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Abstract
Background: Mycobacterium tuberculosis (Mtb) causes death of 2–3 million people every year. The
persistence of the pathogenic mycobacteria inside the macrophage occurs through modulation of
host cell signaling which allows them, unlike the other non-pathogenic species, to survive inside the
host. The secretory proteins of M. tuberculosis have gained attention in recent years both as vaccine
candidates and diagnostic tools; they target the immune system and trigger a putatively protective
response; however, they may also be involved in the clinical symptoms of the disease.

Results: Our studies showed that RD-1-encoded secretory protein ESAT-6 is involved in
modulation of the mitogen-activated protein (MAP) kinase-signaling pathway inside the
macrophage. ESAT-6 induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/
2) in the cytoplasm but not in the nucleus, which normally is the case for MAP kinases. ESAT-6 also
antagonized LPS-induced ERK1/2 phosphorylation in the nucleus. Stimulation of cells by ESAT-6
along with sodium orthovanadate (a tyrosine phosphatase inhibitor) restored phosphorylation of
ERK1/2 in the nucleus, suggesting active dephosphorylation of ERK1/2 by some putative
phosphatase(s) in the nucleus. Further, ESAT-6 was found to down regulate the expression of LPS-
inducible gene c-myc in an ERK1/2-dependent manner.

Conclusion: This study showed the effect of secretory proteins of M. tuberculosis in the
modulation of macrophage signaling pathways particularly ERK1/2 MAP kinase pathway. This
modulation appears to be achieved by limiting the ERK1/2 activation in the nucleus which ultimately
affects the macrophage gene expression. This could be a mechanism by which secretory proteins
of Mtb might modulate gene expression inside the macrophages.

Published: 3 October 2007

BMC Immunology 2007, 8:24 doi:10.1186/1471-2172-8-24

Received: 28 May 2007
Accepted: 3 October 2007

This article is available from: http://www.biomedcentral.com/1471-2172/8/24

© 2007 Ganguly et al.; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915024
http://www.biomedcentral.com/1471-2172/8/24
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Immunology 2007, 8:24 http://www.biomedcentral.com/1471-2172/8/24
Background
Tuberculosis, the disease caused by Mycobacterium tubercu-
losis (Mtb), is the leading cause of human mortality,
claiming nearly 3 million lives every year [1]. The naïve or
resting macrophages are extremely prone to invasion by
Mtb bacilli and are unable to mount any anti-bacterial
response associated with activated macrophages [2-7].
Thus, the resting macrophage seems to provide an ideal
niche where intracellular tubercle bacilli may reside, rep-
licate and persist [8,9]. The proteins that are secreted by
mycobacteria have gained particular attention in the
recent years both as vaccine candidates and virulence fac-
tors [10-18]. Some of these proteins like CFP-10 and
ESAT-6 are encoded by the RD-1 region of Mtb genome, a
region consistently deleted in all BCG vaccine strains of
M. bovis [19-22].

Mitogen-activated protein kinases (MAPK) are evolution-
arily conserved enzymes that are important in signal
transduction. They play a diverse role in cell proliferation,
cell death, cytokine production and cell differentiation.
Three main families of MAPKs are found in mammalian
cells: c-Jun-N-terminal kinases (JNK 1, 2 and 3); the extra-
cellular signal-regulated kinases 1/2 (ERK1/2); and the
p38 MAPK (p38 α, β, γ and δ) [23]. They play diverse roles
in the cell, ranging from apoptosis, cell differentiation,
cell proliferation, stress response, to production of proin-
flammatory cytokines etc. [24-31]. Targeting the MAP
kinase pathway is one of the favorable strategies adopted
by the pathogens to survive inside the macrophages [32].
Mycobacteria modulate MAPK signaling to promote their
survival in the host cells. Studies on MAPKs have been
done using virulent and attenuated strains of mycobacte-
ria. M. avium has two strains; smooth transparent (SmT)
and smooth opaque (SmO) which represent a more viru-
lent and a less virulent phenotype, respectively. Both SmT
and SmO induced early phosphorylation of p38 upon
infection; however, only the attenuated strain elicited sus-
tained activation of p38 MAPK. The virulent strains of
mycobacteria caused greater inhibition of MAP kinases,
particularly ERK1/2 pathway, as compared to the aviru-
lent strains [33,34]. However, the molecular mechanisms
involved in this phenomenon have not been investigated.
Here, we show for the first time that ESAT-6 protein can
modulate the ERK1/2 group of MAP kinases by limiting its
activation in the nucleus. The MAP kinase-inducible tran-
scription factor c-Myc is known to enhance cell prolifera-
tion as well as apoptosis [35,36]. Here we show that by
modulating the MAP kinase ERK1/2, ESAT-6 down regu-
lates the LPS-induced c-myc gene expression in the macro-
phages.

Results
ESAT-6 caused activation of extracellular signal regulated 
kinase1/2 (ERK1/2) in cytoplasm but not in nucleus
We studied the effect of ESAT-6 on the activation status of
ERK1/2 group of MAP kinases. MAP kinases are activated
by a variety of extracellular stimuli such as stress, growth
factors, and cytokines. The activation of ERK1/2 occurs
through phosphorylation; the activated or phosphor-
ylated ERK1/2 (pERK1/2) translocate to the nucleus [37]
where they phosphorylate and activate the downstream
cognate transcription factors such as CREB etc. [38]. We
found that ESAT-6 (5 µg/ml) caused a time-dependent
phosphorylation of ERK1/2 (Fig. 1A) in cytoplasm of
RAW264.7 cells compared to unstimulated cells. In the
Figure 1 the ERK1/2 is shown as a doublet where upper
band represents ERK-1 with molecular weight of 44 kDa
and the lower band represents ERK-2 with molecular
weight of 42 kDa. In general cytoplasmic pERK1/2 would
have translocated to the nucleus to activate the down-
stream molecules, but in the case of ESAT-6-stimulated
cells we did not observe any pERK1/2 in the nuclear
extract at any of the time points under the observation
period (Fig. 1C). To determine whether the effect of ESAT-
6 was specific for ERK1/2 or not, we checked for the phos-
phorylation of another MAP kinase p38. ESAT-6 triggered
phosphorylation of p38 in both cytoplasm (Fig. 1E) and
the nucleus (Fig. 1G), therefore the effect of ESAT-6 was
specific for ERK1/2. Total p38 levels were constant over
the experimental time period in both cytoplasm (Fig. 1F)
and nucleus (Fig. 1H).

Lipopolysaccharide triggered ERK1/2 phosphorylation in 
both cytoplasm and the nucleus
The absence of pERK1/2 from the nucleus of ESAT-6-stim-
ulated RAW264.7 cells was specific for ESAT-6 treatment.
To establish this, we stimulated the cells with the bacterial
lipopolysaccharide (LPS), which is a general activator of
macrophages [39-47]. In the RAW264.7 cells stimulated
with 0.1 µg/ml of LPS for the same time points as before,
we observed time-dependent phosphorylation of ERK1/2
in both cytoplasm (Fig. 2A) and nucleus (Fig. 2C).

Next we wanted to know whether LPS can overcome the
ESAT-6 imposed inhibition of phosphorylation of ERK1/
2 in nucleus, for this RAW264.7 cells were co-stimulated
for the same time points with LPS (0.1 µg/ml) and ESAT-
6 (5 µg/ml). In the presence of ESAT-6, LPS caused only
weak phosphorylation of ERK1/2 in nucleus (Fig. 2G)
compared to the LPS alone. Thus, ESAT-6 seemed to
dampen the ERK1/2 signaling of the MAP kinase family
by limiting the activation of ERK1/2 in the nucleus.
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Diminished ERK1/2 activation in the nucleus by ESAT-6 
was due to some tyrosine phosphatase
To evaluate whether any phosphatase was involved in the
dephosphorylation of ERK1/2 in the nucleus of ESAT-6
treated cells, RAW264.7 cells were stimulated with 5 µg/
ml of ESAT-6 in presence of 1 mM sodium orthovanadate
(Na3VO4), which is a protein tyrosine phosphatase inhib-
itor [48]. We found that in the presence of Na3VO4,
pERK1/2 appeared in the nucleus (Fig. 3C). The activation
of ERK1/2 in cytoplasm was observed as usual (Fig. 3A).
Since with ESAT-6 alone there was no pERK1/2 in the
nucleus, but with Na3VO4 treatment there was phosphor-
ylation of ERK1/2, so there might be some putative phos-
phatase(s) dephosphorylating the pERK1/2 as it
translocated from cytoplasm to the nucleus. We checked
whether sodium orthovanadate alone could induce acti-
vation of ERK1/2; in the cells stimulated with 1 mM
Na3VO4 for the same time points, we found weakly acti-
vated ERK1/2 in cytoplasm (Fig. 3E) and none in the
nucleus (Fig. 3G). The graphs showing densitomteric
analysis of the above ERK blots are shown in Figure 4. The
plots for cytoplasm and nucleus are shown separately.

To further confirm the observations from western blot-
ting, kinase assay for ERK1/2 was done. The RAW264.7
cells were treated with LPS and/or ESAT-6 and ESAT-6
and/or Na3VO4 for 60 minutes and the kinase activity was
assayed as described in Methods. In cytoplasm (Fig. 5A)
both LPS and ESAT-6 increased ERK enzyme activity over
basal level. ESAT-6 treatment was found to have no effect
on the ERK kinase activity in the nucleus over the basal
level (Fig 5B); furthermore, ESAT-6 antagonized the LPS-
induced ERK activation. Concurrent treatment with
Na3VO4 and ESAT-6 increased ERK activation in the
nucleus by more than 4-fold compared to the ESAT-6
alone (Fig. 5D). Na3VO4 alone did not have any effect on
ERK kinase activity over the basal level. Thus the kinase
assay confirmed the earlier western blot observations.

ESAT-6 stimulated phosphatase activity in the nucleus
In order to ascertain if the absence of pERK1/2 in nucleus
was really due to some phosphatase(s), we determined
phosphatase activity associated with ERK1/2 for the same
time points in the nucleus. Determination of phosphatase
activity showed that upon stimulation with ESAT-6 there

ESAT-6 induced phosphorylation of ERK1/2 in cytoplasm but not in nucleusFigure 1
ESAT-6 induced phosphorylation of ERK1/2 in cytoplasm but not in nucleus. 10 × 106 RAW264.7 cells were stimu-
lated with 5 µg/ml of recombinant ESAT-6 for 0, 15, 30, 60 and 120 minutes; cytoplasmic and nuclear extracts were run on gel 
and probed with anti-phospho-ERK1/2 antibody. (A) phosphorylation of ERK1/2 in cytoplasm. (C) phosphorylation of ERK1/2 
in nucleus. (B) and (D) Total ERK1/2 in the cytoplasmic and nuclear extracts respectively at different time points to confirm 
equal loading of samples in all the lanes. (E) and (G) represents phosphorylated p38 in cytoplasm and the nucleus respectively. 
(F) and (H) shows the total p38 protein in cytoplasm and nucleus respectively. Data is a representative from three experi-
ments.
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was 1.5 fold increase in the phosphatase activity at 15
minutes, and 2.5 fold at 120 minutes (Fig. 6A); the anti-
body control (last column) in which cells were stimulated
with ESAT-6 for 120 minutes but were not treated with
anti-ERK-1 antibody, showed less than 1.5 fold increase in
phosphatase activity over the basal level. The total ERK1/
2 protein levels were found to be uniform in all the immu-
noprecipitated samples and absent in the antibody con-
trol (Fig. 6B).

ESAT-6 downregulated LPS induced c-myc expression
Next, we looked whether ESAT-6 could exert any effect at
the level of gene expression; we monitored the expression
of c-myc encoding a transcription factor c-Myc, which is
regulated by MAP kinases [24,49-52]. The protein c-Myc
plays a role in cell proliferation and programmed cell
death [35,36]. We monitored the c-myc mRNA levels by
RT-PCR at 120 minutes after the addition of different
stimuli. We found that ESAT-6 did not change the expres-
sion of c-myc over the basal level; however, the LPS (0.1
µg/ml)-induced c-myc expression was downregulated by
ESAT-6. Also, addition of 1 mM Na3VO4 along with ESAT-
6 increased the level of c-myc expression compared to that

obtained with ESAT-6 alone while Na3VO4 alone did not
affect the basal expression level of c-myc (Fig. 7A).

To determine whether the downregulation of c-myc gene
expression by ESAT-6 was a consequence of the inhibited
activation of ERK1/2 in the nucleus, we incubated the cells
with ESAT-6 and Na3VO4 along with MEK-1 inhibitor
PD98059 (10 µM) [53,54] and also p38 MAP kinase
inhibitor SB203580 (10 µM) [55,56]. As observed before,
treatment with Na3VO4 and ESAT-6 enhanced the c-myc
expression over ESAT-6 stimulation. Interestingly treat-
ment with MEK-1 inhibitor PD98059 downregulated the
c-myc expression to the level obtained with ESAT-6 stimu-
lation while the p38 inhibitor SB203580 had no effect on
c-myc expression levels (Fig. 7C). Since the addition of
SB203580 did not have any effect on c-myc levels, the p38
MAP kinase pathway was not involved in c-myc expres-
sion. Additionally, we looked at the effect of ESAT-6 on
the expression on LPS-inducible genes. ESAT-6 was also
found to down regulate LPS-induction of several genes IL-
1β, Bax, Icam-1, and Tnfr-1 (Fig. 8).

LPS induced phosphorylation of ERK1/2 in both cytoplasm and nucleusFigure 2
LPS induced phosphorylation of ERK1/2 in both cytoplasm and nucleus. RAW264.7 cells were stimulated with 0.1 
µg/ml of bacterial LPS for 0, 15, 30, 60 and 120 minutes and probed for phospho-ERK1/2 as before. (A) Phosphorylation of 
ERK1/2 in cytoplasm upon stimulation with LPS(0.1 µg/ml). (C) phosphorylation of ERK1/2 in nucleus. The data is a represent-
ative of three independent experiments. (B) and (D) Total ERK1/2 in cytoplasm and nucleus normalized for protein content. 
Costimulation of RAW264.7 cells with LPS (0.1 µg/ml) and 5 µg/ml of ESAT-6 for 0, 15, 30, 60 and 120 minutes. (E) ERK1/2 
phosphorylation in cytoplasm upon stimulation with 5 µg/ml of ESAT-6 and 0.1 µg/ml of LPS. (G) Phosphorylation of ERK1/2 in 
the nucleus with both LPS and ESAT-6. (F) and (H) Total ERK1/2 protein in cytoplasm and nucleus respectively.
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Discussion
The present study demonstrates that ESAT-6 modulated
the ERK1/2 group of MAP kinase. We also found that this
modulation was achieved by inhibition of phosphoryla-
tion of ERK1/2 in the nucleus. However, the phosphoryla-
tion of another MAP kinase p38 was not affected by ESAT-
6. Nevertheless, LPS, a general macrophage activator [39-
47] triggered phosphorylation of ERK1/2 in both cyto-
plasm and the nucleus. This showed that the limited acti-
vation of ERK1/2 in the nucleus was specific for ESAT-6
stimulation. Costimulation of cells with LPS and ESAT-6
dampened the ERK1/2 phosphorylation in the nucleus
compared to that obtained with LPS alone; clearly ESAT-6
was exerting a strong inhibitory effect on the phosphor-
ylation of ERK1/2 in the nucleus. Our finding that the
treatment of cells with Na3VO4, a tyrosine phosphatase
inhibitor [48] along with ESAT-6 caused pERK1/2 to
appear in the nucleus indicated that there was some phos-
phatase(s) activity in the nucleus that was triggered upon
stimulation with ESAT-6. Moreover, when this phos-
phatase activity was suppressed by Na3VO4, the pERK1/2
reappeared in the nucleus. The results of kinase assay fur-
ther corroborated our observations from western blotting
that phosphorylation of ERK1/2 was concomitant with its
activation. Measurement of phosphatase activity associ-

ated with ERK1/2 in the nucleus showed that there was an
increase in this activity over the given time period; this
finding was consistent with our observation that follow-
ing treatment with both ESAT-6 and a phosphatase inhib-
itor (Na3VO4) there was an increase in phosphorylation of
ERK1/2. It was already established that ERK1/2 after get-
ting phosphorylated in cytoplasm translocates to the
nucleus [37]; therefore at zero minute, we observed little
pERK1/2 in the nucleus (Fig. 1C). Our findings tend to
suggest that although with increase in the ERK1/2 phos-
phorylation in the cytoplasm of the ESAT-6-stimulated
cells, pERK1/2 must have migrated to the nucleus, but
increasing phosphatase activity in the nucleus, again asso-
ciated with ESAT-6 stimulation, dephosphorylated the
pERK1/2 coming from the cytoplasm; therefore no
pERK1/2 was detectable in the nuclear extract. Since MAP
kinases undergo rapid turnover in the nucleus, the levels
of total ERK1/2 in the nucleus remained constant over the
experimental time period.

The c-myc is one of the early response genes that encode a
transcription factor c-Myc, which is a key regulator of cell
proliferation and apoptosis. Since c-myc expression was
reported to occur through Ras/Raf/MEK/ERK pathway
[24,49-52], we studied the effect of ESAT-6 on c-myc

Stimulation with ESAT-6 in presence of sodium orthovanadate caused appearance of phospho-ERK1/2 in the nucleusFigure 3
Stimulation with ESAT-6 in presence of sodium orthovanadate caused appearance of phospho-ERK1/2 in the 
nucleus. Stimulation of RAW264.7 cells with 5 µg/ml of ESAT-6 and 1 mM Na3VO4 for 0, 15, 30, 60 and 120 minutes. (A) 
Phosphorylation of ERK1/2 in cytoplasm. (C) ERK1/2 phosphorylation in the nucleus. (B) and (D) Total ERK1/2 in cytoplasm 
and nucleus respectively. (E) and (G) Phosphorylation of ERK1/2 in cytoplasm and the nucleus respectively upon treatment 
with 1 mM Na3VO4 for 0, 15, 30, 60 and 120 minutes. (F) and (H) Total ERK1/2 in cytoplasm and nucleus respectively to show 
equal loading of proteins in all the lanes. The data is representative of three independent experiments.
Page 5 of 12
(page number not for citation purposes)



BMC Immunology 2007, 8:24 http://www.biomedcentral.com/1471-2172/8/24
expression in RAW264.7 cells. ESAT-6 itself did not have
any effect on c-myc expression over the basal level. How-
ever the LPS induced c-myc expression was found to be
downregulated by ESAT-6 compared to LPS stimulation
alone. Again treatment with ESAT-6 along with 1 mM
Na3VO4 increased the level of c-myc compared to that
observed with ESAT-6 alone while Na3VO4 alone did not
have any effect on c-myc levels. These results can be
explained by the dampening of LPS-induced ERK1/2
phosphorylation in the nucleus by ESAT-6. As noted
above, treatment with Na3VO4 along with ESAT-6 resulted
in an increased level of ERK1/2 activation in the nucleus
compared to ESAT-6 alone. This differential activation of
ERK1/2 pathway resulted in differential c-myc expression.
To further confirm the role of ERK1/2 pathway in c-myc
expression, we determined c-myc expression in the pres-
ence of MEK-1 inhibitor PD98059 [53,54] and p38 MAP
kinase inhibitor SB203580 [55,56] along with Na3VO4
and ESAT-6. PD98059 downregulated c-myc levels while
SB203580 did not have any effect on c-myc levels. The acti-
vation of ERK1/2 pathway in nucleus upon treatment
with Na3VO4 and ESAT-6 was abrogated by PD98059 and

hence c-myc levels were downregulated. Since SB203580
did not have any effect on c-myc expression, p38 MAP
kinase was not involved in the gene expression. It con-
firmed the earlier observations of p38 phosphorylation
from western blotting where there was no inhibition in
p38 activation in cytoplasm or nucleus by ESAT-6.

Although there are reports that CFP-10 forms a 1:1 com-
plex with ESAT-6 [57]; however other studies [58] have
shown that there is discordance between secretion of CFP-
10 and ESAT-6. Okkels and colleagues [59] have shown
that there are as many as 8 different forms of ESAT-6 and
that the acetylation of ESAT-6 was required for complexa-
tion with CFP-10. Another study has shown that ESAT-6
as well as the CFP-10:ESAT-6 complex inhibited the PI-3
kinase-Akt signaling, indicating that the active component
involved in downregulating the macrophage signaling
was the ESAT-6 [60]. Our studies with CFP-10 and CFP-
10:ESAT-6 complex did not show any inhibition of the
ERK1/2 phosphorylation in cytoplasm or nucleus of the
RAW264.7 cells (see Additional file 1). It has also been
shown that ESAT-6 binds to the Toll-like receptor-2 (TLR-

Densitomteric analysis of the western blotsFigure 4
Densitomteric analysis of the western blots. The densitomteric analysis for the ERK blots for unstimulated cells, ESAT-6 
and/or LPS, ESAT-6 and/or NaV are shown. The upper graph represents plot of cytoplasmic extracts and the lower graph rep-
resents nuclear extract. The data represented as fold change. The unstimulated cells were given a value of 1.00.
Page 6 of 12
(page number not for citation purposes)



BMC Immunology 2007, 8:24 http://www.biomedcentral.com/1471-2172/8/24
2) and not TLR-4 on the surface of RAW264.7 macro-
phages, and causes inhibition of activation of transcrip-
tion factors NF-κB and Interferon regulatory factors (IRFs)
through the Akt kinase pathway [60]. Our studies suggest
yet another mechanism, viz., modulation of the ERK arm
of the MAP kinase pathway, by which ESAT-6 could bring
about deactivation of the host cell.

Conclusion
This study has shown that mycobacterial secretory protein
ESAT-6 could inhibit ERK1/2 activation in the nucleus of
RAW264.7 cells. This inhibition resulted in downregula-
tion of LPS-induced ERK1/2 activation in the nucleus and
subsequent expression of c-Myc, a key factor in macro-
phage activation. These findings underline the role of
ESAT-6 in deactivation of the macrophage, the host cell
for M. tuberculosis.

Methods
Reagents and Antibodies
Bacterial lipopolysaccharide (LPS) and p-nitro phenyl-
phosphate (p-NPP) and other fine chemicals were
obtained from Sigma, St. Louis, MO, USA. Antibodies
against ERK-1 and phospho-ERK1/2 were obtained from
Santa Cruz Biotech, CA, USA. Tissue culture medium
RPMI-1640 and the antibiotics penicillin and streptomy-

cin and fetal bovine serum were from Life Technologies,
USA.

Maintenance of cell line
Murine macrophage cell line RAW264.7 transformed with
Abelson murine leukemia virus, originally obtained from
ATCC, was routinely maintained in RPMI-1640 medium
containing 2 mM glutamine, 100 µg/ml of penicillin and
streptomycin and 10% fetal bovine serum at 5% CO2 in a
humidified atmosphere at 37°C.

Cloning, expression and purification of recombinant 
Mycobacterial (Mtb) ESAT-6 protein
The open reading frame Rv3875, encoding ESAT-6 (Gen-
Bank Accession no. AF420491) of M. tuberculosis, was
amplified by PCR from the genomic DNA of a local clini-
cal isolate, by using the following primers: forward, 5'-
GGAATTCCATATGACAGAGCAGCAGTGGAATTTCG-3',
reverse, 5'-CCGCTCGAGTGCGAACATCCCAGT-
GACGTTGC-3' (NdeI and XhoI sites, respectively, are
underlined). The PCR product obtained here was cloned
in the pGEM-T-Easy® vector and the nucleotide sequence
of the gene revalidated. Full-length authentic gene was
then sub-cloned into bacterial expression vector pET23b+;
this vector yielded satisfactory levels of polyhistdine-
tagged recombinant ESAT-6 protein expressed as an insol-

ESAT-6 downregulated LPS-induced ERK kinase activityFigure 5
ESAT-6 downregulated LPS-induced ERK kinase activity. (A) and (B) represent the autoradiogram of the ERK kinase 
assay using Myelin basic protein (MBP) as a substrate in cytoplasm and nucleus respectively. Lane.1. Unstimulated cells, Lane.2. 
Cells stimulated with 5 µg/ml ESAT-6, Lane.3. Cells stimulated with 0.1 µg/ml of LPS, Lane.4. Cells stimulated with LPS and 
ESAT-6, Lane.5. Cells stimulated with 1 mM Na3VO4 and 5 µg/ml ESAT-6, Lane.6. Cells stimulated with 1 mM Na3VO4. (C) and 
(D) represents the graph showing fold change of the densitometric values obtained from the densitometric studies of the auto-
radiogram of (A) and (B) respectively. Unstimulated cells were given a value 1.00. The data represented as mean +/- S.D. of 
three independent experiments.
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uble protein in E. coli. From the inclusion bodies, the pro-
tein was extracted using 8 M Urea pH 8.0. Recombinant
ESAT-6 was purified by nickel-nitrilotriacetic acid (Ni2+-
NTA) metal affinity chromatography according to the
manufacturer's recommendations for purification of pro-
teins under denaturing conditions. After purification, the
pure fractions of protein were pooled together and the
urea was removed by dialysing against 10 mM Na2HPO4,
pH 8.0. The dialysed protein was aliquoted and kept at -
20°C. The endotoxin level in the protein did not exceed
0.03 endotoxin units as done by E-toxate kit (Sigma).

Western blot analysis
For western blotting, 10 × 106 RAW264.7 cells were
seeded per well of 12-well tissue culture plate in 1 ml of
RPMI-1640 medium containing 10% FBS; cells were stim-
ulated with 5 µg/ml of recombinant ESAT-6 for 0, 15, 30,
60 and 120 minutes. After stimulation, cells were har-
vested and lysed in 300 µl of lysis buffer (10 mM HEPES
pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM
PMSF, 1 mM sodium orthovanadate (Na3VO4), 1 mM
sodium fluoride, 1 µg/ml each of Leupeptin, Pepstatin A

and Aprotinin, and 1% NP-40) for 20 minutes on ice. The
cell lysates so obtained were cleared by centrifugation at
13,000 rpm, the supernatant represented the cytoplasmic
extract; the nuclear pellet was washed and resuspended in
the nuclear extraction buffer (20 mM HEPES pH 7.9, 400
mM KCl, 10 mM EDTA, 10 mM EGTA), kept on ice for 40
minutes with intermittent vortexing. Finally, the suspen-
sion was centrifuged at 13,000 rpm at 4°C, the superna-
tant was the nuclear extract. The protein contents of the
cytoplasmic as well as nuclear extracts were estimated by
the Bradford method and was then run on gel.

Phosphatase assay
For determination of phosphatase activity, 40 × 106

RAW264.7 cells were plated per well in a 6-well tissue cul-
ture plate (Nunc, Roskilde, Denmark) in 2 ml of complete
medium. Cells were stimulated with 5 µg/ml of ESAT-6
for 0, 15, 30, 60 and 120 minutes. After stimulation, cells
were harvested and lysed in 2 ml of lysis buffer for 20 min-
utes at 4°C, then the suspension was centrifuged at
13,000 rpm and the supernatant was discarded; the
nuclear pellet was washed and suspended in 300 µl of

ESAT-6 stimulated increase in the phosphatase activity associated with ERK1/2 in the nucleusFigure 6
ESAT-6 stimulated increase in the phosphatase activity associated with ERK1/2 in the nucleus. (A) RAW264.7 
cells were stimulated for different time points of 0, 15, 30, 60 and 120 minutes, the ERK-1 was immunoprecipitated from the 
nuclear extract and the phosphatase activity was determined, the last column where cells were stimulated with ESAT-6 for 120 
minutes but no ERK-1 antibody was added (antibody control). (B) After phosphatase assay was done, the immunoprecipitate 
was mixed with 2× sample buffer and run on 10% SDS-PAGE and after western blotting the membrane was probed with ERK-
1 antibody to confirm equal pull down of ERK1/2 in all the samples. The graph shows the mean +/- S.D. of three independent 
experiments.
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nuclear extraction buffer and kept on ice for 40 minutes
with intermittent vortexing. Then the suspension was cen-
trifuged at 13,000 rpm and the supernatant was 'nuclear
extract'. To the nuclear extract so prepared was added 20
µl of 30% ProteinA-agarose, and kept on nutator for 1
hour at 4°C (pre-clearing); to the cleared supernatant was
added 4 µl of anti-ERK-1 antibody and kept on nutator for
1.5 hours at 4°C, followed by addition of 40 µl of 30%
ProteinA-agarose; this mixture was kept on nutator for
another 1 hour, then the Protein A-agarose beads carrying
immunoprecipitated ERK were pelleted at 2,000 rpm; the
pellet (immunoprecipitate) was washed thrice with wash
buffer (50 mM HEPES pH 7.5, 2.5 mM MgCl2, 5% glyc-
erol and 0.05% TritonX-100), and suspended in 100 µl of
substrate solution (1 mg of p-nitrophenyl phosphate in 1
ml of buffer containing 50 mM MES pH 6.0, 1 mM EDTA
and 0.1% Triton X-100) and kept at 37°C for 30 minutes.
Then the agarose beads were pelleted at 2,000 rpm and

the supernatant from each reaction tube was dispensed,
100 µl/well, into a 96-well micro-ELISA plate; to each
such well 5 µl of 10 N NaOH to stop the reaction and the
absorbance of resultant yellow color read at 405 nm using
a microplate reader.

Kinase Assay for ERK1/2
For ERK1/2 kinase assay, ERK1/2 was immunoprecipi-
tated from untreated and LPS and/or ESAT-6 treated
RAW264.7 cells (2 × 107/treatment) for 60 minutes. Then
cells were lysed and cytoplasmic and nuclear extracts were
prepared. From the extracts, ERK was immunoprecipi-
tated using anti-ERK-1 antibody. The immunoprecipitates
were washed with wash buffer (20 mM Tris-HCl (pH 7.5),
20 mM MgCl2, 2 mM DTT, 1 mM pNPP and 10 µM
sodium orthovanadate) and then incubated with 20 µl of
kinase reaction buffer (20 mM Tris-HCl pH7.5, 20 mM
MgCl2, 2 mM DTT, 10 µM ATP, 10 µCi γ-32P-ATP and 5 µg

ESAT-6 downregulated LPS induced c-myc expressionFigure 7
ESAT-6 downregulated LPS induced c-myc expression. (A) RT-PCR for c-myc gene expression, Lane. 1. Unstimulated 
cells, Lane.2. Cells stimulated with 5 µg/ml ESAT-6, Lane.3. Cells stimulated with 0.1 µg/ml of LPS, Lane. 4. Cells stimulated 
with LPS and ESAT-6, Lane.5. Cells stimulated with 1 mM Na3VO4 and 5 µg/ml ESAT-6, Lane.6. Cells stimulated with 1 mM 
Na3VO4. Stimulation time was 120 minutes. (C) RT-PCR for c-myc gene expression, Lane.1. Unstimulated cells, Lane.2. Cells 
stimulated with 5 µg/ml ESAT-6, Lane.3. Cells stimulated with 1 mM Na3VO4 and 5 µg/ml ESAT-6, Lane.4. Cells stimulated with 
Na3VO4 and ESAT-6 and 10 µM of MEK-1 inhibitor PD98059, Lane.5. Cells simulated with Na3VO4 and ESAT-6 and 10 µM of 
p38 inhibitor SB203580, Lane.6. Cells stimulated with 1 mM Na3VO4, (B) and (D) RT-PCR for β-actin to confirm equal amplifi-
cation in all the samples. The data is representative of two independent experiments. (E) and (F) shows the graph of densito-
metric analysis of Figure. 8A and 8C respectively. The data is shown as fold change; unstimulated cells were given a value of 
1.00.
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MBP). The reaction was carried out at 30°C for 10 min-
utes. The reaction was terminated by addition of equal
volume of 2× SDS loading buffer followed by boiling for
5 min. The reaction mixtures were subjected to SDS poly-
acrylamide gel electrophoresis. Dried gels were then
exposed to X-ray films and the amount of [32P]-ATP incor-
poration in the substrate were ascertained by autoradiog-
raphy followed by densitometric analysis.

Reverse transcription-PCR
Total RNA was isolated from 10 × 106 RAW264.7 cells,
using 1 ml of TriZOL Reagent (Invitrogen Inc., Carlsbad,
CA, USA); the total RNA was then quantified and con-
verted to cDNA using Superscript II reverse transcriptase
(Invitrogen Inc., USA). The cDNA was then used for
amplification by PCR. The PCR was done using the Taq
DNA polynerase (Biotools, B&M Lab, S.A., Spain). The
PCR conditions were as follows: 94°C – 5 minutes (hot
start), 94°C – 1 minute (denaturation), 55°C – 1 minute
(annealing), 72°C – 1 minute (extension), 72°C – 10
minutes (final extension). The primers for amplification
of c-myc: Forward: 5'-TCC TGT ACC TCG TCC GAT TC-3',
Reverse: 5'-AAT TCA GGG ATC TGG TCA CG-3', IL-1β:
Forward: 5'-TGG CAA CTG TTC CTG AAC TCA A-3',
Reverse: 5'-TCC ACG GGA AAG ACA CAG GTA-3', Icam-1:
Forward: 5'-TCT CGG AAG GGA GCC AAG TAA-3',
Reverse: 5'-CTC TTG CCA GGT CCA GTT CC-3', Tnfr-1:
Forward: 5'-CCC CAC CTC TGT TCA GAA ATG G-3',
Reverse: 5'-TAC TTC CAG CGT GTC CTC GT-3', Bax: For-
ward: 5'-CTG AGC TGA CCT TGG AGC AG-3', Reverse: 5'-

CCA GCC CAT GAT GGT TCT GAT-3', β-actin: Forward: 5'-
CTA TGC TCT CCC TCA CGC CA-3', Reverse: 5'-CCG CTC
GTT GCC AAT AGT GAT-3'.

Abbreviations
ATCC – American Type Culture Collection, ERK1/2 –
Extracellular Signal Regulated Kinases1/2, ESAT-6 – Early
Secreted Antigenic Target 6-kDa, LPS – Lipopolysaccha-
ride, MBP – Myelin Basic Protein, Mtb – Mycobacterium
tuberculosis, MAP kinase – Mitogen Activated Protein
kinase, pERK1/2 – phosphoERK1/2, p-NPP – para-nitro-
phenyl phosphate.
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ESAT-6 downregulated LPS-induced expression of several genesFigure 8
ESAT-6 downregulated LPS-induced expression of several genes. (A-E) RT-PCR for the genes IL-1β, Bax, Icam-1, Tnfr-
1 and β-actin. The data is representative of two independent experiments. Lane.1. Unstimulated cells, Lane.2. Cells stimulated 
with 5 µg/ml ESAT-6, Lane.3. Cells stimulated with 0.1 µg/ml of LPS, Lane.4. Cells stimulated with LPS and ESAT-6. (F) RT-PCR 
for β-actin to confirm equal amplification in all the samples.
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Western blot analysis of ERK1/2 phosphorylation upon stimulation by 
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