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Abstract
Background: Mast cells (MC) are key effector cells of allergic diseases and resistance to
helminthic parasites and induce or amplify diverse innate and adaptive immune responses. The
signals controlling MC mobilization during inflammation are not fully understood.

Results: Since anaphylatoxins are attractive candidates as MC chemoattractants, we investigated
expression and function of anaphylatoxin receptors in murine MC. Precursor cell-derived MC
cultured with IL-3 in the presence or absence of SCF did not express significant amounts of surface
C5a receptor (C5aR) or C3a receptor (C3aR). MC required approximately 4 h of stimulation with
Ag (DNP-albumin, following preincubation with IgE anti-DNP), ionomycin, or PMA to enable a
strong chemotactic response towards C5a, paralleled by a distinct C5aR upregulation. Likewise,
C5a induced intracellular calcium fluxes solely in activated MC. In contrast, C3a proved to be a
weak MC chemotaxin and unable to increase intracellular calcium. Primary peritoneal MC did not
express detectable amounts of anaphylatoxin receptors, however, similar to precursor cell-derived
MC, stimulation with Ag or ionomycin for 4 h induced a prominent surface expression of C5aR
whereas C3aR remained undetectable.

Conclusion: Collectively, our results suggest that Ag-dependent as well as -independent activation
induces an inflammatory MC phenotype which is distinguished by neoexpression of a functional
C5aR as a novel effector mechanism in MC-mediated pathogenesis.

Background
Many forms of infection or tissue injury lead to activation
of the complement system resulting in the cleavage of
complement components C3 and C5 and generation of
the anaphylatoxins C3a and C5a [1]. Anaphylatoxins are
responsible for recruiting and activating leukocytes, par-
ticularly phagocytic cells such as granulocytes and mono-
cytes/macrophages and are involved in inflammatory,
autoimmune and allergic diseases [2-4]. Anaphylatoxins

perform their functions by engaging specific receptors
which are closely related members of the rhodopsin fam-
ily of seven transmembrane-spanning G protein-linked
receptors.

MC have long been described as effectors of IgE-depend-
ent immuneresponses that mediate immediate hypersen-
sitivity reactions associated with allergic phenomena and
host resistance to helminthic parasites, and are now also
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implicated in different autoimmune and inflammatory
disease models [5,6].

The signals controlling MC recruitment and migration
within tissues are poorly understood, but anaphylatoxins
are particularly attractive candidates as MC chemoattract-
ants during inflammation. In humans, for example, skin-
derived MC have been shown to be sensitive to C5a and
C3a whereas MC from the lung were not [7-10]. Studies
with the immature human mast cell line HMC-1 even sug-
gested C3a to be one of the most effective mast cell chem-
oattractants [11,12]. Furthermore, anaphylatoxin receptor
expression may depend on variations in the local micro-
environment since synovial MC expressed C5aR exclu-
sively in inflamed tissue of rheumatoid arthritis patients
[13,14].

The understanding of the pathophysiological and bio-
chemical basis of the differential expression of anaphyla-
toxin receptors on MC subtypes is hampered by our
scarce, sometimes controversial knowledge on the expres-
sion of anaphylatoxin receptors in rodent MC. Whereas
C5a was able to degranulate skin-derived murine MC,
peritoneal MC were found to be unresponsive [15]. On
the other hand, C5aR on peritoneal MC was observed to
be instrumental in a mouse model of zymosan-mediated
peritonitis [16] whereas rat peritoneal MC degranulated
in response to C3a and C3a(desArg) by a receptor-inde-
pendent mechanism [17]. Clearly, studies of the interac-
tions between MC and anaphylatoxins are still in their
infancy despite their well-appreciated roles in allergy,
infection and autoimmunity.

The purpose of the present study was (1) to investigate the
impact of different modes of MC activation on the expres-
sion and function of anaphylatoxin receptors, (2) to com-
pare precursor cell-derived MC generated in vitro with
primary MC purified from the peritoneal cavity, and (3) to
uncover differences in the expression profiles of C5aR and
C3aR.

Results
Anaphylatoxin receptors on in vitro generated MC
Murine precursor cell-derived MC cultured in the presence
of IL-3 and SCF were investigated for anaphylatoxin recep-
tor expression using specific mAb against C5aR and C3aR,
respectively. Anaphylatoxin receptor levels were found to
be below the theshold of flow cytometric detection on
resting MC. However, MC stimulation for 24 h with the
calcium ionophore ionomycin, the protein kinase C acti-
vator PMA or Ag (DNP-albumin, following a 24 h prein-
cubation period with IgE anti-DNP) resulted in a distinct
increase in surface C5aR levels but only a weak C3aR
upregulation (Fig. 1A). A time course study revealed that
stimulation of MC for 1 h with ionomycin, PMA, or Ag

was not sufficient to elevate anaphylatoxin receptor levels
whereas 4 h of incubation resulted in a prominent expres-
sion of C5aR (Fig. 1B).

C5a-induced MC functions
In a next step, we looked for functional consequences of
C5aR upregulation. C5a was unable to induce calcium
fluxes in resting MC but, following stimulation with Ag
(after IgE priming) for 4 h (Fig. 2A) or 24 h (data not
shown), a distinct rise in intracellular calcium was
observed. In line with this finding, stimulation with iono-
mycin (Fig. 2B) or Ag (following IgE priming) (Fig. 2C)
augmented MC chemotaxis toward C5a in vitro.

Studying MC chemotaxis in an in vivo migration model,
the distinction between C5a-induced mobilization of rest-
ing and activated MC was even more pronounced.
PKH26-labeled MC were recruited into the peritoneal cav-
ity by C5a injections exclusively after stimulation with
ionomycin for at least 3 h (Fig. 3A) or with Ag (following
IgE priming) for not less than 4 h (Fig. 3B).

Preincubation of activated MC with C5a abolished the
subsequent chemotactic response to C5a in vivo, most
likely as a result of receptor desensitization (Fig. 3C, D).
Furthermore, anti-murine C5aR mAb 1240 abrogated in
vivo migration of ionomycin-stimuled MC toward C5a
(Fig. 3E) whereas anti-murine C3aR mAb 1G4 did not.
These experiments confirm the receptor-specific nature of
C5a-induced MC mobilization in vivo.

In parallel to the rise in C5aR expression on the cell sur-
face (Fig. 1A), PMA-stimulated MC were also mobilized
by C5a in vivo (Fig. 3F).

C3a-induced MC functions
After establishing the correlation between MC activation
and upregulation of a functional C5aR, C3aR expression
and function were also studied. In analogy to C5a, MC
activation by Ag (following IgE priming) or ionomycin
increased chemotaxis toward C3a in vitro (Fig. 4A). How-
ever, C3a proved to be less efficient (migration optimum
at 1000 ng/ml) than C5a (optimum at 100 ng/ml) and
less potent (lower numbers of migrated cells) (Fig. 4B).
The specificity of C3a-induced chemotaxis was demon-
strated by preincubating MC with C3a which abrogated
migration most likely as a consequence of C3aR desensi-
tization. The low efficiency and potency of C3a as a MC
chemotaxin was confirmed by our finding that C3a failed
to mobilize activated MC in vivo (Fig. 4C) but, on the
other hand, recruited human and murine macrophages
[[18]; J.Z, personal communication]. Furthermore, C3a
wa unable to induce intracellular calcium fluxes in acti-
vated MC, in contrast to C5a (Fig. 4D). Proving the func-
tional integrity of the C3a preparation used herein, C3a
Page 2 of 10
(page number not for citation purposes)



BMC Immunology 2008, 9:29 http://www.biomedcentral.com/1471-2172/9/29
was found to be a potent inducer of chemotaxis and cal-
cium release in J774A.1 macrophages (data not shown).

SCF-independent C5aR upregulation
To exclude an impact of SCF treatment on C5aR expres-
sion, we generated MC in vitro by culturing bone marrow-
derived precursor cells in the sole presence of IL-3. Fig. 5A

demonstrates that MC cultured in the absence of SCF were
also subject to upregulation of surface C5aR by stimula-
tion with ionomycin, PMA, or Ag. C5aR on IL-3-treated
MC was functional since they vigorously migrated in vivo
in response to C5a (Fig. 5B).

Anaphylatoxin receptors are expressed on activated MCFigure 1
Anaphylatoxin receptors are expressed on activated MC. Precursor cell-derived murine MC cultured with IL-3 and 
SCF were treated or not (Ø) with ionomycin, PMA, or Ag (DNP-albumin, following a 24 h preincubation period with IgE anti-
DNP) for 24 h (A) or for 1 h and 4 h, respectively (B). Subsequently, MC were stained by indirect immunofluorescence and 
analyzed by FACS. Filled histograms indicate staining with rat IgG1 control mAb, open histograms (solid lines) with mAb 1240 
against murine C5aR, and open histograms (dotted lines) with mAb 1G4 against murine C3aR. One representative experiment 
each of at least 3 is shown.
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Anaphylatoxin receptors on peritoneal MC
After establishing the correlation between C5aR expres-
sion and cellular activation in precursor cell-derived MC,
we also investigated primary MC obtained from the peri-
toneal cavity. Similar to in vitro generated MC, activation
of peritoneal MC for 1 h with ionomycin (Fig. 6A) or Ag
(following IgE priming) (Fig. 6B) failed to induce C5aR
surface expression. After 4 or 24 h of stimulation, how-
ever, C5aR expression was extensive whereas C3aR
remained undetectable (Fig. 6A, B). C5aR and C3aR were
also found to be prominently expressed on resting perito-
neal macrophages (Fig. 6C) whereas no other cell type
constitutively present in the peritoneal cavity expressed
detectable amounts of anaphylatoxin receptors (data not
shown).

Discussion
MC development is a complex process resulting in pheno-
typically distinct populations at different anatomical sites.
In rodents, two MC subsets are discriminated on the basis
of different staining characteristics called connective tis-
sue-type MC (CTMC) which are present in the skin and

peritoneal cavity, and mucosal MC found in the intestinal
or airway mucosa [19,20]. In humans, two potentially
analogous MC populations have been defined on the
basis of the protease content of their granules with MCT
containing tryptase and MCTC tryptase plus chymase [21].

Murine CTMC from the skin appear to constitutively
express C5aR as they were found to degranulate in
response to C5a [15]. Likewise, expression of a functional
C5aR has been detected on human skin-derived MCTC as
opposed to MCT from lung, kidney and intestine [9-
12,22,23]. C5aR was also observed to distinguish the
MCTC from the MCT type of human lung MC [24]. These
findings suggest that C5aR is constitutively expressed in
murine CTMC as well as in human MCTC. However, MC
phenotypes are also subject to change in the context of
inflammation and infection [25]. For example, synovial
MCTC expressed C5aR exclusively in inflamed tissues of
rheumatoid arthritis patients [13,14] raising the possibil-
ity that C5aR expression could also depend on variations
in the local microenvironment.

Activated MC respond to C5a in vitroFigure 2
Activated MC respond to C5a in vitro. Precursor cell-derived murine MC cultured with IL-3 and SCF were treated or not 
(Ø) with Ag (DNP-albumin, following a 24 h preincubation period with IgE anti-DNP) for 4 h (A) or ionomycin for 24 h (B). In 
(C), MC were preincubated with IgE followed or not by Ag treatment for another 24 h. Subsequently, calcium fluxes in 
response to C5a (1 μg/ml) and ionomycin (750 ng/ml) (A) or in vitro chemotaxis towards C5a (different concentrations in B; 
100 ng/ml in C) was measured. One representative experiment of 3 is shown in (A), mean values (± SEM) of 3 independent 
experiments each in (B, C).
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In the present study, precursor cell-derived murine MC
were found to migrate towards C5a in vitro, confirming
previous data [26,27]. On the other hand, surface C5aR
on cultured, resting MC was below the theshold of flow
cytometric detection which may explain why C5a failed to
induce intracellular calcium fluxes and migration in vivo.
However, activated MC were distinguished by a promi-
nent C5aR expression and vigorous functional responsive-
ness to C5a in vitro as well as in vivo which required
approximately 4 h of stimulation by Ag (subsequent to
IgE primimg), ionomycin, or PMA. As the signaling cas-
cade downstream of the high affinity receptor for IgE,

FcεRI, also results in PKC activation and intracellular cal-
cium fluxes [28], it remains to be shown if other physio-
logic MC activators may stimulate C5aR upregulation as
well.

SCF which leads to the activation of muliple signaling
pathways after binding to its receptor induces IL-3-
dependent MC to mature and acquire characteristics of
CTMC [29,30]. Our study demonstrates, however, that the
capacity of precursor cell-derived MC to upregulate a func-
tional C5aR was independent of SCF-induced MC differ-
entiation. This finding could indicate that the activation-
induced neoexpression of surface C5aR on MC may not
be restricted to CTMC. Further detailed studies are needed
to resolve this issue.

Having established the correlation between MC activation
and C5aR expression in precursor cell-derived MC, we
also studied primary murine MC obtained from the peri-
toneal cavity which have characteristics of CTMC. Origi-
nally, peritoneal MC were described to be unresponsive to
C5a [15]. Recently, however, a study utilizing genetically
deficient mice suggested C5aR on peritoneal MC to be
instrumental in a model of zymosan-induced peritonitis
[16]. The evidence presented herein clearly indicates that
resting peritoneal MC lack surface C5aR which is in
accordance with the original finding of Lim et al. (1991).
However, following stimulation with Ag (subsequent to
IgE priming) or ionomycin, we found peritoneal MC to
acquire an inflammatory phenotype distinguished by a
prominent C5aR expression. Thus, one may hypothesize
that peritoneal MC gain responsiveness to C5a by C5aR
upregulation as a consequence of zymosan-induced
inflammation which is additionally characterized by the
accumulation of C5a due to the vigorous activation of the
complement cascade.

C3a was found to be a potent chemotaxin for HMC-1
mast cells [11,12]. However, this tumor cell line may not
be fully representative for primary human MC since
tumor transformation may substantially alter normal cell
functions. Investigating skin-derived human MC, Hart-
mann et al. [12] found that C3a chemoattracted only one
out of two MC preparations whereas C5a was effective in
both. Likewise, El-Lati et al. [8] reported C3a to be a weak
inducer of histamin release as compared to C5a. Notably,
rat peritoneal MC responded to C3a in a receptor-inde-
pendent manner [17]. In agreement with these observa-
tions, we found murine peritoneal MC to lack surface
C3aR, the expression of which, in contrast to C5aR, was
not inducible by MC activation. Furthermore, the activa-
tion-induced upregulation of C3aR in precursor cell-
derived MC was low as compared to C5aR and C3a, in
contrast to C5a, was unable to stimulate calcium fluxes in
activated MC or mobilize these cells in vivo.

Activated MC respond to C5a in vivoFigure 3
Activated MC respond to C5a in vivo. Precursor cell-
derived murine MC cultured with IL-3 and SCF were treated 
or not (Ø) with ionomycin, PMA or Ag (DNP-albumin, fol-
lowing a 24 h preincubation period with IgE anti-DNP) for 
different periods as indicated. Subsequently, MC were 
labeled with PKH26. In (C, D), labeled MC were additionally 
preincubated at 37°C without (Ø) or with C5a (2 μg) to 
induce receptor desensitization. In (E), labeled MC were pre-
incubated on ice without (Ø) or with mAb 1240 (20 μg, rat 
IgG1) to block C5aR, or with mAb 1G4 (20 μg, rat IgG1), as 
a control. Thereafter, labeled MC were injected i.v. into syn-
geneic BALB/c mice together with C5a (10 μg) i.p.. After 4 h 
(A, B, E) or 24 h (C, D, F), peritoneal cells were harvested 
and labeled migratory cells identified by FACS analysis. Mean 
values (± SEM) of 3 (A, B, D) or 4 (C, E, F) independent 
experiments each are shown.
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Thus, our findings argue against a significant role for C3aR
in MC-mediated pathogenesis. In accordance with this
hypothesis, immune complex-induced skin injury and
peritonitis were found to be dependent on MC and C5aR,
but not C3aR or C3 [31,32]. It is important to note, how-
ever, that the results and conclusions of the present study
exclusively refer to the mouse.

Conclusion
Our study demonstrates for the first time that Ag-depend-
ent as well as -independent activation induces an inflam-
matory MC phenotype which is distinguished by
neoexpression of a functional C5aR as a novel effector
mechanism in MC-mediated pathogenesis.

Methods
Reagents
Recombinant murine IL-3 and SCF were obtained from
PeproTech (Cell Concepts, Umkirch, Germany). Recom-
binant human C5a was described elsewhere [18]. Recom-
binant human C3a and PMA were from Calbiochem
(Merck Biosciences, Darmstadt, Germany). Ionomycin,
monoclonal murine IgE anti-DNP, and DNP-albumin
were from Sigma-Aldrich (Deisenhofen, Germany).

Monoclonal Ab against murine C5aR and C3aR
Anti-murine C3aR mAb 1G4 (rat IgG1) has been
described by us [33]. Our laboratory has also reported
generation of several mAbs against murine C5aR [34].
From that fusion, mAb 1240 was now selected for use in 

C3a is a weak MC chemotaxinFigure 4
C3a is a weak MC chemotaxin. Precursor cell-derived murine MC cultured with IL-3 and SCF were treated or not (Ø) 
with ionomycin (A-C) or Ag (DNP-albumin, following a 24 h preincubation period with IgE anti-DNP) (A, D) for 24 h. Subse-
quently, in vitro chemotaxis towards different concentrations of C3a (A) or optimal concentrations of C5a (100 ng/ml) and 
C3a (1000 ng/ml) (B) was measured. In (B), MC were additionally preincubated at 37°C without (Ø) or with C3a to induce 
receptor desensitization. In (C), MC were labeled with PKH26 and injected i.v. into syngeneic BALB/c mice together with C5a 
(10 μg) or C3a (50 μg) i.p.. 24 h later, peritoneal cells were harvested and labeled migratory cells identified by FACS analysis. In 
(D), calcium fluxes in response to C3a (10 μg/ml) or C5a (1 μg/ml) and ionomycin (750 ng/ml) were measured. Mean values (± 
SEM) of 3 independent experiments each (A-C) and 1 representative experiment of 3 (D) are shown.
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C5aR upregulation is independent of SCF treatmentFigure 5
C5aR upregulation is independent of SCF treatment. Precursor cell-derived murine MC cultured with IL-3 were 
treated or not (Ø) with ionomycin, PMA, or Ag (DNP-albumin, following a 24 h preincubation period with IgE anti-DNP) for 24 
h (A) or 4 h (B). In (A), MC were stained by indirect immunofluorescence and analyzed by FACS. Filled histograms indicate 
staining with rat IgG1 control mAb, open histograms (solid lines) with mAb 1240 against murine C5aR, and open histograms 
(dotted lines) with mAb 1G4 against murine C3aR. In (B), MC were labeled with PKH26 and injected i.v. into syngeneic BALB/
c mice together with C5a (10 μg) i.p.. 24 h later, peritoneal cells were harvested and labeled migratory cells identified by FACS 
analysis. One representative experiment of 3 (A) and mean values (± SEM) of 4 independent experiments each (B) are shown.
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the present study as its isotype (rat IgG1) was identical to
mAb 1G4.

Murine MC preparations
Murine precursor cell-derived MC were generated as
described [35,36], with minor modifications. In brief,
bone marrow was collected from tibias and femurs of
female BALB/c mice, passed through a nylon mesh to
remove small pieces of bone and debris, resuspended in
complete medium (RPMI 1640 containing 10% FCS, 0.1
mM nonessential aa, 2 mM L-glutamine, 100 U/ml peni-
cillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate,
50 μM 2-ME), and cultured for 2 h. Nonadherent cells
were collected, and aliquots of 5 × 105 cells placed in 24-
well plates containing 1 ml of complete medium together
with murine IL-3 in the presence or absence of murine
SCF (10 ng/ml each). Two-thirds of the medium was
replaced every 3–4 days. After 5–10 weeks, more than
95% of nonadherent cells were MC, as judged by mor-
phology, surface expression of CD117 and IgE binding.
MC were activated either with ionomycin (750 ng/ml) or
PMA (50 ng/ml) for different periods as indicated or, in
an Ag-specific manner, by preincubation with mono-
clonal murine IgE anti-DNP (2 μg/ml) for 24 h followed
by the Ag DNP-albumin (50 μg/ml) for different periods
as indicated.

Peritoneal MC were purified from lavage cells of BALB/c
mice by magnetic cell sorting using a negative selection
technique to avoid MC activation. For this purpose,
approximately 1 × 108 peritoneal cells were incubated
with FITC-anti-CD90 (clone 30H12) and FITC-anti-CD19
(clone 6D5) and T- and B-cells deleted by incubation with
anti-FITC immunomagnetic microbeads and high-gradi-
ent LS separation columns. In a second step, remaining
cells were incubated with FITC-anti-CD11b (clone M1/
70), FITC-anti-CD11c (clone N418), FITC-anti-Gr1
(clone RB6-8C5), and FITC-anti-CD49b (clone DX5).
Subsequently, monocytes, DC, granulocytes, and NK
cells, respectively, were deleted using anti-FITC immu-
nomagnetic microbeads and high-gradient LS separation
columns. All mAb and reagents were obtained from
Miltenyi Biotec (Bergisch-Gladbach, Germany). Follow-
ing this procedure, 5 × 105 to 8 × 105 cells were recovered
which were >80% MC as judged by CD117 surface expres-
sion. Purified peritoneal MC were either immediately
used for staining and FACS analysis or cultured in com-
plete medium as indicated.

In vitro chemotaxis
In vitro chemotaxis was assayed using the HTS Transwell-
24 system from Corning (Beyer Lab., Düsseldorf, Ger-
many). Cells diluted at 1 × 106/ml in migration buffer
(RPMI 1640 with 1% BSA) were placed in the upper wells
whereas anaphylatoxins diluted in migration buffer as

indicated were added to the lower wells. Polycarbonate
membranes with a pore size of 5 μm were used and incu-
bation was performed at 37°C in a 5% CO2 atmosphere
for 3 h. Migration was stopped and migrated cells
detached by placing Transwell chambers for 15 min on
ice. Subsequently, migrated cells in the lower chambers
were counted using a hemocytometer. All determinations
were performed in duplicate.

For desensitization studies, cells (1 × 106 in 1 ml medium)
were preincubated at 37°C for 30 min with the indicated
anaphylatoxin (200 ng/ml) and centrifuged.

In vivo migration model
All animal work was conducted in accordance with guide-
lines for animal welfare and was approved by the govern-
ment of Lower Saxony, Germany. In vivo migration was
studied as described elsewhere [18]. Murine bone mar-
row-derived MC were labeled with the red fluorescent dye
PKH-26 (Sigma-Aldrich) according to the manufacturer's
instructions. Cells (1 × 107 in 200 μl PBS) were then
injected into the tail vein of BALB/c mice (weight 20–24
g; age 8–20 wk) together with a chemotaxin (10 μg C5a or
50 μg C3a; in 200 μl PBS) which was injected into the
peritoneal cavity. Approximately 24 h later, mice were sac-
rificed and peritoneal lavage performed. Subsequently,
peritoneal cells were counted and analyzed by FACS.
Absolute numbers of migrated labeled cells were calcu-
lated from the percentage of red fluorescent cells as deter-
mined by FACS analysis and the total peritoneal cell
count.

For C5aR blockade, labeled MC (1 × 107 in 1 ml PBS) were
preincubated on ice for 45 min with 20 μg of mAb 1240
(or, as a control, mAb 1G4; both are rat IgG1), washed
twice with PBS and resuspended in 200 μl PBS for injec-
tion.

For desensitization studies, labeled MC (1 × 107 in 1 ml
PBS) were preincubated at 37°C for 1 h with 2 μg of ana-
phylatoxin as indicated, washed twice in PBS and resus-
pended in 200 μl PBS for injection.

Calcium measurements
A total of 106 cells were loaded in 700 μl RPMI containing
5% FCS, 1 μM Fluo3-AM and 0.02% Pluronic F127 (both
from Molecular Probes, Invitrogen, Karlsruhe, Germany).
Subsequently, the cell suspension was diluted 2-fold with
RPMI 10% FCS and was incubated for 10 min at 37°C.
Cells were washed twice with Krebs Ringer solution com-
posed of 10 mM HEPES (pH 7.0), 140 mM NaCl, 4 mM
KCl, 1 mM MgCl2, 1 mM CaCl2, and 10 mM glucose. The
changes in fluorescence intensity of Fluo3 were moni-
tored on a LSRII cytometer (BD Biosciences, Heidelberg,
Page 8 of 10
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Germany). Loading of the samples was controlled by
treatment with 750 ng/ml ionomycin.

FACS analysis
For indirect immunofluorescence analysis, MC (2 × 105 in
100 μl) were washed with PBS containing 1.5% FCS and
0.1% NaN3 and blocked with heat aggregated human IgG
(20 μg) for 20 min on ice. After a washing step, primary
mAb in PBS containing 1.5% FCS, heat aggregated human
IgG (10 μg in 100 μl) and 0.1% NaN3 were added and
incubated for 45 min on ice. After washing cells three
times in PBS/1.5% FCS/0.1% NaN3, biotin-conjugated
mouse anti-rat IgG1 (BD Biosciences) was added for
another 45 min. After washing cells three times in PBS/
1.5% FCS/0.1% NaN3, streptavidin-FITC (Dako, Ham-
burg, Germany) was added for another 45 min. If perito-
neal cells were studied, PE-anti-murine CD117 (rat
IgG2b; Miltenyi Biotec) or PE-anti-F4/80 (Caltag Lab.,
Hamburg, Germany) were included in this step to identify
MC or macrophages. Finally, cells were washed three
times in PBS/1.5% FCS/0.1% NaN3, resuspended in PBS
containing 1% formaldehyde and analyzed by flow
cytometry (FACSCalibur; BD Biosciences). If peritoneal
cells were studied, gates were set on CD117+ MC or F4/
80+ macrophages.

The following primary mAb were used at a concentration
of 5 μg/ml: anti-murine C5aR mAb 1240 (rat IgG1), anti-
murine C3aR mAb 1G4 (rat IgG1), isotype control mAb
rat IgG1 (BD Biosciences).

Abbreviations
MC: mast cell; CTMC: connective tissue-type MC; C5aR:
C5a receptor; C3aR: C3a receptor.
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