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Abstract

Background: We performed initial cell, cytokine and complement depletion studies to investigate
the possible role of these effectors in response to vaccination with heat-killed Burkholderia mallei in
a susceptible BALB/c mouse model of infection.

Results: While protection with heat-killed bacilli did not result in sterilizing immunity, limited
protection was afforded against an otherwise lethal infection and provided insight into potential
host protective mechanisms. Our results demonstrated that mice depleted of either B cells, TNF-
a or IFN-y exhibited decreased survival rates, indicating a role for these effectors in obtaining
partial protection from a lethal challenge by the intraperitoneal route. Additionally, complement
depletion had no effect on immunoglobulin production when compared to non-complement
depleted controls infected intranasally.

Conclusion: The data provide a basis for future studies of protection via vaccination using either
subunit or whole-organism vaccine preparations from lethal infection in the experimental BALB/c
mouse model. The results of this study demonstrate participation of B220* cells and pro-
inflammatory cytokines IFN-y and TNF-a in protection following HK vaccination.

Background

Burkholderia mallei, the etiologic agent of glanders, is a
gram-negative, capsulated, non-motile, facultative intrac-
elluar bacterium. Most known members of the Burkholde-
riaceae are resident in the soil; however, B. mallei is
thought to be an obligate mammalian pathogen. Horses
are highly susceptible to infection and considered the nat-

ural reservoir for infection, although mules and donkeys
are also susceptible [1]. Clinically, glanders in solipeds
can present as either a chronic (horses) or acute (mules
and donkeys) form. Naturally acquired human infection
with B. mallei, although not seen in the United States since
1945, has occurred rarely and sporadically among labora-
tory workers and those in direct contact with infected ani-
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mals [2]. However, glanders is endemic among domestic
animals in Africa, Asia, the Middle East, and Central and
South America. The course of infection is dependent on
the route of exposure. Direct contact with the skin can
lead to a systemic infection. Inhalation of aerosol or dust
containing B. mallei can lead to septicemic, pulmonary, or
chronic infections of the muscle, liver and spleen. The dis-
ease has a 95% case fatality rate for untreated septicemic
infections and a 50% case fatality rate in antibiotic-treated
individuals [3].

There is no human or animal vaccine available for glan-
ders, and development of a partial or fully protective
adaptive host response to the organism has not been well-
defined. Previous studies with B. mallei and the host
response have shown that a mixed immune response con-
sisting of both Th, and Th,-associated cytokines with a
predominant IgG1 subclass does not correlate with pro-
tection [4]. Additional studies with passive transfer of
monoclonal antibodies specific for B. mallei have corre-
lated with early protection from infection [5]. Recent stud-
ies have also shown the Th; cytokine IL-12 to mediate
partial protection to non-viable B. mallei-vaccinated mice
[6]. Thus, full correlates of protection mediated by the
adaptive immune system against B. mallei remain to be
fully elucidated.

In this series of studies, we sought to address the impact
of depletion of the major effector lymphoid cell popula-
tions (B220+ B cells, CD4+ or CD8+ T cells) and key pro-
inflammatory/Type 1 cytokines (IFN-y or TNF-a) on sur-
vival in BALB/c mice vaccinated with heat killed (HK)
bacilli followed by an intraperitoneal (i.p.) challenge with
live organism. In addition, studies investigating the effect
of complement on opsonization of organism and anti-
body production were assessed. Heat killed bacteria were
used as a model of vaccination to allow evaluation of B.
mallei specific immune responses. The results of this study
demonstrate participation of B220+ cells and pro-inflam-
matory cytokines IFN-y and TNF-a in protection follow-
ing HK vaccination.

Results

Heat-killed B. mallei vaccination mediates partial
protection from lethal challenge

To begin to address this issue in an animal model of acute
infection, we established that immunologically naive
BALB/c mice challenged i.p. with 2 x 107 CFU resulted in
death by day 4-6, while i.p. immunization with 1 x 105
heat killed (HK) bacteria provided partial protection
against a subsequent challenge. Two independent experi-
ments resulted in similar findings of 40% survival for HK-
vaccinated mice with a mean survival time (MST) of 8
days versus 4 days in naive mice (Fig. 1). The administra-
tion of vaccines for B. mallei during an outbreak would
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Figure |

Percentage of survival in heat-killed vaccinated
BALB/c mice. BALB/c mice were vaccinated with | x |05
CFU/100 pl of HK B. mallei by intraperitoneal injection. Two
weeks post HK vaccination, mice were injected i.p. with 2 x
107 CFU/100 pl of live B. mallei (~20 LDsg). HK vaccination
resulted in a 40% survival rate for HK-vaccinated mice with a
mean survival time (MST) of 8 days (p = 0.1526). Immunolog-
ically naive mice demonstrated 100% mortality by day 6. Data
are representative of 2 independent experiments.

mandate relatively rapid onset of protection for human or
veterinary use. Based on non-routine use and vaccine
implementation in the course of an outbreak, a 14 day
window was chosen for assessment of protection. Our
results indicate that HK vaccination can afford partial pro-
tection to an otherwise lethal challenge of B. mallei by the
i.p. route.

Effects of cell depletion on HK-vaccinated survival

To dissect the cellular basis for protection mediated by HK
vaccination, 13 days after immunization with HK bacteria
(day -1), and at day of challenge, mice were dosed with
antibodies to deplete CD4+, CD8* or B220+ cells. Anti-
body depletion of CD4+, CD8+*, or B220+* cells in these
mice was confirmed by flow cytometric analysis with
depletion efficiencies for CD4, CD8, and B220 popula-
tions at 99.7%, 96%, and 95%, respectively, relative to
mice treated with isotype control monoclonal antibodies
(data not shown). Our results demonstrated decreased
survival rates in B220 (p = 0.3418), CD4+* (p = 0.5417)
and CD8* (p = 0.4684) antibody depleted mice, com-
pared to isotype control antibody, a finding that indicated
a possible role for vaccine induced antibody production.
When challenged with 2 x 107 CFU/mouse by the i.p.
route, loss of T cells resulted in reduced survival (50%)
relative to the non-specific isotype control (Fig. 2). In con-
trast to the loss of T cells, depletion of B220+ cells resulted
in 100% mortality relative to the non-specific isotype con-
trol (Fig. 2). To further evaluate the necessity of these
effector cells in providing protection following HK vacci-
nation, relatively resistant C57BL/6 mice, deficient in
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Figure 2

Percentage of survival among CD8, CD4, or B220
cell-depleted, HK-vaccinated BALB/c mice. Following
cell depletion, mice were challenged with 2 x 107 CFU B. mal-
lei (n =5 per group). CD4 (p = 0.5417) and CD8 (p =
0.4684)-depleted mice demonstrated a 50% decreased sur-
vival rate compared to that of the isotype control. B220-
depleted mice resulted in 100% decreased survival (p =
0.3418) compared to that in non-depleted isotype control
mice.

mature B-cells (uMT), CD4 T-cells (CD4-/-) or CD8 T-cells
(CD8-/-) were subjected to an identical HK vaccination
and challenge regimen. Mature, B-cell-deficient mice
demonstrated a 50% decreased survival (p = 0.0888) com-
pared to the wild-type mice with an MST of 35.5 days (Fig.
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Figure 3

Percentage of survival among C57BL/6 B-cell (LMT),
CD4 T-cell (CD4-) and CD8 T-cell (CD8--)-deficient,
HK-vaccinated mice. Two weeks post vaccination, mice
were challenged with 2 x 107 CFU/100 pl of live B. mallei by
intraperitoneal injection. B-cell-deficient mice demonstrated
a 50% decreased survival (p = 0.0888) compared to that of
the wild-type mice with a MST of 35.5 days (n = 6). CD4--
and CD8-- mice resulted in 60% (p = 0.1343) and 0% reduced
survival, respectively (n = 5).
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3). CD4-/-and CD8/- mice exhibited a 60% (p = 0.1343)
and 0% reduced survival, respectively (Fig. 3).

Effects of cytokine depletion on HK vaccination

Similar studies were performed to determine the role of
IFN-y or TNF-a in acute infection in BALB/c mice immu-
nized with HK bacteria. Six hours before challenge, mice
were dosed with antibodies that neutralize IFN-y or TNF-
o. Individual depletion of either TNF-a (p = 0.0145) or
IFN-y (p = 0.0446) resulted in 100% mortality with an
MST of 3 and 2 days, respectively, compared to the HK-
vaccinated isotype control mice (Fig. 4). In contrast, 40%
of HK-vaccinated, isotype control mice survived to at least
12 days post-challenge (Fig 4). To further evaluate the
host TNF-o. response during an established B. mallei
chronic infection, we infected 12 BALB/c mice by the i.p.
route with 1 x 106 CFU B. mallei. One animal was termi-
nally ill on day 37 post-infection. On day 42 post-infec-
tion, the remaining 11 mice were dosed with either anti-
TNF-a (n = 6), or control mAb (AFRC Mac 49) (n =5). No
further deaths were observed in the control mAb-treated
mice. Rapid mortality was observed in the anti-TNF-o-
treated group, with all mice dying within 7 days of treat-
ment (p = 0.0023) relative to the isotype-treated controls

(Fig. 5).

J774A.1 uptake of serum treated B. mallei

Complement mediated uptake assays were performed to
evaluate opsonization. Results indicated enhanced bacte-
rial uptake in J774A.1 phagocytes inoculated with serum
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Figure 4

Percentage of survival in IFN-y or TNF-a depleted,
HK-vaccinated mice. Following individual cytokine deple-
tions, mice were challenged with 2 x 107 CFU B. mallei by
intraperitoneal injection (n = 5 per group). At day 6 post
infection, IFN-y depleted mice demonstrated a 100% mortal-
ity (p = 0.0446) compared to that of the isotype control. At
day 3 post infection, TNF-a.-depleted mice demonstrated
100% mortality (p = 0.0145) compared to that of the isotype
control. Results are representative of two experiments with
the same group sizes.
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Figure 5

TNF-a impact on chronic B. mallei infection. BALB/c
mice challenged i.p. with | x 106 CFU B. mallei were depleted
of TNF-a (n = 6) or antibody control (n = 5) at day 42 post
infection. Rapid mortality was observed at 7 days post TNF-
o depletion (p = 0.0023).

treated B. mallei (p = .0082), compared to B. mallei alone,
while heat-inactivated serum produced uptake percent-
ages similar to those prior to serum addition (Fig. 6).
Taken together, these results imply an active role for com-
plement components in the uptake of organism by mac-
rophages.
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Figure 6

In vitro uptake of B. mallei. J774A.1 cells were incubated
with B. mallei (MOl 10:1) alone, supplemented with either 2%
mouse serum or heat inactivated (H.l.) (56°C 30 min.) mouse
serum. Experiment performed in triplicate with data
expressed as mean * S.D. *p = 0.0082.
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Immunoglobulin production in HK vaccinated BALB/c mice
We further characterized the ability of HK vaccination to
induce a predominant IgG isotype by determining IgG2a/
IgG1 ratios in i.p. and i.n. vaccinated BALB/c mice. Pre
(day 14 post vaccination) and post (day 2 post infection)
exposure serum samples were obtained and evaluated for
IgG isotype concentrations (Table 1). No appreciable dif-
ferences in IgG pre-exposure levels were seen when com-
paring i.n. to i.p. vaccination. In addition, cobra venom
factor-treated animals showed no significant differences
to non-cobra venom factor-treated animals in IgG pre-
exposure (challenge) levels. Conversely, isotype switching
in the cobra venom factor treated animals was enhanced
in post-exposure serum IgG2a (Table 1).

Discussion

Recent studies have shown a key role in protection from
lethal challenge for IFN-y in non-vaccinated mice from
either NK and/or NKT cells following experimental expo-
sure to B. mallei and B. pseudomallei [7,8]. A similar protec-
tive role in the innate response to infection has been
demonstrated for TNF-o in B. pseudomallei infection [8].
The studies presented here are consistent with the essen-
tial role of these factors in the relative levels of protection
conferred by vaccination with heat-killed B. pseudomallei
and would appear to be viable early markers for protec-
tion from lethal acute infection [9]. Currently, there are
no fully protective vaccines against B. mallei or B. pseu-
domallei in a murine model, particularly for the sensitive
BALB/c versus C57BL6 models. Previous studies have also
demonstrated that both the humoral and cell-mediated
arms are essential for protection from B. pseudomallei
infection [10]. Thus, loss or reduction of TNF-a and IFN-
v levels result in significantly reduced survival rates, sub-
stantiating previous reports of the role of these factors in
protection against B. mallei [7]. Moreover, we demon-
strate a role for sustained TNF-a production in the main-
tenance of host survival throughout the course of B. mallei
infection. Mice with an established B. mallei chronic infec-
tion rapidly lost the ability to control the growth of the
bacillus upon neutralization of TNF-a.. This would suggest
a potential role for TNF-a in the maintenance of produc-
tive granulomas which may limit the spread of bacteria in
chronically infected hosts, or, alternatively, in direct or
indirect microbicidal or bacteriostatic activities at the sites
of infection. Additional studies are underway to deter-
mine more precisely the role of TNF-a in host protection
to B. mallei.

Multiple innate and adaptive cell types may contribute to
the production of IFN-y in response to infection with B.
mallei following vaccination. Our results with individual
depletion of CD4+and CD8+T cells suggests that both cell
types may compensate for the functional loss of the other
effector cell type in the production of this key cytokine.
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Table I: Murine immune responses to HK vaccination

http://www.biomedcentral.com/1471-2172/9/55

Vaccine Pre-exposure Post-exposure

1gG2a 1gGl1 Ratio 1gG2a 1gGl Ratio
HK i.n. 0.00 0.07 +.005 0.00 0.88 +.031 1.46 +.027 0.60
HK i.p. 0.01 +.012 0.23 + .015 0.04 1.04 +.037 0.92 +.0005 1.13
HK i.p. CVF 0.01 +.002 0.13 +.004 0.07 1.42 +.020 1.02 +.002 1.39
None 0.00 0.00 0.00 0.86 +.025 1.01 +.002 0.85

Samples were tested in duplicate and optical densities (OD) read at 450 nm. Values are reported as mean (+ S.E.M.). n = 5 for pre-exposure and n

= 2 for post exposure. CVF; cobra venom factor.

The effector role for IFN-y in mediating protection against
B. mallei may include both immunoregulatory and non-
regulatory functions. Regardless, the requirement of IFN-
v, as demonstrated by administration of neutralizing anti-
body prior to infection, indicates that stimulation of IFN-
y response is a desirable goal for a B. mallei vaccine.

Similarly, B220-positive cells appear to play a role in pro-
tection following vaccination with heat-killed B. mallei.
Interestingly, this protective immunity, occurring in other
intracellular pathogens, is not exclusively dependent on B
cells [11]. Passive protection has been demonstrated
against acute Burkholderia infection by monoclonal anti-
bodies [5,12]. Protection against B. pseudomallei infection
by anti-LPS, capsular polysaccharide and proteins has
been short-lived, suggesting that antibody production
offers limited protection in the initial stages of infection
by an as-yet-undefined mechanism [12]. We have shown
that following depletion of B220+ cells, survival rates
decreased as much as 100% relative to non-depleted con-
trols and individual CD4/CD8-depleted mice via the
intraperitoneal route. Results from C57BL/6 mice defi-
cient in mature B-cells (uMT), CD4 T-cells (CD47/-) or
CD8 T-cells (CD87/-) substantiate the requirement for B-
cell involvement by evidence of uMT and CD4+/- decreased
survival. The lack of an effective CTL response to vaccina-
tion did not appear to alter survival in what would appear
to be a CD4/B-cell (humoral)-driven response. In CD4-
deficient mice, we have the additional potential variable
that a CD4-dependent antibody response might also be
inhibited during the vaccination phase relative to mice
treated with antibody immediately prior to and during the
early phases of infection. Although not statistically signif-
icant, we did observe a decrease in survival in pMT
(mature B cell) deficient mice as early as day 9 post chal-
lenge, whereas CD4-deficient mice produced similar
results at day 32 post challenge, indicating a role for B
cells independent of CD4 T cell help, perhaps through a
T-independent mechanism of antibody production.
Although CD8-/-C57BL/6 demonstrated no decreased sur-
vival in our HK-vaccinated model, a lack of potential
endogenous protein production by HK B. mallei may have
contributed to limited MHC-I presentation.

Complement associated studies revealed increased
J774A.1 uptake of serum-treated B. mallei. Complement-
mediated uptake studies of B. pseudomallei by polymor-
phonuclear leukocytes (PMNs) suggest that capsule pro-
duction contributes to resistance of phagocytosis by
reducing C3b bacterial deposition [13]. Previous studies
have demonstrated that a polysaccharide capsule is
present in B. mallei, [14,15] although in the present study
enhanced uptake with serum-treated B. mallei was
observed. Intracellular survival assays of complement
mediated uptake of organisms were not performed in the
present study, thus, the role of complement opsonization
on intracellular survival is not fully resolved. Previous
reports have demonstrated the ability of B. mallei to sur-
vive within macrophage without the aid of serum coating
organisms [16]. Conversely, the idea of antibody medi-
ated opsonization to facilitate macrophage activation and
clearance of intracellular organisms may offer support to
the role of B cells in an effective immune response. A pos-
sible protective mechanism may include HK vaccination
induced production of opsonizing antibodies which may
aid in complement mediated uptake, thereby limiting the
initial bacterial threshold below a lethal level.

Immunoglobulin responses to HK vaccination resulted in
modest levels of IgG1 following 2 weeks post vaccination,
while post-exposure levels were indicative of efficient class
switching to a favorable IgG2a isotype. Importantly, cobra
venom factor treatment of animals at time of vaccination
did not alter their ability to produce immunoglobulin. In
fact, cobra venom factor treated animals resulted in higher
IgG2a levels when compared to non-treated. Comple-
ment activation can modulate both the primary and sec-
ondary immune responses and has been shown to
enhance secondary immune responses to vaccination
[17]. The current results suggest that cobra venom factor
treatment may affect the modulation of the immune
response to B. mallei infection through B cell activation
and/or memory B cell generation.

Conclusion
In summary, our results provide a basis for future studies
of protection via vaccination using either subunit or
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whole-organism vaccine preparations from lethal infec-
tion in the experimental BALB/c mouse model. Under-
standing and defining the role of B cells in adaptive B.
mallei immunity will likely be fundamental to the design
of an efficacious vaccine and important goals of future
research.

Methods

Bacterial strain and mice

B. mallei strain ATCC 23344 (China 7) was cultured on
Luria-Bertani agar supplemented with 4% glycerol
(LB+4%G) agar plates for 48 h at 37°C. Isolated colonies
were sub-cultured to LB+4%G broth, and cultures were
incubated at 37°C until optical density readings at 600
nm (ODg,) reached an exponential phase of growth. Bac-
teria were pelleted by centrifugation, washed and re-sus-
pended in sterile 1x phosphate-buffered saline (PBS, pH
7.4) to obtain the desired CFU/ml. To obtain HK inocu-
lums, bacterial suspensions were incubated at 85°C for 3
h and stored at 4°C until use. The absence of live B. mallei
organisms in the HK preparations was confirmed after
plating 10% of the total inoculums (v/v) and incubating
these at 37°C for 48 h. All procedures were performed
under a class II biosafety cabinet in a biosafety level 3 lab-
oratory. Female, 6- to 8-week-old, BALB/c mice (n = 5-7)
were obtained from Harlan Sprague Dawley, Inc. (Indian-
apolis, Indiana). Female, 6- to 8-week-old, C57BL/6 mice
deficient in mature B-cells (uMT), CD4 T-cells (CD4-/-)
and CD8 T-cells (CD8-/-) and wild-type mice were
obtained from The Jackson Laboratory (Bar Harbor,
Maine).

Vaccination and challenge

BALB/c and C57BL/6 mice were grouped and vaccinated
with 0.5 ug of HK B. mallei (without adjuvant) by i.p.
injection using a 25-gauge syringe. Two weeks post HK
vaccination mice were injected i.p. with 2 x 107 CFU/100
ul of live B. mallei (~20 LDs,) [18]. Complement depleted
animals were challenged with 2.5 x 104 CFU/50 pl (~0.25
LD,,) by intranasal (i.n.) route. Aliquots from the inocu-
lums were plated to confirm the infecting dose. All proce-
dures and animal protocols used in this study were
approved by the Biosafety and IACUC committees at
UTMB and conducted in either BSL-3 or ABSL-3 laborato-
ries.

Cell and cytokine depletions

Acute in vivo cell/cytokine depletion was performed with
monoclonal rat anti-mouse CD4 (GK1.5), CD8a (53-6.7)
or B220 (RA3-6B2) obtained from R&D Systems, Inc.
(Minneapolis, MN) by methods similar to those we have
previously described [19]. Functional grade purified rat
anti-mouse interferon-gamma (IFN-y, AN-18) was
obtained from eBioscience (San Diego, CA) and purified
anti-mouse tumor necrosis factor (TNF-o, MP6-XT3) from

http://www.biomedcentral.com/1471-2172/9/55

BD Pharmingen (San Diego, CA). IFN-y and TNF-o anti-
bodies were injected i.p. 6 h prior to challenge, 200 nug per
mouse in 200 pul PBS or at later time points as indicated.
Rat IgG isotype control was obtained from Southern Bio-
tech (Birmingham, AL) and administered i.p. on day of
challenge, 200 pg/mouse. Rat anti-mouse CD4, CD8a
and B220 were injected i.p. twice, 1 day prior to challenge
and on day of challenge, with an equivalent dosage suffi-
cient to deplete T or B cells from 6 x 108 bone marrow cells
per injection. The efficiency of depletion at time of infec-
tion for CD4+, CD8*, and B220+ cells was confirmed by
flow cytometry analysis immediately prior to infection.

Complement depletion with cobra venom factor

Mice, six to seven per group, were vaccinated i.p. with 1 x
10> CFU of nonviable B. mallei cell preparation in a total
volume of 0.1 ml. Two weeks later, 24 h and 1 h before
challenge, complement depleted mice were treated i.p.
with 12.5 units total cobra venom factor (Quidel Corpo-
ration Speciality Products, San Diego, CA) in 0.1 ml of
PBS. Complement depletion was confirmed prior to chal-
lenge by micro-titer hemolytic complement activity
(CHs,) assay as previously described [20].

B. mallei J774A.1 uptake assays

J774A.1 cells were seeded (5 x 10°) onto Corning costar
24 well plates (Corning, NY) with DMEM and incubated
overnight at 37°C with 5% CO,. Bacterial suspensions
were incubated at 37°C for 45 minutes supplemented
with 2% mouse serum from Sigma-Aldrich (St. Louis,
MO.), heat inactivated mouse serum (56 °C 30 minutes),
or bacteria alone and then added at an MOI of 10:1 to
J774A.1 cells in triplicate. Inoculated wells were centri-
fuged at 800 g for 2 minutes and incubated for 2 hours at
37°C with 5% CO, followed by a PBS wash (x2) and 2
hour incubation with 250 pug/ml kanamycin. Wells were
washed twice with PBS and lysed with 0.1% Triton X-100,
followed by serial 10-fold dilutions plated on LBG plates
and incubated at 37°C for 2 days. Colony forming units
were enumerated and uptake expressed as a percentage of
initial inoculating dose + SEM.

Antibodies and flow cytometry

Flow cytometric analysis was performed on 0.1-ml blood
samples transferred to micro centrifuge tubes containing
90 pl of acid citrate dextrose (ACD) solution. Red blood
cells were lysed using ACK-lysing buffer (Biosource Inter-
national, Inc., Camarillo, CA) according to the manufac-
turer's instruction. Antibodies used for analysis of surface
markers included: FITC-conjugated rat anti-mouse
CD45R/B220 (RA3-6B2, BD Pharmingen San Diego, CA)
for B cells; FITC-conjugated rat anti-mouse CD8a (53-
6.7) and CD4 (GK1.5, BD Pharmingen, San Diego, CA)
for CD8* or CD4+ cells, respectively. Samples evaluated
for CD4+ and CD8a+ cells were also incubated with
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biotin-conjugated hamster anti-mouse CD3e (145-2C11)
monoclonal antibody (BD Pharmingen, San Diego, CA)
and subsequently with streptavidin APC Cy7. Isotype-
matched, non-specific controls were assayed in parallel
(BD Pharmingen, San Diego, CA). Surface staining was
performed according to previously published protocols
[21]. Following cell staining, the samples were fixed with
2% buffered paraformaldehyde overnight prior to analy-
sis by flow cytometry. Samples were analyzed using a FAC-
SCalibur flow cytometer with BD CellQuest Pro software.

Antibody assays

Immunoglobulin subclass IgG1 and IgG2a titers in mice
were determined by a whole bacterial cell ELISA per-
formed in 96-well, Immulon 2 HB, round-bottom plates
(Dynex Technologies). B. mallei antigen was diluted in 0.1
M carbonate buffer (pH 9.5) and 50 pl of diluted cells
placed into wells. Plates were stored overnight at 4°C. The
plates were washed with washing solution (1x PBS, 0.05%
Tween 20), and incubated with 100 pl of blocking solu-
tion (1x PBS, 1% bovine serum albumin, 0.05% Tween
20) for 1 h at 37°C. Dilutions of mouse sera were made
with blocking solution in duplicate and plates were incu-
bated for 1 h at 37°C. Following incubation, plates were
washed and 50 pl of anti-Ig-horseradish peroxidase sub-
class conjugate, diluted accordingly to manufacturer's
instructions (Southern Biotechnology Associates, Inc. Bir-
mingham, Ala.), was added to each well and incubated for
1 h at37°C. After washing, 50 pl of 2,2'-azino-di-(3-ethyl-
benzthizoline)-6-sulfonate (ABTS) peroxidase substrate
(KPL, Inc., Gaithersburg, Maryland) was added to each
well and plates incubated for 25 min at room tempera-
ture. The amount of bound antibody was determined
colorimetrically by absorbance at 405 nm.

Statistical analysis

Survival curves were calculated by Kaplan Meier survival
analysis with log-rank tests between groups using Graph-
Pad Prism (V.4.03 for windows). Statistical analysis was
generally performed with the paired Student's t-test. P
value < 0.05 was considered significant.
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