target validation by Q-PCR of Chromatin 
Immunoprecipitation (CHIP)-Based Assays
In order to investigate whether the increased expression of
TFEB would translate into an up-regulation of genes
known to contain an E-box on their promoter, we used a
combination of chromatin immunopreciptation (CHIP)
and real-time polymerase chain (Q-PCR). For this pur-
pose, we used the same TFEB antibody employed for IHC.
CHIP was obtained from the whole bladder isolated from
PAR2-AP- and control peptide-treated bladders. We que-
ried the expression of selected genes known to have an E-
box on their promoter and compared the results with an
un-transcribed region of the DNA. Figure 14 indicates an
increased number of events (p < 0.05) on the CHIP pre-
cipitated with TFEB antibody when compared to the un-
transcribed region for the following genes: e-cadherin,
eif4bp2, serpine 1, IGF1R, and cyclin D1. In addition,
inflammation associated with PAR2 stimulation led to an
up-regulation of serpine 1, WT1, cyclin D1, IGF1R, and
cathepsin K.

Discussion
We used a top-down approach for determination of tran-
scription factors involved in the response of the mouse
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Representative photomicrographs illustrating a constitutive TFEB expression in the urothelium (8 A-C) and smooth muscle 8A of C57BL/6 mice stimulated with control peptideFigure 8
Representative photomicrographs illustrating a constitutive TFEB expression in the urothelium (8 A-C) and smooth muscle 8A 
of C57BL/6 mice stimulated with control peptide. The insert, Figure 8B is a high magnification of the area highlighted in Figure 
8A. Figures 8D and 8E are representative images of tissues isolated from PAR1-AP-treated C57BL/6 mice and illustrate an 
overwhelming TFEB expression throughout the urothelial layer, including in umbrella cells (green arrow, Figure 8E). Figures 8 
F-G and 8 H-I are representative of responses to PAR2-AP and PAR4-AP, respectively. Yellow arrow indicates the urothelium 
(8C) and dotted white circle indicate TFEB positive cells in the detrusor smooth muscle (Figures 8A and 8B).
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bladder to pro-inflammatory PAR-APs (Figure 1). First, a
Protein/DNA combo array was used to select transcription
factors common to all PAR activation. Out of 345 TFs
present in this array, only TFEB was shared by PAR1-,
PAR2-, and PAR4 activation. Next, we confirmed that
TFEB is expressed in the mouse bladder by IHC. Finally,
we compared the inflammatory responses to PAR1-AP
between wild type and mast cell-deficient Kitw/Kitw-v mice.
Kitw/Kitw-v mice failed to mount an inflammatory
response to PAR1-AP, and EMSA confirmed that TFEB is
upregulated by all PAR-APs in wild type mice but not in
Kitw/Kitw-v mice. Finally, we used a combination of chro-
matin immunoprecipitation and QPCR to target validate
transcripts known to be under the control of TFEB. This
assay takes into consideration genes that are actively tran-
scribed, in contrast to cDNA array technologies that que-
ries RNA accumulation. The disadvantage of the CHIP/Q-
PCR method is the amount of chromatin necessary for
CHIP, which limits this analysis to the whole bladder and
not to specific layers (mucosa and detrusor) used for
EMSA. Therefore, our CHIP/Q-PCR results have to be
taken in the context that migrating inflammatory cells, in
addition to resident cells, contributed to the measured
values. These results indicate that TFEB is downstream of
PAR activation, that this response occurs primarily in the
bladder urothelium, and that TFEB mobilization depends
on the presence of either mast cells or alternatively c-kit
receptors, which are expressed on a variety of tissues,
including certain nerves. Given our previous findings
demonstrating the importance of mast cells in bladder
inflammation and our finding of MiTF expression, we
speculate that the mast cell is the key contributor to this

response, but further studies will be necessary to delineate
the precise mechanism of TFEB mobilization.

TFEB belongs to the microphthalmia (MiTF)-TFE sub-
family of basic helix-loop-helix leucine zipper (bHLH-
ZIP) transcription factors which includes four family
members: TFEB, TFE3, TFEC, and MiTF. MiTF family
members are required for the proper development of oste-
oclasts, melanocytes, retinal pigment epithelial cells, mast
cells, and natural killer cells [48]. In addition, MiTF has
been implicated in the regulation of tissue-specific gene
expression in mast cells [49].

Each protein of the MiTF family forms homo- or het-
erodimers with other family members [50] and recog-
nizes, in general, the same DNA sequences [51]. In
particular, TFE3 and TFEB elicit their effects mainly
through the binding to M-box (AGTCATGTGCT) and E-
box motifs (CACGTG) [52].

MiTF family in the urinary tract
The only other finding implicating this family in the uri-
nary tract is their involvement in renal cell carcinoma. In
this regard, TFE3 is involved in chromosomal transloca-
tions recurrent in renal cell carcinoma [53]. Transloca-
tions of the genes encoding the related transcription
factors TFE3 and TFEB are almost exclusively associated
with a rare juvenile subset of renal cell carcinoma and lead
to over-expression of TFE3 or TFEB protein sequences.
TFE3 and TFEB have been identified as cell type-specific
leukemia inhibitory factor-responsive activators of E-cad-
herin [54].

MiTF and Mast Cells
MiTF mRNA and protein levels are higher in human mast
cells than monocytes and granulocytes [55]. MiTF seems
to be involved in the migration, phenotypic expression,
and survival of mast cells [56]. As an essential transcrip-
tional effector of the c-kit pathway, MiTF is critical for
mast cell [49,56] and melanocyte development [49,57-
59]. Mice deficient in MiTF harbor a severe mast cell defi-
ciency, and MiTF-mutant mast cells cultured ex vivo dis-
play a number of functional defects [60]. In addition, c-
kit- and m-Csf-dependent MAPK phosphorylation tran-
scriptionally activates both TFE3 and MiTF, which is nec-
essary for mast cell developmental functions [54]. Our
findings indicate that the bladder inflammatory responses
mediated by PAR1 are dependent on the presence of mast
cells by a mechanism that involves TFEB. The latter adds
to a list of evidence published by this laboratory indicat-
ing that Kitw/Kitw-v mice do not develop bladder inflam-
mation in response to antigen challenge [7], and
substance P [7] stimulation, whereas reconstitution Kitw/
Kitw-v with mast cells from wild type mice restores the
inflammatory response [7,8]. Therefore, we did not test

Quantification of 3 replications of TFEB Immunohistochemis-tryFigure 9
Quantification of 3 replications of TFEB Immunohistochemis-
try. Asterisks indicate a statistically significant difference (p < 
0.05) between PAR-APs and control peptide in inducing 
TFEB immuno stain.
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Comparison of bladder inflammation in response to 10 μM of PAR1-AP in wild type (C57BL/6) and c-kit receptor deficient (Kitw/Kitw-v) miceFigure 10
Comparison of bladder inflammation in response to 10 μM of PAR1-AP in wild type (C57BL/6) and c-kit receptor deficient 
(Kitw/Kitw-v) mice. A = Representative photomicrographs of H&E stained C57BL/6 urinary bladders following PAR1-AP (10 
μM)-induced inflammation. PAR1-induced inflammation was characterized in C57BL/6 mice by an intense vasodilation (yellow 
arrows) and polymorphonuclear leukocyte infiltration (black arrows). B = absence of bladder inflammation in bladders isolated 
from Kitw/Kitw-v mice challenged with PAR1-AP.
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Electrophoretic mobility shift (EMSA) and gel shift assaysFigure 11
Electrophoretic mobility shift (EMSA) and gel shift assays. A) EMSA was performed with C57BL/6 mice treated intra-
vesically with control peptide, PAR1-AP, PAR2-AP, or PAR4-AP, at a concentration of 10 μM. Following treatment, the blad-
ders were removed and the urothelium/submucosa was separated from the detrusor smooth muscle, and nuclear extracts 
were obtained from both layers. Shifted bands were observed with all treatments. C) No significant increase was observed in 
mast cell deficient Kitw/Kitw-v mice challenged with PAR1-AP. For super-shift assays (B and D), reactions were incubated for 30 
minutes at 4°C with TFEB antibody, prior to addition of the probe.
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whether the responses mediated by PAR2 and PAR4 are
also dependent on the presence of mast cells.

PARs and MiTF
Thrombin and tryptase are endogenous agonists of PARs
in humans. Along with serine proteases, it seems that tis-
sue factor and element of the coagulation cascade are also
endogenous activators of PARs [61,62]. In human vascu-
lar endothelial cells both thrombin and PAR1-AP elicited
gene regulation via E-box signaling [62]. However, the
information regarding endogenous activators of PARs in
the mouse bladder is, unfortunately, scanty. While human
connective tissue mast cells contain the enzymes chymase
and tryptase, mice contain numerous related proteases
[63-65]. Mouse mast cell protease-7 is a tryptase predom-
inantly expressed in differentiated connective tissue-type
mast cells [66]. Mast cell proteases mcpt-5 (chymase), and
the tryptases mcpt-6 and mcpt-7 are all expressed during
the development of the mouse embryo [63]. However, to
the best of our knowledge, there is no information regard-
ing which particular tryptase is expressed in the mouse
bladder and/or upregulated in the mouse model during
inflammation. Although thrombin is a recognized physi-
ological activator of PAR1 and PAR4, the endogenous
enzymes responsible for activating PAR2 in urinary blad-
der are not known. Recently, it was demonstrated that the
kallikrein family of proteinases are able to regulate PAR
signaling and may represent important endogenous regu-
lators PAR1, PAR2, and PAR4 [67]. The latter are likely to
be confirmed in the urinary tract, since members of the

Additional TFEB EMSA performed in tissues isolated from C57BL/6 mice that were challenged with the control peptide and PAR1-AP (10 μM)Figure 12
Additional TFEB EMSA performed in tissues isolated from 
C57BL/6 mice that were challenged with the control peptide 
and PAR1-AP (10 μM).
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kallikrein family play a fundamental role in bladder phys-
iology [68]. It is interesting to note that activation of PARs
on the bladder urothelium leads to activation of one of
the members of the MiTF family. Others have shown that
mast cell tryptase and MiTF are highly sensitive and spe-
cific markers for mast cell disease [69]. Moreover, MiTF
regulates the expression of mouse tryptases, such as mcpt-
7 [70] and mcpt-6, in response to stem cell factor [64] or
transforming growth factor-beta stimulation [71].

Involvement of mast cells and PARs in bladder 
inflammation
Mast cells are strategically located for optimal interaction
with the environment and for their putative functions in
host defense [72]. Among the mast cell mediators, tryp-
tase is expressed by most human mast cells comprising as
much as 25% of the cells' protein [73], and it is released
in response to inflammatory stimuli [73,74]. Indirect evi-
dence for a role of mast cells in cystitis was reviewed in
Ref. [75] and includes increased concentration of tryptase
in the urine of interstitial cystitis (IC) patients [9], pres-
ence of mast cells containing tryptase in the bladder of IC
patients [75,76], and that mast cell counts in IC patients
are one of the few features significantly associated with
night-time frequency (p < 0.01; ref. [77]). We published
direct evidence that mast cells are essential for both blad-
der inflammation and gene-regulation in experimental
cystitis [7,8]. Our publications show that bladder inflam-
mation is induced in normal mice and not in mast cell-
deficient Kitw/Kitw-v mice. The differences observed were
abolished when Kitw/Kitw-v mice had their mast cell defi-
ciency selectively repaired by transplantation of bone
marrow-derived mast cells from the normal congenic +/+
mice [7,8]. As the bladder response in these mice is similar
to the normal +/+ mice, we concluded that mast cells are
essential for the development of cystitis [7,8].

PARs provide an answer to the question of how mast cell
products, such as tryptase, produce signals and induce
bladder inflammation. Recently, we characterized the
bladder responses to PAR-APs and presented evidence of
a mandatory role for PARs in experimental cystitis [22].
We went further to determine the regulatory network
downstream of PARs [25]. Our present findings further
emphasize that products of mast cells such as tryptase
inducing activation of PARs can lead to increased activity
of transcription factors such as TFEB that play a funda-
mental role in mast cell survival. This positive feedback
loop might be responsible for the mast cell-dependent
perpetuation of bladder inflammation. However, the pre-
cise mechanisms involved in this feed back remain to be
determined. One possibility is that the mast cells them-
selves express PARs and are susceptible to PAR-AP activa-
tion [78,79]. Indeed, PAR1-AP induces mast cell adhesion
to fibronectin [79]. In contrast, messenger RNA for PAR-1
was detected in peritoneal mast cells [80], but PAR-APs
failed to induce histamine release from these cells [80].
Another possibility is that inflammatory mediators can
modulate the mast cell sensitivity to PAR-APs. Indeed,
inflammatory cytokines such as IL-4 and IL-12 were sug-
gested to regulate PAR receptor expression on the mast
cells [81].

Target validation by Q-PCR of Chromatin Immunoprecipita-tion (CHIP)-Based AssaysFigure 14
Target validation by Q-PCR of Chromatin Immuno-
precipitation (CHIP)-Based Assays. Female C57BL/6J 
mice were anesthetized and instilled with 200 μl of control 
peptide or PAR2-AP on days 1 and 2, as described in meth-
ods. Mice were euthanized 24 hours after the last instillation; 
the urinary bladders were removed rapidly, frozen, and 
shipped to Genpathway [40] for querying the chromatin for 
transcription of selected genes. After isolation, the chroma-
tin was incubated with TFEB antibody to precipitate the 
CHIP DNA. The final CHIP DNAs were then used as tem-
plates in Q-PCR reactions, performed in triplicate, using spe-
cific primer pairs (Table 1). Results are presented as average 
and standard error of Transcription Binding Events Detected 
Per 1000 Cells. Asterisks indicate a statistical significant dif-
ference (p < 0.05) between a specific gene and the un-tran-
scribed region used as control and a plus sign indicates a 
statistical significant difference (p < 0.05) between CHIPs iso-
lated from PAR2-AP- and control peptide-treated bladders.
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Conclusion
To the best of our knowledge, this is the first report
describing TFEB expression in response to PAR activation
in the bladder and suggest a unifying, mechanistic path-
way of bladder inflammation as follows: we hypothesize
that mast cells release tryptase resulting in increased PAR
activation and, consequently, TFEB/MiTF activity. As a
result of increased of MiTF activity in mast cells there is
mMCP-6 and mMCP-7 synthesis, leading to additional
signals for inflammation. The findings that TFEB is down-
stream of activation of all PARs, makes this transcriptional
factor a novel therapeutic target for the treatment of
inflammatory disorders of the bladder.
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