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Abstract

Background: Human neutrophils are key players of innate immunity, and influence inflammatory
and immune reactions through the production of numerous cytokines and chemokines. Despite
major advances in our understanding of this important functional response of neutrophils, the short
lifespan of these cells and their resistance to transfection have always been an obstacle to the
detailed dissection of signaling pathways and effector responses that is often possible in other cell

types.

Results: Here, we report that granulocytic differentiation of human PLB-985 cells with DMSO
yields cells that are neutrophil-like with respect to surface markers, acquisition of responsiveness
to physiological neutrophil stimuli (fMLP, LPS), cytokine expression and production profile, and
transcription factor activation profile (NF-xB, C/EBP, AP-1, STAT). We also show that granulocytic
PLB-985 cells can be reliably tranfected by nucleofection in a rapid and efficient manner. Indeed, we
overexpressed several proteins and luciferase constructs into these cells. In particular,
overexpression of a dominant negative IkB-au confirmed the central role of NF-kB in the
production of cytokines by granulocytes. Moreover, the use of PLB-985 granulocytes in which the
NADPH oxidase is inactive due to the targeted disruption of a key component (gp9 | phox) revealed
that NF-xB activation and kB-dependent responses are independent of endogenous reactive
oxygen intermediates in these cells. Antioxidant studies performed in primary human neutrophils
support this conclusion.

Conclusion: Our results unveil a new facet of the NF-kB system of human granulocytes, and pave
the way for deciphering signal transduction pathways and promoter activation in these cells.

Introduction

Human polymorphonuclear neutrophils are terminally
differentiated cells that represent about 60% of all circu-
lating leukocytes. Beside their notorious role as profes-
sional phagocytes, neutrophils can also express a wide
array of cytokines and chemokines in response to physio-

logical stimuli [1]. In this regard, a mounting body of evi-
dence shows that neutrophil-derived cytokines and
chemokines play an important role in several inflamma-
tory and immune reactions in vivo [2-8]. Although much
progress has been made in understanding the various fac-
ets of neutrophil biology, studies of the signal transduc-
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tion mechanisms leading to functional activation of
neutrophils have remained hampered by the fact that
these cells are very refractory to transfection. This owes
much to the fact that their lifespan merely averages 16-24
h in the bloodstream [9]. Thus, the characterization of a
cell line that can be differentiated into a neutrophilic phe-
notype, and that can be transfected efficiently and relia-
bly, would prove a most useful research tool to extend our
understanding of cytokine generation and upstream proc-
esses in human granulocytes.

Various approaches have already been employed to differ-
entiate the human pro-myeloid cell line PLB-985 into
neutrophil-like cells [10-17]. However, the functional
properties of granulocytic PLB-985 cells have only been
defined for some cellular responses, such as degranulation
and the associated respiratory burst [17], or arachidonc
acid metabolism [14]. Thus, much remains to be deter-
mined concerning the suitability of differentiated PLB-
985 to serve as a cellular model for primary neutrophils,
especially in the case of more recently described neu-
trophil functional responses, such as the production of
inflammatory cytokines and chemokines, and the under-
lying activation of discrete transcription factor families.
This being said, PLB-985 cells represent a potentially
attractive model since they are transfectable. Indeed, a few
groups have stably transfected PLB-985 cells prior to gran-
ulocytic differentiation for specific purposes [14,18-20].
However, stable transfections are not always feasible, as
the overexpressed proteins can interfere with granulocytic
differentiation, a process which typically spans 4 to 6
days. Transient transfection of PLB-985 cells, on the other
hand, has only been achieved in isolated instances, and
with mitigated success [16,21]. This owes much to draw-
backs inherent to the transfection techniques used, i.e.
electroporation and cationic liposome-mediated transfec-
tion. Indeed, electroporation of PLB-985 cells reportedly
results in high mortality rates while only achieving mod-
erate transfection efficiency [16,21], whereas the lipo-
some-based approach had a low transfection efficiency
and required that the cells be pretreated with TPA for 4 h
prior to transfection [21]. This in itself is problematic,
because TPA is a differentiating agent that commits the
cells to the monocytic lineage [10]. In contrast, a recent
paper, which was published while we were completing the
current study, reported the efficient transfection of PLB-
985 cells with the nucleofection technique [22], an
approach which entails lower mortality rates.

In the present study, we ascertained that granulocytic PLB-
985 cells respond like primary neutrophils in terms of
inflammatory cytokine production and transcription fac-
tor activation. We then optimized the transient transfec-
tion of granulocytic PLB-985 cells using the nucleofection
technique, which yields high transfection efficiencies, rel-
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atively low mortality rates, and rapid overexpression of
various proteins. We also show that this approach lends
itself well to promoter activation studies in neutrophil-
like PLB-985 cells. We finally applied this approach to
confirm the implication of NF-xkB in inflammatory
cytokine production by human granulocytes, and to eluci-
date the long-standing issue of whether endogenous reac-
tive oxygen intermediates (ROI)! influence transcription
factor activation and downstream processes in cells that
are heavy ROI producers, such as neutrophilic granulo-

cytes.

Results

Granulocytic differentiation of PLB-985 cells

We initially differentiated PLB-985 cells using either
DMSO or DMF, as both agents were reported to promote
granulocytic differentiation [10-13,15,17]. Culture of
PLB-985 cells with either agent resulted in a gradual inhi-
bition of proliferation (that was most pronounced with
DMSO). By day 5 of differentiation, over 80% of the cells
had acquired a typically neutrophilic morphology i.e. lob-
ular nuclei, and all of the cells had an increased granular-
ity (Figure 1A), as reported previously [16,17].
Differentiating PLB-985 cells also displayed an aug-
mented expression of cell surface markers such as the
integrin, CD11b - a phenomenon that was especially evi-
dent in DMSO-differentiated cells (Figure 1B and 1C).
Similarly, neutrophil-like PLB-985 cells acquired the abil-
ity to generate IL-8 in response to LPS and to the chemoat-
tractant, fMLP (Figure 1D), in keeping with the
observation that granulocytic differentiation correlates
with the onset of CD14 and fMLP receptor surface expres-
sion [17,23]. Again, the acquisition of fMLP and LPS
responsiveness was most marked in DMSO-differentiated
cells (Figure 1D). Together, the above observations indi-
cate that DMSO treatment leads to a more complete dif-
ferentiation of PLB-985 cells into a neutrophil-like
phenotype. As a result, we utilized DMSO as a differenti-
ating agent in all subsequent experiments.

Cytokine expression profile of granulocytic PLB-985 cells

We next determined the extent to which the cytokine
expression pattern of DMSO-differentiated PLB-985 cells
conforms to that of primary neutrophils. To this end,
granulocytic PLB-985 cells were stimulated with either
LPS or TNF for increasing lengths of time, and cytokine
release was measured. As shown in Figure 2A, neutrophil-
like PLB-985 cells generate 1L-8, Mip-1a, Mip-1f, and
TNFo with kinetics that are very reminiscent of those
observed in human neutrophils [24-26]. Another similar-
ity between granulocytic PLB-985 cells and human neu-
trophils is the delayed IL-8 production kinetics observed
in response to LPS (compared to those elicited by TNF),
which reflects a requirement for endogenous TNFa in
LPS-treated neutrophils [27]. Accordingly, stimulation of
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Acquisition of granulocytic features following differentiation of PLB-985 cells. (A) Cells were differentiated for 5
days in the presence of DMF or DMSO, or left undifferentiated, prior to FACS determination of their size (forward scatter)

and granularity (side-scatter). (B) Cells were differentiated for 5 days in the presence of DMF or DMSO, or left undifferenti-
ated, prior to staining with an anti-CD | |b Ab (black trace), with an isotype-matched control Ab (grey trace) or without a first
Ab (dotted trace) and subsequent incubation with a FITC-conjugated 2nd Ab. CDI |b surface expression was then determined
by FACS analysis; a minimum of 10,000 cells were processed for each sample. Results are representative of at least five inde-
pendent experiments. (C) Results obtained as described above were compiled and expressed as mean + s.e.m. of at least 5
independent experiments. For comparison, 100% of human neutrophils express CD | Ib on their surface. (D) Cells were differ-
entiated for 5 days in the presence of DMF or DMSO, or left undifferentiated, prior to stimulation for 6 h at 37°C with fMLP
or LPS. Culture supernatants were then collected and analyzed by ELISA. Mean + s.e.m. of at least 6 independent experiments.

Page 3 of 17

(page number not for citation purposes)



BMC Immunology 2008, 9:14 http://www.biomedcentral.com/1471-2172/9/14

>
ve)

70007 1L-8 MG MG
2 6000 - = m TNF ctrl fMLP LPS LPS TNF TNF
8 - LPS

||
1D 4500 1
23000 1 m Mip-1p - .
2 Mip-1a.
= 1500 P
—/_A/A ctrl .
e IL o s |
2 4 6 12 -8 | [ —
75001 Mip-1a.
o)
g 60007 TNF
S 4500 = B e e
x - PR S ——
% 3000 1 LPS L32
o * GAPDH
1500 -
04 A ctrl
2 4 6 12
25001 Mip-1B
o)
T 2000
(&)
w0
2 1500 m TNF
x
w0
21000 ; LPS
Q.
500 -
ctrl
O.
TNFo 5001 |P-10 _
2 100 2 400
8 8 T
“é Lfé 300
x x
© 50 LPS © 200
g L
100
0 A A ctrl 0 T |j|
2 4 12 ol IFNy LPS IFN TNF IFN
® ! LPS TNF

Time (h)

Figure 2

Cytokine expression profile of neutrophil-like PLB-985 cells. (A) DMSO-differentiated PLB-985 cells (day 5) were cul-
tured in the absence ("ctrl") or presence of either 100 ng/ml LPS or 100 U/ml TNFa. for the indicated times. When IP-10 was
measured, the cells were instead cultured for 9 h with the above stimuli, in the presence or absence of 100 U/ml IFNy. Culture
supernatants were then harvested and their cytokine content determined in ELISA. Results are representative of at least 4
independent experiments. (B) DMSO-differentiated PLB-985 cells (day 5) were pre-treated with or without MG-132 (15 uM,
30 min, 37°C), and stimulated in the absence ("ctrl") or presence of either 30 nM fMLP, 100 ng/ml LPS or 100 U/ml TNFa. for
30 min at 37°C. Total RNA was extracted and cytokine mRNA expression was analyzed in RPA. Results shown in this figure
are representative of at least 4 independent experiments.
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granulocytic PLB-985 cells with LPS in the presence of a
neutralizing anti-TNF antibody reduced IL-8 secretion by
48 + 5 % (mean + s.d., n = 2) at the 12-h time point. More
strikingly, the generation of IP-10 by granulocytic PLB-
985 cells (Figure 2A) shares the same singular induction
characteristics which we originally reported for primary
neutrophils [28], i.e. the requirement for a co-stimulation
using IFNy with either LPS or TNFa. When the expression
of the corresponding cytokine genes was investigated, LPS
and TNF were found to be good inducers in differentiated
PLB-985 cells (Figure 2B and data not shown), again in
keeping with the induction characteristics of the same
cytokine and chemokine genes observed in human neu-
trophils. Thus, it appears that DMSO-differentiated PLB-
985 cells have a resolutely neutrophilic cytokine expres-
sion profile.

Transcription factor binding profile of granulocytic PLB-
985 cells

The induction of inflammatory cytokines is to a large
extent under the control of discrete transcription factors
(mainly from the NF-«xB, C/EBP, AP-1, and STAT fami-
lies), and we indeed observed that the expression of most
cytokines investigated in granulocytic PLB-985 cells can
be inhibited by MG-132 (Figure 2B and data not shown),
a proteasome inhibitor which prevents the proteasome-
dependent degradation of IkB-a and subsequent NF-xB
activation [29,30]. This led us to characterize the binding
of the aforementioned transcription factors in this cellular
model. As shown in Figure 3A, neither LPS nor TNFa
could increase the binding of AP-1 or C/EBP complexes
over constitutive levels, be it in granulocytic or undifferen-
tiated PLB-985 cells. By comparison, TNFa potently acti-
vated NF-«kB independently of the PLB-985 differentiation
stage, and LPS also proved to be a strong inducer in gran-
ulocytic PLB-985 cells (Figure 34, left panel). The inability
of LPS to activate NF-«xB in undifferentiated PLB-985 cells
(Figure 3A, left panel) is consistent with the lack of detect-
able CD14 in these cells [23]. The major inducible NF-xB
DNA-binding complex of granulocytic PLB-985 cells was
found to be specific, since it was competed out by a 25-
fold excess of unlabeled probe in the binding mix, but
unaffected by a 25-fold excess of unlabeled oligonucle-
otide in which the NF-kB sequence was mutated (Figure
3C, last 2 lanes). To identify the constituents of this spe-
cific NF-xB complex, supershift assays were performed. As
shown in Figure 3C, the inducible NF-xB band was effi-
ciently supershifted by antibodies against p50 and RelA,
suggesting that it represents the prototypical p50/RelA
homodimer, as in primary human neutrophils [31].

We also investigated inducible STAT binding in response
to stimuli which potently induce this response in neu-
trophils. For this purpose, we used two different oligonu-
cleotide probes. The first is the gamma response region
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(GRR) of the CD64 gene, which can detect binding of
STAT1-, STAT3- and STAT5-containing complexes [32].
The other probe is the human serum-inducible element
(hSIE) found within the c-fos promoter, and which binds
STAT1- and STAT3-containing complexes with very high
affinity [33]. As shown in Figure 3B, IFNy proved to be a
good inducer of STAT binding in undifferentiated PLB-
985 cells, and even more so in granulocytic PLB-985 cells.
By comparison, G-CSF and GM-CSF weakly induced a
hSIE-binding activity (Figure 3B, right panel). In the par-
ticular case of GM-CSF, it is noteworthy that this inducible
activity was only observed in neutrophil-like PLB-985
cells, consistent with the observation that the GM-CSF
receptor is barely expressed in undifferentiated PLB-985
cells and increases considerably during granulocytic dif-
ferentiation [17]. The identity of the major inducible
STAT-containing complex (i.e. that observed in IFNy-stim-
ulated cells) was finally investigated in supershift assays.
Antibodies against STAT1 completely supershifted the
hSIE complex, whereas antibodies directed against other
STAT isoforms were without effect (Figure 3D and data
not shown), suggesting that the inducible complex repre-
sents STAT1 homodimers, as we initially reported in pri-
mary human neutrophils [34,35].

Together, the transcription factor binding characteristics
of granulocytic PLB-985 cells closely match those
observed in human neutrophils [31,34,36]. Moreover,
supershift analyses showed that the inducible NF-xB and
STAT complexes of granulocytic PLB-985 cells have the
same subunit composition as those of primary neu-
trophils, i.e. p50/RelA heterodimers in the case of the NF-
kB complex, STAT1 homodimers in the case of IFNy-
induced complexes (Figure 3C, 3D).

Transient overexpression of proteins in granulocytic PLB-
985 cells

Having ascertained that granulocytic PLB-985 cells repre-
sent a suitable cellular model for the study of inflamma-
tory cytokine generation in primary neutrophils, we
turned our attention to the introduction of constructs into
these cells. Although isolated studies have shown that it is
possible to transiently transfect PLB-985 cells using elec-
troporation, transfection efficiency is reportedly modest,
and the mortality rates are very high [16,21]. We obtained
similar results when we introduced pcDNA3.1 vector con-
taining a full-length E-GFP insert granulocytic PLB-985 by
electroporation under a variety of settings. We subse-
quently used the nucleofection technique, which proved
far superior to electroporation in a number of ways. As
shown in Figure 4A, granulocytic PLB-985 cells nucleo-
fected with the same E-GFP vector consistenly displayed a
large increase in fluorescence, relative to cells nucleo-
fected with vector alone. In 8 independent experiments,
transfection efficiency was 73 + 4% at 6 h postnucleofec-
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Figure 3

Transcription factor binding profile of undifferentiated and neutrophil-like PLB-985 cells. (A) Undifferentiated or
DMSO-differentiated PLB-985 cells (day 5) were incubated for |5 min at 37°C in the absence ("-") or presence of 100 ng/ml
LPS or 100 U/ml TNFa, and nuclear extracts were prepared and analyzed in EMSA (| pg/lane) using NF-xB, C/EBP, or AP-1
oligonucleotide probes. (B) Undifferentiated or DMSO-differentiated PLB-985 cells (day 5) were incubated for |5 min at 37°C
in the absence ("-") or presence of 100 U/ml IFNy, | nM GM-CSF, or 1000 U/ml G-CSF, and nuclear extracts were prepared
and analyzed in EMSA (I pg/lane) using GRR or hSIE oligonucleotide probes. (C) Nuclear extracts from TNF-stimulated granu-
locytic PLB-985 cells (day 5) were incubated for 30 min in binding buffer in the presence of antibodies to p50, p52, c-Rel, RelA,
or an isotype-matched antibody ("IgG"), or in the presence of a 10- or 25-fold molar excess of unlabeled NF-«B oligonucle-
otide probe ("cold"), or in the presence of a 25-fold molar excess of unlabeled NF-kB probe featuring a mutated NF-«B site
("mut"), prior to the addition of labeled NF-kB probe and subsequent EMSA analysis. (D) Nuclear extracts from IFNy-stimu-
lated granulocytic PLB-985 cells (day 5) were incubated for 30 min in binding buffer in the absence ("-") or presence of antibod-
ies to STAT I, STAT3, or an isotype-matched antibody ("lgG"), prior to the addition of labeled hSIE/mé7 probe and subsequent

EMSA analysis. Experiments shown in this figure are representative of at least three.
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Figure 4

Overexpression of E-GFP and [}-galactosidase in neutrophil-like PLB-985 cells. (A) DMSO-differentiated PLB-985
(day 5) were nucleofected with a vector encoding E-GFP or empty vector (pcDNA3.I). Cells were harvested 6 h after nucleo-
fection and processed for FACS analysis. A minimum of 10,000 cells was analyzed per sample. Results are representative of 8
independent experiments. (B) DMSO-differentiated PLB-985 (day 5) were nucleofected (squares) or electroporated (triangles)
with an E-GFP vector and cultured for the indicated times prior to propidium iodide staining and FACS analysis. Results are
expressed as the proportion of GFP-expressing cells in the population that excludes Pl staining. Mean * s.e.m. of 5 independent
experiments. (C) DMSO-differentiated PLB-985 (day 5) were nucleofected (squares) or electroporated (triangles) with an E-
GFP vector and cultured for the indicated times prior to determination of cell survival. Mean * s.e.m. of 5 independent exper-
iments. (D) DMSO-differentiated PLB-985 (day 5) were nucleofected with a f3-galactosidase vector and cultured for 6 h. Cells
were then lysed and processed for their enzymatic activity, using |-O-[2-nitrophenyl]--D-galactopyranoside as a substrate.
Results are of two independent experiments.
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tion, which proved to be the optimal time (Figure 4B). By
comparison, electroporation of the same vector into gran-
ulocytic PLB-985 cells required much longer to reach an
optimal expression efficiency that was lower than the one
obtained by nucleofection (Figure 4B). Like electropora-
tion, nucleofection is known to cause irreversible dam-
ages to a fraction of the cell population, even under
optimized conditions. As shown in Figure 4C, the survival
rate of granulocytic PLB-985 cells following nucleofection
was 56 + 4% at 6 h (n = 8) and gradually decreased to
about 20% 24 h. By comparison, electroporation of the
same vector resulted in much higher initial mortality rates
(Figure 4C). Thus, nucleofection proved to be a rapid, reli-
able, efficient, and reasonably gentle method of overex-
pressing a protein into granulocytic PLB-985 cells.

Having successfully introduced E-GFP into granulocytic
PLB-985 cells, we next determined whether our protocol
could be used for the transient overexpression of proteins
that feature an enzymatic activity. For this purpose, the
cells were nucleofected with a plasmid encoding B-galac-
tosidase. As shown in Figure 4D, a 3-galactosidase activity
was readily detectable in transfected granulocytic PLB-985
cells. We next attempted to transfect a more physiologi-
cally relevant protein. For this purpose, we used a plasmid
encoding wild type PKCa. As shown in Figure 5A, granu-
locytic PLB-985 cells had largely increased PKCa cellular
levels 6 h after nucleofection. When we examined the
effect of overexpressing PKCa on the cytokine expression
profile of PLB-985 cells, however, no significant change
was noted relative to mock-transfected cells (data not
shown). We also overexpressed a dominant negative IxB-
o mutant (S32,36A) in neutrophil-like PLB-985 cells.
Although this did not result in any apparent change in the
overall expression of IkB-a, cells transfected with the
dominant negative mutant were rendered resistant to
inducible IkB-a degradation (Figure 5B). Another func-
tional consequence of introducing the $32,36A mutant
was a profound inhibition of inflammatory cytokine pro-
duction by granulocytic PLB-985 cells (Figure 5C), which
confirms that these cytokines are under the control of NF-
kB, as observed in primary neutrophils [37].

Transient transfection of granulocytic PLB-985 cells with
promoter-reporter constructs

We next investigated whether it would be possible to carry
out promoter studies in granulocytic PLB-985 cells. For
this purpose, the cells were nucleofected with luciferase
constructs under the control of NF-xB or AP-1 enhancer
elements. As shown in Figure 6A, cell stimulation with
either LPS or TNFa resulted in a marked induction of
NFkB-driven promoter activity, whereas a no significant
induction was observed with the AP-1-driven construct.
These results prompted us to investigate the ability of dif-
ferentiated PLB-985 cells to activate an actual chemokine
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promoter. To this end, the cells were nucleofected with a
construct containing the IL-8 promoter coupled to a luci-
ferase reporter gene. As shown in Figure 6B, both LPS and
TNF stimulation led to a robust activation of the IL-8 pro-
moter. These results agree well with data from primary
neutrophils, in which IL-8 gene transcription and NF-xB
(but not AP-1) are potently activated in response to LPS or
TNFa [31,36,38,39]. We finally sought to confirm the
impact of NF-kB on IL-8 promoter activation. To this end,
granulocytic PLB-985 cells were transfected with luciferase
constructs featuring either a wild-type proximal IL-8 pro-
moter, or a variant mutated within the kB site. As shown
in Figure 6C, the mutant IL-8 promoter was mostly resist-
ant to stimulation with TNFo; similar results were
obtained in LPS-stimulated cells (not shown). This is con-
sistent with the data presented in Figure 5C, and is highly
reminiscent of the essential role played by NF-«B in IL-8
gene induction in neutrophils [36].

Role of endogenous reactive oxygen intermediates (ROI)
in transcription factor activation and downstream
processes in human granulocytes

Endogenously generated ROI have been implicated in the
regulation of NF-«B activation in several cellular models
(reviewed in [40,41]). In neutrophils, however, the role of
endogenous ROI in transcription factor activation and
cytokine generation remains unclear, despite the fact that
neutrophils probably produce more ROI than any other
cell type. To address this issue, we used X-CGD PLB-985
cells, in which the NADPH oxidase is inactive due to the
targeted disruption of a key component, gp91phox [42].
Indeed, Figure 7A shows that whereas granulocytic PLB-
985 cells respond to TNFa, LPS, or to more classical
NADPH oxidase activators (such as PMA), granulocytic X-
CGD cells completely lack this ability, in agreement with
previous studies [19,42,43]. We next investigated the abil-
ity of LPS and TNFa to activate NF-kB in DMSO-differen-
tiated X-CGD PLB-985 cells. We additionally examined
the ability of IFNy to induce STAT1 binding to DNA in
these cells, since this process can also be affected by
endogenous reactive oxygen species in some instances
[44,45]. As shown in Figure 7B, NF-xB was robustly acti-
vated by LPS and TNFa, to an extent comparable to that
observed in wild-type PLB-985 cells (Figure 3A). Simi-
larly, STAT1 binding to hSIE in response to IFNy was
potently induced, both in X-CGD granulocytic PLB-985
cells (Figure 7B) and in their wild-type counterparts (Fig-
ure 3A). Thus, activation of these two key transcription
factors does not appear to be influenced by the produc-
tion of endogenous ROI in human granulocytes. We next
investigated whether the transcriptional activity of pro-
moter constructs might nevertheless be affected in DMSO-
differentiated X-CGD PLB-985 cells. To this end, the cells
were transfected with either pNFkB-Luc or pIL8-Luc, and
stimulated with LPS or TNFa. As shown in Figure 7C, each
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Figure 5

Transient overexpression of proteins in neutrophil-like PLB-985 cells. (A) DMSO-differentiated PLB-985 (day 5)
were nucleofected with a plasmid encoding human PKCa or with vector alone (lane 1). The cells were cultured for 6 or 12 h
after nucleofection, and processed for immunoblot analysis of their PKCo content. Membranes were then reblotted with a p38
MAPK antibody (as a loading control). (B) DMSO-differentiated PLB-985 (day 5) were nucleofected with a plasmid encoding a
dominant negative form of human IkB-a (532,36A), or with empty vector ("mock"). The cells were cultured for 6 h after nucle-
ofection, and stimulated for 45 min with 100 ng/ml LPS or 100 U/ml TNFa, prior to immunoblot determination of their lkB-a
or actin content. (C) DMSO-differentiated PLB-985 (day 5) were nucleofected with a plasmid encoding human lkB-a
(S32,36A), or with empty vector ("mock"). The cells were cultured for 6 h after nucleofection, and stimulated for another 6 h
in the absence ("resting") or presence of 100 ng/ml LPS or 100 U/ml TNFa. Culture supernatants were then harvested and
analyzed in ELISA for the indicated cytokines. Results shown in this figure are representative of three independent experi-
ments.

construct was activated to a similar extent in X-CGD gran-  «B-dependent chemokines (IL-8, Mip-la, Mip-1B) in
ulocytes as in the parental cell line, in agreement with our =~ DMSO-differentiated X-CGD PLB-985 cells stimulated
NF-«xB binding data in wild-type vs X-CGD granulocytic ~ with LPS or TNFa. Expectedly, all three chemokines were
PLB-985 cells. Finally, we examined the release of three  released with similar amplitude and kinetics as in wild-
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Figure 6

Transient transfection of neutrophil-like PLB-985 cells with promoter-reporter constructs. (A) Granulocytic PLB-
985 cells (day 5) were nucleofected with luciferase constructs driven by 5 repeated NF-kB elements ("pNFkB-Luc"), or by 7
repeats of the consensus AP-| element ("pAPI-Luc"). The cells were then cultured for 6 h at 37°C in the presence or absence
of 100 ng/ml LPS or 100 U/ml TNFa., prior to cell lysis and luciferase activity measurement. Mean * s.e.m. of at least 3 inde-
pendent experiments. Transfections made using empty vectors yielded values that did not differ significantly from background,
whether in resting or stimulated cells (not shown). (B) Granulocytic PLB-985 cells (day 5) were nucleofected with a luciferase
construct driven by the IL-8 promoter ("pIL-8-Luc"), and cultured for 6 h at 37°C in the presence or absence of 100 ng/ml LPS
or 100 U/ml TNFa, prior to cell lysis and luciferase activity measurement. Mean + s.e.m. from 8 independent experiments. (C)
Granulocytic PLB-985 cells (day 5) were nucleofected with luciferase constructs encoding either either a wild-type ("wt") IL-8
promoter or a variant mutated in the NF-kB site ("mut kB"). The cells were then cultured for 6 h at 37°C in the presence or
absence of 100 U/ml TNFa, prior to cell lysis and luciferase activity measurement. Mean + s.e.m. from 2 independent experi-
ments.
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Figure 7

Responsiveness of neutrophil-like X-CGD PLB-985 cells and their parental counterparts. (A) Granulocytic (day 5)
X-CGD PLB-985 cells (grey bars) or parental controls (open bars) were incubated for 30 min in the presence or absence of
100 ng/ml LPS, 100 U/ml TNFa, or 25 nM PMA (as a positive control), prior to the determination of superoxide generation by
the cytochrome c reduction assay. Mean * s.e.m. from at least 3 independent experiments. (B) Granulocytic (day 5) X-CGD
PLB-985 cells (right panel) or parental controls (left panel) were incubated for 15 min at 37°C in the absence ("-") or presence
of 100 ng/ml LPS, 100 U/ml TNFa., or 100 U/ml IFNY, and nuclear extracts were prepared and analyzed in EMSA using a NF-xB
or hSIE oligonucleotide probe. This experiment is representative of three. (C) Granulocytic (day 5) X-CGD PLB-985 cells
(grey bars) or parental controls (open bars) were nucleofected with luciferase constructs driven by 5 repeated NF-«B ele-
ments ("pNFkB-Luc"), or by the IL-8 promoter ("pIL-8-Luc"), and cultured for 6 h at 37°C in the presence or absence of 100
ng/ml LPS or 100 U/ml TNFa, prior to cell lysis and luciferase activity measurement. Mean * s.e.m. from 3 independent exper-
iments.
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type PLB-985 cells (data not shown). Thus, NF-kB activa-
tion and dowstream responses do not appear to be under
the control of endogenous ROI in human granulocytes.

To ascertain whether these results properly reflect the

behavior of primary neutrophils, we cultured the latter
cells in the presence of the antioxidant, N-acetyl cysteine,

A

NAC NAC NAC
ctl. TNF TNF LPS LPS ctrl
P-IKKao/B
— — — — — | Actin
—— - IkB-o,
g P-RelA
+NAC
ctt LPS TNF ctrl TNF LPS
< NF-xB

Figure 8

Effect of N-acetyl cysteine on the IKK/NF-«B path-
way in human neutrophils. (A) Neutrophils were pre-
treated with culture medium containing 20 mM N-acetyl
cysteine ("NAC") or diluent control for 30 min at 37°C, and
further incubated in the absence ("ctrl") or presence of 100
ng/ml LPS or 100 U/ml TNFc.. Samples were then processed
for SDS-PAGE and immunoblot analysis. Note: actin and kB
are shown on the same blot, as the membrane was first
immunoblotted for IkB-a, and then re-blotted for actin. (B)
Neutrophils were pretreated with N-acetyl cysteine or dilu-
ent as described above, and further incubated in the absence
or presence of 100 ng/ml LPS or 100 U/ml TNFa. Nuclear
extracts were then prepared and analyzed in EMSA using a
NF-xB oligonucleotide probe. The experiments depicted are
representative of at least two.
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prior to stimulation with LPS or TNFa, and assessment of
the IKK cascade activation. As shown in Figure 8, N-acetyl
cysteine pre-incubation failed to affect the inducible phos-
phorylation of IKKa/p and RelA, or the inducible degrada-
tion of IkB-a, in human neutrophils. Accordingly, the
inducible DNA binding of NF-xB was also unaffected
under the same conditions (Figure 8B). Identical results
were obtained when neutrophils were pretreated with a
different antioxidant, PDTC, as reported before [46,37].
By comparison, N-acetyl cysteine pretreatment abolished
superoxide generation from fMLP- or PMA-stimulated
neutorphils (data not shown). Together, these results
strongly suggest that NF-kB activation and kB-dependent
responses (such as inflammatory cytokine generation) are
independent of endogenous ROI in human neutrophils.

Discussion

In this study, we characterized a transfectable cellular
model whose behavior closely corresponds to that of pri-
mary human neutrophils, both phenotypically and func-
tionally. Indeed, PLB-985 cells that had been
differentiated along the granulocytic lineage displayed
neutrophil-like surface markers, and became responsive
to physiological neutrophil stimuli such as fMLP, LPS,
and GM-CSF. More importantly, transcription factor acti-
vation profile and cytokine expression kinetics of granulo-
cytic PLB-985 cells were found to faithfully match those
observed in primary neutrophils. Perhaps most strikingly,
the generation of IP-10 by granulocytic PLB-985 cells
shares the same singular induction characteristics that we
originally reported for primary neutrophils [28], i.e. the
requirement for a co-stimulation using IFNy with either
LPS or TNFa. Whereas neutrophils are notoriously refrac-
tory to transfection, this limitation was overcome in gran-
ulocytic PLB-985 cells, thereby making it possible to study
promoter activation, as well as the impact of overex-
pressed proteins on cytokine production and related
events. This allowed us to confirm the central role of NF-
kB in the production of cytokines by granulocytes, and to
show that kB-dependent responses are independent of
endogenous reactive oxygen intermediates in these cells.

From a technical perspective, our data shows that the
nucleofection approach (as opposed to electroporation or
lipofection) is particularly well suited for the transient
overexpression of various proteins into PLB-985 granulo-
cytes. Indeed, the high transfection efficiency and rela-
tively moderate mortality rates allowed us to successfully
introduce E-GFP, -galactosidase, wt PKCa, and dn IkB-a
into these cells. As this study was nearing completion,
Boulven et al. similarly overexpressed two mutant PI 3-
kinase subunits in differentiated PLB-985 cells using a
nucleofection approach similar to the one described
herein [22]. Although their nucleofector settings and
nucleofection buffers were different than those used
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herein, they yielded comparable transfection efficiencies
(T. Ear, unpublished data), thereby further validating the
nucleofection approach. From a more functional perspec-
tive, our overexpression of dn IkB-a prevented its degra-
dation in response to physiological stimuli, thereby
severely impairing the generation of several inflammatory
cytokines that are known to be under the control of NF-
kB. The fact that dn IxB-a overexpression yielded a greater
than 50% inhibition of IL-8, Mip-1a and Mip-1 produc-
tion is especially relevant, considering that the E-GFP
overexpression experiments indicated that about 70% of
the cells actually express the transfected material. Thus, dn
IkB-o. must have been very effective in inhibiting down-
stream cellular responses in those cells which overex-
pressed the mutant protein. At any rate, these results
confirm the pivotal role of NF-«xB in the inducible genera-
tion of inflammatory cytokines in human granulocytes, in
keeping with our previous observations made in primary
neutrophils using various pharmacological inhibitors of
the NF-kB pathway [37,47]. Collectively, our overexpres-
sion experiments foreshadow exciting new advances in
our understanding of neutrophil biology, insofar as they
make possible the future dissection of the various signal
transduction pathways controlling cytokine production
and transcription factor activation in human granulo-

cytes.

The outcome of the experiments in which we introduced
luciferase contructs into granulocytic PLB-985 cells also
confirmed and extended several observations made in pri-
mary neutrophils. In particular, the inducibility of NF-«xB-
driven luciferase constructs (but not of AP1-driven con-
structs) agrees well with the observation that NF-«xB can be
activated in neutrophils stimulated with LPS or TNFa
[31,34], whereas AP-1 cannot [36,39]. In this regard, it is
also noteworthy that the activation of the NF-xB-driven
luciferase construct represents the first direct demonstra-
tion of the ability of a transcription factor to transactivate
a downstream gene in human granulocytes. A more com-
pelling example is our demonstration that LPS and TNFa
promote the transactivation of the IL-8 promoter in gran-
ulocytic PLB-985 cells, as the IL-8 gene is known to be
under the control of NF-kB in human neutrophils [37].
Accordingly, we showed that a proximal IL-8 promoter
mutated within its kB site became mostly unresponsive to
stimulation. Again, it is worth noting that the activation of
the IL-8 promoter in PLB-985 granulocytes confirms our
previous observations made in primary neutrophils,
which had shown that the IL-8 gene can be transcription-
ally activated by the same stimuli, as determined in
nuclear run-on analyses [38] and primary transcript PCR
[47]. From a more general standpoint, the above consid-
erations establish that the nucleofection of PLB-985 gran-
ulocytes described herein paves the way for detailed
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promoter studies in human granulocytes - an enterprise
which had heretofore remained elusive.

In a variation of the aforementioned promoter studies, we
applied the approach described herein to elucidate the
long-standing issue of whether endogenously generated
ROI contribute to transcription factor activation and
cytokine production in granulocytes, as already reported
for several other cellular models [40,41]. For this purpose,
we used DMSO-differentiated X-CGD PLB-985 cells, in
which the ROI-generating NADPH oxidase complex is
inactive. Following LPS or TNF stimulation, these X-CGD
PLB-985 cells were found to behave in strikingly similar
fashion to their wild-type counterparts, be it in terms of
promoter activation (using pNFxB-Luc or pIL8-Luc), tran-
scription factor activation (NF-«xB, STAT) and inflamma-
tory cytokine generation (IL-8, Mip-1a, Mip-1B). These
results strongly indicate that NF-xB and STAT activation,
as well as dowstream responses, are independendent of
endogenous ROI in human granulocytes. This conclusion
is further supported by experiments made in primary neu-
trophils, in which a powerful antioxidant (N-acetyl
cysteine) similarly failed to affect the activation of the
IKK/IxB-0/NF-kB cascade [46]. This being said, it could be
argued that since LPS and TNF are not known as strong
NADPH oxidase activators, then it stands to reason that
endogenous ROI should play little or no role in cellular
processes. In this regard, Selmeczy and colleagues
reported that TNF secretion in response to opsonized
zymosan was nearly abolished in granulocytic (DMF-dif-
ferentiated) X-CGD cells, compared to parental controls
[48]. However, this was attributable to the much lower
levels of surface CD16 found in these X-CGD granulocytes
[48]. On the opposite, ROI are abundantly produced in
phagocytozing neutrophils, and it was reported that NF-
kB activation under these conditions was unchanged in
the presence of various oxidant scavengers (exogenous
catalase, superoxide dismutase, or methionine), and that
conversely, exogenous H,O, failed to activate NF-xB [49].
In agreement with these results, we also observed that
exogenous H,O, (up to 1 mM) does not induce NF-kB or
STAT activation in nonphagocytozing neutrophils (our
unpublished data). It is perhaps precisely because neu-
trophils are such prolific producers of ROI that they are so
well protected from their adverse effects. In this regard, the
specific activity of catalase was described to be at least 4-
fold higher in neutrophils vs all other phagocytes, and
neutrophil function was reportedly unaffected by 0.5 mM
exogenous H,O, over several hours [50]. Similarly, it was
found that among human blood cells, neutrophils
uniquely express high levels of methionine-sulfoxide-
reductase enzymes [51]. Whatever the case may be, it has
now become quite clear that neither endogenous ROI, nor
exogenously provided ROI (such as H,O,) significantly
affect NF-xB activation and dowstream processes (such as
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inflammatory cytokine production) in human neu-
trophils. Studies are now under way to further decipher
the intricacies of transcription factor regulation in human
granulocytes.

Conclusion

In this report, we characterized a transfectable cellular
model whose behavior closely corresponds to that of pri-
mary human neutrophils, both phenotypically and func-
tionally, with a particular emphasis on a prominent
functional response of these cells, i.e. inflammatory
cytokine production, as well as some key underlying proc-
esses such as transcription factor activation. Using this
model, we confirmed the pivotal role of NF-«xB in the
onset of cytokine production, and further showed that
NF-kB activation is independent of endogenous oxygen-
derived intermediates. Because such studies were hereto-
fore impossible to carry out in primary human neu-
trophils, the approach which we describe is likely to
enable significant advances in our understanding of vari-
ous aspects of neutrophil biology.

Methods

Antibodies and reagents

Antibodies raised against NF-kB/Rel proteins, IkB-a, C/
EBP isoforms, PKCoa, and actin were from Santa Cruz Bio-
technology (Santa Cruz, CA, USA), and the anti-CD11b
was from BD Biosciences (Mississauga, Canada). Ficoll-
Paque, T4 polynucleotide kinase and poly (dI-dC) were
from Amersham-Pharmacia (Baie d'Urfé, Qc, Canada);
radionucleotides were from NEN (Boston, MA, USA).
Endotoxin-free (< 2 pg/ml) RPMI 1640 and FCS were
from Sigma (St-Louis, MO, USA) and Wisent (St-Bruno,
Qc, Canada), respectively. Recombinant human cytokines
were from R&D Systems (Minneapolis, MN, USA), and
UltraPure LPS (from E. coli 0111:B4) was from InvivoGen
(San Diego, CA, USA). Acetylated BSA, diisopropyl fluor-
ophosphate (DFP), dimethyl formamide (DMF), dime-
thyl sulfoxide (DMSO), N-formyl-methionyl-
phenylalanine (fMLP), and phenylmethanesulphonyl flu-
oride (PMSF) were from Sigma-Aldrich (St. Louis, MO,
USA). Aprotinin, 4-(2-aminomethyl)benzenesulfonyl flu-
oride (AEBSF), leupeptin, Nutridoma-SP, and pepstatin A
were from Roche (Laval, Qc, Canada). All other reagents
were of the highest available grade, and all buffers and
solutions were prepared using pyrogen-free clinical grade
water.

Plasmids

A plasmid encoding B-galactosidase in the pCMV[ vector
was from Clontech (Mountain View, CA, USA). Plasmids
containing luciferase contructs under the control of 5
repeated NF-«xB elements (pNFkB-Luc) or 7 repeated AP-1
elements (pAP1-Luc) were from Stratagene (La Jolla, CA,
USA). Plasmids containing luceferase contructs encoding
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the full IL-8 promoter (-1498 to +44), a proximal IL-8 pro-
moter (-162 to +44), or a version of the latter mutated
within its kB site [52], were a kind gift from Dr. Allan R.
Brasier (University of Texas Medical Branch). A construct
encoding a dominant negative form of IkB-a (S32/36A)
was obtained from Dr. Christian Jobin (University of
North Carolina at Chapel Hill), and a construct encoding
wild type PKCa was from Dr. Gilles Dupuis (Université de
Sherbrooke); both constructs were subcloned into
pcDNA3.1. Similarly, cDNA sequences corresponding to
GFP (ex 488 nm, em 507 nm) or B-galactosidase were
respectively excised from the commercial vectors, pEGFP-
N1 and pCMVb (Clontech), and subcloned into
pcDNA3.1. Following amplification in DH-5a bacteria,
all plasmids were purified using Maxiprep kits featuring
EndoFree buffers for endotoxin removal (Qiagen).

Cell isolation and culture

Neutrophils were isolated from the peripheral blood of
healthy donors as described previously [46]; each blood
donor gave informed consent under a protocol that had
been duly approved by the ethics committee of our
Research center (comité d'éthique humaine du Centre de
recherche du CHUS). As determined by Wright staining
and nonspecific esterase cytochemistry, the final neu-
trophil suspensions consistently contained fewer than
0.5% mononuclear cells; neutrophil viability exceeded
98% after up to 4 h in culture, as determined by trypan
blue exclusion. The myelomonoblastic PLB-985 cell line
was purchased from the Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH (Braunsch-
weig, Germany). X-CGD PLB-985 cells, which feature a
targeted disruption of the gene encoding the essential
NAPDPH subunit, gp91phox [42], were a kind gift from
Dr. Mary Dinauer (Indiana University, Indianapolis, IN).
All cells were cultured at 37°C under a humidified 5%
CO, atmosphere in RPMI 1640 containing 10% FCS, 100
U/ml penicillin and 100 pg/ml streptomycin (hereafter
referred to as complete RPMI medium). To induce granu-
locytic differentiation, 1.25% DMSO was added to the
culture medium, which was refreshed every second day.
Alternatively, culture medium was sometimes supple-
mented with 0.5% DMF, 1% Nutridoma SP, and 0.5%
FCS to induce granulocytic differentiation, as described by
Pedruzzi et al. [17]. Cytospins from control and DMSO- or
DMF-differentiated cells were submitted to Wright stain-
ing for counting and morphological characterization.

Cytofluorimetric analyses

Cells were washed twice in PBS and 5 x 105 cells were
incubated on ice for 30 min with anti-CD11b or isotype-
matched control antibodies (0.25 pg/ml). After washing 3
times with PBS, the FITC-conjugated 2nd antibodies (0.5
pg/ml) were added and left to incubate for 30 min in the
darkness before washing. Stained cells were analyzed
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(minimum of 10,000 cells) on a FACScan instrument
(Becton Dickinson) using the CELLQuest software. For
GFP expression, differentiated PLB-985 cells were washed
twice in PBS before being analyzed by FACScan.

Transient transfections

On the 5th day of granulocytic differentiation, PLB-985
cells were washed twice in pre-warmed PBS, and proc-
essed for transfection. When using the nucleofection tech-
nique, the cells were resuspended (5 x 106 cells/100 pl) in
prewarmed Human Dendritic Cell Nucleofector Solution
(Amaxa Biosystems, Koln, Germany) containing 5 pg of
the plasmid of interest. Cells were incubated for 5 min at
room temperature, transferred into a 2 mm-gap electropo-
ration cuvette, and transfected in a Nucleofector instru-
ment (Amaxa Biosystems) using the preconfigured Q-01
or U-15 settings. Nucleofected cells were washed once
with pre-warmed RPMI 1640 medium containing 10%
FBS, and then cultured in complete RPMI medium. When
using the electroporation technique, day 5 granulocytic
PLB-985 cells (5 x 106 cells/condition) were washed twice
with pre-warmed PBS and resuspended in 400 pl of elec-
troporation buffer (20 mM HEPES, 137 mM NacCl, 0.7
mM Na,HPO,) containg 5 pg of plasmid. The cells were
transferred into a 4 mm-gap electroporation cuvette, and
electroporated (270 V, 960 pF) using a Bio-Rad Gene
Pulser instrument. Electroporated cells were washed with
pre-warmed RMPI medium containing 10% of FBS, and
cultured in a complete RPMI medium. These electropora-
tion conditions represent optimized settings for maximal
transfection efficiency and survival rate.

Assays of [-galactosidase activity

Nucleofected cells were cultured for 6 h, washed twice
with PBS, and resuspended in a buffer containing 40 mM
TrisBase (pH 7.5), 150 mM EDTA, and 150 mM NaCl con-
taining protease inhibitors. Cells were disrupted by three
freeze/thaw cycles followed by one cycle of sonication (3
s, maximal power, on ice). Samples were cleared by cen-
trifugation (10 min, 15,000 x g), and the supernatants
were incubated at 37°C using 1-O-[2-nitrophenyl]-B-D-
galactopyranoside as a substrate in a sodium phosphate
buffer (pH 7.0), according to the supplier's instructions
(Promega Technical bulletin #094).

Luciferase assays

Nucleofected cells were cultured for 6 h in the presence or
absence of stimuli, washed twice with PBS, and disrupted
in Reporter Lysis Buffer following the manufacturer's
instructions (Promega Corp., Madison, WI, USA). The
lysates were cleared by centrifugation (12 000 g, 10 min),
and the resulting supernatants were diluted using Luci-
ferase Assay Reagent (Promega). Luciferase activity was
then measured in a Sirius luminometer (Berthold Detec-
tion Systems, Pforzheim, Germany).
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Denaturing electrophoreses and immunoblots
Differentiated PLB-985 cells were resuspended in ice-cold
PBS supplemented with protease inhibitors (10 pg/ml
aprotinin, leupeptin, and pepstatin; 1 mM PMSF; 0.5 mM
DFP) and phosphatase inhibitors (10 mM NaF, 1 mM
Na;VO,, 10 mM Na,P,0,). A small aliquot was taken
prior to centrifugation (300 g, 5 min, 4°C) for subsequent
protein content determination, and an equal volume boil-
ing sample buffer (2x) was added. Samples were briefly
vortexed and immediately placed in boiling water for a
further 3 min. Samples thus prepared were sonicated to
disrupt chromatin, and stored at -20°C prior to analysis.
All samples were electrophoresed on denaturing gels pre-
pared according to the method of Laemmli [53]; equal
loading was ascertained by adjusting sample volumes
based on their respective protein content. Following SDS-
PAGE, proteins were transferred onto nitrocellulose mem-
branes, which were stained with Ponceau Red, destained,
and then processed for immunoblot analysis, as previ-
ously described [31].

Electrophoretic mobility shift assays (EMSA)

Cells were resuspended in ice-cold relaxation buffer (10
mM PIPES pH 7.30, 10 mM NaCl, 3.5 mM MgCl,, 0.5 mM
EGTA, 0.5 mM EDTA, 1 mM DTT) supplemented the
aforementioned protease and phosphatase inhibitors.
Nuclear extracts were then prepared using a nitrogen
bomb procedure, which we described previously [31,34].
The nuclear extracts were subsequently analyzed in EMSA
for NF-xB, GRR, hSIE, and AP-1 binding as described ear-
lier [31,34,36]. Except for the inclusion of 1 mM MgCl, in
the binding buffer, the binding conditions used for the C/
EBP probe, 5'-tgcagaITGCGCAATctgca-3', were identical
to those used for NF-«xB binding.

Isolation of RNA and Ribonuclease protection assays
Neutrophils were incubated in the presence or absence of
stimuli or inhibitors for the desired times, as indicated.
Total RNA was extracted following a slightly modified
Chomczynski & Sacchi procedure [54], and analyzed by
ribonuclease protection assay as previously described
[36], using multiprobe templates hCK3 or hCK5 from BD-
Pharmingen (Mississauga, Ont, Canada).

ELISA analysis of secreted proteins

Cells were cultured in 12-well plates at 37°C under a 5%
CO, atmosphere, in the presence or absence of stimuli
and/or inhibitors, for the indicated times. Culture super-
natants were carefully collected, snap-frozen in liquid
nitrogen, and stored at -70°C. Cytokine concentrations
were determined in in-house sandwich ELISA assays,
using commercially available capture and detection anti-
body pairs (R&D Systems, BD-PharMingen). Detection
limits using these assays varied between 3 and 10 pg/ml.
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Measurement of NADPH oxidase activity

Superoxide production by granulocytic PLB-985 cells was
measured in whole cells by monitoring the reduction of
cytochrome ¢ in a ThermoMax microtiter plate reader
(Molecular Devices). Briefly, cells cultured in PBS (supple-
mented with 5% FCS and 100 uM cytochrome c) were
plated in a 96-well tissue culture-treated plate (2 x 105/
well) and incubated at 37 °C for the indicated times in the
presence or absence of stimuli, prior to reading absorb-
ance at 550 nm, and calculating the extent of superoxide
generation.
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