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Abstract
Background: Cytokine-stimulated endothelial cells (EC) propagate hematopoietic progenitor cell
(HPC) expansion. However, the effects on the functional capacities of cultured progenitors have
not been evaluated. HPC were assessed by flow cytometry, colony and cobblestone assays and
long-term cultures (LTC) after culturing in the supernatant of EC stimulated by IL-1β, IL-3 or IL-6.

Results: EC incubation with IL-6 did not improve cell expansion in comparison to non-stimulated
EC supernatant, while the HPCs' phenotype and functional capacities were retained. In contrast,
IL-1β and IL-3 stimulation resulted in a 10- and 100-fold increase in cell numbers with more than
90% of these cells being CD33(+). Plating efficiencies and LTC initiating cells were greatest in IL-6
supernatants, whereas the highest numbers of burst-forming units were observed using IL-3. IL-1β
supernatants diminished the number of 5-week cobblestone-areas, whereas the number of 2-week
cobblestone areas remained equal to freshly isolated HPC. Fewer 2-week cobblestones and greater
amounts of 5-week cobblestones were observed with IL-6 and IL-3. Expanded progenitors from all
interleukin conditions were further matured into functional granulocytes.

Conclusion: IL-1β and IL-3 stimulated endothelium induces proliferation and differentiation of
myeloid precursors, while IL-6 treatment induced a benefit of HPC survival.

Background
During local inflammation, a cytokinetic firework initi-
ated by cellular defense mechanisms includes the secre-
tion of TNFα, interleukin-1, -3 and -6. These cytokines
promote the release of endothelial factors which also
attract hematopoietic progenitor cells (HPC) [1]. There-
fore, the use of cytokine-stimulated endothelium as a
hematopoietic feeder layer could be of great interest.

Several cellular immune reactions are triggered by inter-
leukins (IL) with multiple impacts on lymphocytes, gran-
ulocytes and endothelial cells [2]. IL-1, for example,
induces prostaglandin E2 and collagenase synthesis
thereby activating the metabolism of polymorphnuclear
neutrophils [3]. The secretion of endothelial granulocyte-
macrophage colony-stimulating factor (GM-CSF) and
granulocyte colony-stimulating factor (G-CSF) is further
stimulated by IL-1β [4]. IL-3 in synergism with GM-CSF,
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on the other hand, controls the HPC differentiation into
myeloid cells [5]. In synergism with IL-6, IL-3 also sup-
ports the proliferation of progenitors from human blasts
[6]. Within the bone marrow niche, IL-6, which is also
produced by vasulcar endothelial cells, propagates the dif-
ferentiation of neutrophils [7]. Both, IL-6 and a recom-
binant form of its soluble receptor, the so-called hyper IL-
6, enhance the SCF-induced expansion of hematopoietic
progenitors [8] through gp130 signaling [9]. IL-6, a medi-
ator of the acute phase response, is one of the most com-
plex cytokines released at sites of injuries or infections
[10], and many of its activities are shared by IL-1 [11]. On
endothelial cells, IL-6 preferentially supports endothelial
adherence of lymphocytes [10] and induces endothelial
cells to proliferate [12] hereby enhancing angiogenesis
[13].

Taken together, these three inflammatory stimuli induce
the secretion of endothelial factors propagating the prolif-
eration and differentiation of HPC. We previously dem-
onstrated that endothelial cells (EC) stimulated by tumor
necrosis factor alpha (TNFα) induce the generation of
dendritic cells from CD34(+) HPC [14]. Here, we present
data contributing to the influence of the supernatants
from interleukin-stimulated endothelium on the prolifer-
ation and differentiation of HPC into granulocytes which
highlights potential use of endothelial cells for the main-
tenance and maturation of blood cells.

Results
Cell expansion
Direct contact between IL-β or IL3 stimulated EC and HPC
significantly reduced the cumulative cell output as com-
pared to non-contact and supernatant cultures (Figure 1).
Stimulated supernatants led to two to three times higher
cumulative cell counts than non-contact cultures (IL-3:
14.1 × 106 versus 8.5 × 106; IL-1β: 9.3 × 106 versus 3.7 ×
106), which were twice as high as in direct contact cultures
(IL-3: 3.6 × 106 and IL-1β:1.9 × 106). Differences between
IL-1β and IL-3 in cumulative cell numbers were not signif-
icant (p = 0.12). In IL-6 conditions, direct contact and
supernatant conditions led to comparable cumulative cell
counts (p > 0.13). Cell numbers in non-stimulated EC
supernatant, to which single interleukins were added, had
significantly lower cell counts in IL-1β and IL-3 condi-
tions and lower cell numbers in IL-6 conditions, which
was also the case, when HPC were cultured in endothelial
plus stem cell medium including interleukins. IL-3 stimu-
lated bone marrow fibroblasts led to significantly lower
cumulative cell counts inducing on average a 15-fold cell
expansion after two weeks. No significant differences were
seen among different interleukins.

Since the highest cumulative cell numbers were achieved
by culturing the HPC in stimulated endothelial superna-

tants, all further studies were preformed using these. Fol-
lowing a 7-days culture period, a minimum of 10-fold cell
proliferation was observed in the supernatant of IL-1β and
IL-3 stimulated endothelial supernatants (Table 1). After
14 days in culture, cell counts increased more than 140×
with IL-1β, 83× with IL-3, and 6× in non-stimulated and
in bovine serum albumin (BSA)-stimulated endothelial
supernatants. Administration of IL-6 resulted in a five-
fold increase in the cell number following two weeks in
culture, which was equal to the fold increase of BSA- and
non-stimulated endothelial supernatants (p > 0.13).

Optimum concentrations for IL-1β induced cell expan-
sion were 100 and 1.000 U/ml, while IL-3 was observed to
induce the highest cell numbers at 100 U/ml, though dif-
ferences were not significant among different concentra-
tions. Time-course observations demonstrated that IL-
stimulation at varying concentrations (10, 100 and 1,000
U/ml) for 16 hours provided the highest increase in cell
numbers as compared to 2, 4, 8, 24 and 48 hours.

Characteristics of expanded cells
More than 93% of the freshly isolated cells were positive
for CD34, CD33 and CD45. The latter two remained
highly positive following a period of two weeks in all of
the culture conditions analyzed. When cultured with IL-
1β or IL-3-stimulated supernatant, expanded cells lost the
CD34 antigen following a one week culture period (Table
1). In contrast, on average 34.8 ± 6.7% of the cells cul-
tured in BSA, IL-6 or non-stimulated supernatant stained
positive for CD133, and 17.7 ± 5.2% were still CD34 pos-
itive in IL-6 induced supernatant. Although the loss of
CD34 antigen was paralleled by a loss of CD133, a subset
of CD34(-) cells retained the CD133 glycoprotein (see
additional file 1)). Following a two week culture period,
half of the cells in the IL-1β stimulated EC supernatant
were CD16(+), and 15–25% of the cells carried the mono-
cytic marker CD14 (Figure 2). Other glycoproteins tested
were CD15 and CD19, which were rarely present in
freshly isolated CD34 cells and did not increase upon cul-
turing.

The receptor repertoire matched the observed changes in
morphology. IL-1β and IL-3 generated supernatant
induced a rather versatile morphology consisting of mac-
rophage and granulocytic precursors with eosinophilic
granula in case of IL-3 (Figure 2). In contrast, cells cul-
tured in IL-6 stimulated EC mostly resembled freshly iso-
lated HPC with round nuclei and low cytoplasmatic
content. Cells expanded in non-stimulated or BSA super-
natant increased slightly gaining little cytoplasm.
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Cumulative cell counts of proliferating progenitors in direct contact, non-contact and supernatant culturesFigure 1
Cumulative cell counts of proliferating progenitors in direct contact, non-contact and supernatant cultures. 
Cell counts were determined by demi-depopulation after 7, 14 and 21 days and summarized. Culture conditions were as fol-
lows: A) HPC in direct contact with IL1-β stimulated EC (Direct Contact, open squares), on a 0.4 μm microporous transmem-
brane above the IL-1β stimulated EC (Indirect Contact, open circles), in the supernatant of IL-1β stimulated EC (Supernatant, 
closed circles), B) in direct contact with IL-3 stimulated EC (Direct Contact), on a 0.4 μm microporous transmembrane above 
IL-3 stimulated EC (Indirect Contact) and in the supernatant of IL-3 stimulated EC (closed circles). Significant differences to con-
tact cultures (*), to indirect contact cultures (#) and to bone marrow (§ were only found in IL-1β and IL-3 dependent condi-
tions. C) No significant differences were determined among the IL-6 stimulated EC culture conditions or among bone marrow 
fibroblast cultures. The HPC cell count at the beginning was 5.5 × 104 per 3 ml. Each point represents the average of at least 
three independent measurements. Bone marrow (BM) fibroblast cocultures consisted of direct contact (open triangles), indirect 
contact (crosses) and supernatant cultures (closed triangles). Dotted lines: HPC cultured in endothelial supernatants, to which IL-
1β, IL-3 or IL-6 was added.
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Hematopoietic potential of expanded cells
Colony formation
A concentration-dependent increase of BFU-E colonies
were determined in the cells cultured in supernatants
from IL-1β stimulated EC. BFU-E were significantly higher
than in the non-stimulated supernatants (p < 0.05, Table
2), in freshly isolated HPC or in those expanded in BSA
stimulated EC supernatants (p < 0.035 at IL1β concentra-
tion of 1,000 U/ml). Here, the numbers of CFU-GM and
mixed colonies were comparable to those observed post-
isolation, but the plating efficiencies (PE) were the lowest
being significantly lower than in freshly isolated HPC (p
< 0.001).

Significantly decreased plating efficiencies were also
found in HPC expanded in IL-3 conditioned medium (p
< 0.05). The values obtained were comparable to those in
BSA-stimulated medium, but lower than those in naïve
EC supernatant at concentrations of 100 and 1.000 U/ml
IL-3 (p < 0.02). With IL-3, the highest overall numbers of
BFU-E and mixed colonies were determined with BFU-E
numbers three to five times, and CFU-Mix numbers 15 –
40 times higher than in cells post-isolation (p ≤ 0.025).

The highest plating efficiencies of all conditions tested
were observed in cells cultured with IL-6 stimulated EC
supernatant. At a concentration of 1,000 U/ml, plating

Table 1: Cell expansion in IL-stimulated endothelial supernatant following a period of 7 and 14 days and flow cytometric profile on day 
7.

Concentration (U/ml) Fold increases Flow cytometry
7 days 14 days CD33, 34, 45, 14, 16, 133

After isolation N/A N/A

Control Non-stimulated 1.2 ± 0.13 6.4 ± 1.2

0.1% BSA 1.3 ± 0.17 6.8 ± 1.6

IL-1β 1 5 ± 1a 6.3 ± 0.12 N/A
10 13 ± 2.2a,b 59.1 ± 13.3a,b

100 15.8 ± 2.5a,b 136.8 ± 23.3a,b

1,000 19.4 ± 8.6a,b 142.7 ± 23.5a,b

10,000 10.5 ± 2.8a,b 97 ± 22.4a,b

IL-3 10 11.8 ± 1.6a,b 71.2 ± 10.5a,b

100 15.5 ± 1.6a,b 82.9 ± 14.5a,b

1,000 15.2 ± 1.4a,b 79.6 ± 9.9a,b

IL-6 10 1.5 ± 0.51 2.8 ± 0.58

100 1.2 ± 0.22 5.2 ± 1.2

1,000 1.3 ± 0.21 4.6 ± 0.77

Fold expansions were determined following a period of seven and fourteen days. Percentage of CD33, 34, 45, 14, 16 and CD133 positivity are 
depicted as circles (❍: negative, less than 10%; quarter circle: 10 – 25% positivity; half circle: 25 – 50% positivity; ● more than 75% positive cells).
a: highly significant different compared to non-stimulated supernatant (p < 0.001); b: highly significant different compared to BSA supernatant (p < 
0.001). Shown are mean results ± SE of twelve independent experiments. N/A: not applicable.
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Cytospin preparations of freshly isolated HPC and following culture for two weeks in non-stimulated, BSA or IL-stimulated EC supernatantFigure 2
Cytospin preparations of freshly isolated HPC and following culture for two weeks in non-stimulated, BSA or 
IL-stimulated EC supernatant. Freshly isolated HPC (Post isolation) with a dense nucleus and small cytoplasmatic rim 
increased up to two-fold in size and gained cytoplasma in non-stimulated and BSA-stimulated supernatants. With IL-1β stimu-
lated supernatant they developed into hypersegmented cells and also into monocytic cells in part, with an increase in cyto-
plasma content. More than 50% of the cells stimulated with IL-3 developed eosinophilic granula, whereas cells in IL-6 stimulated 
supernatant resembled freshly isolated cells. Cells cultured in IL-6, BSA- and non-stimulated supernatants were still positive for 
CD34 and CD133. Diffquik staining, size bar 1 μm. magnifications ×200. One representative result of twelve independent 
experiments.
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efficiencies were two-fold higher than in cells cultured
with non- or BSA-stimulated EC supernatant (p < 0.0026)
and even significantly higher than in freshly isolated cells
(p = 0.002). Compared to the latter group, the total num-
bers of BFU-E and CFU-GM were significantly lower at IL-
6 concentrations of 10 U/ml (p = 0.005), but normalized
at IL-6 concentrations of 100 U/ml and higher (p > 0.2).

CAFC and LTC-IC
The highest numbers of 2-week cobblestone area-forming
cells were achieved following culture of HPC in IL-1β
stimulated supernatant. At a supraphysiological concen-
tration of 10,000 U/ml, approximately four times more 2-
week cobblestones were found than in cells post isolation
and twice as many as in those cultured in BSA-stimulated
supernatant (p < 0.05) indicating the expansion of pre-
dominately myeloid progenitors (Table 3). The number
of 2-week CAFC were comparable to freshly isolated HPC
(p > 0.36) and those grown in BSA-stimulated EC (p >
0.1) at all other IL-1β concentrations. The highest num-
bers of 5-week CAFC, a parameter of the undifferentiated
progenitors, were observed in cells which had been cul-
tured in supernatants from IL6-, BSA- or non-stimulated
EC. These CAFC figures were the only ones observed to be
equivalent to those of freshly isolated HPC (IL-6: p >
0.095; BSA: p = 0.42; non-stimulated: p = 0.21). The high-
est numbers of LTC-IC were found in cells cultured in
non-stimulated endothelial supernatant followed by
freshly isolated CD34(+) cells and cells cultured in BSA-

or IL-6 stimulated supernatants. Differences among these
four groups were insignificant (p > 0.15). Significantly
lower values were determined in cells expanded in 1,000
U/ml IL-1β-stimulated EC (p < 0.037), and those
expanded in IL-3-stimulated EC (p < 0.025).

Granulocytic features and function of differentiated cells
Extension of the cell culture for an additional week with
G-CSF induced the up-regulation of the granulocytic
markers CD16 and CD66 in all three interleukin condi-
tions (Figure 3). Prior to G-CSF addition, only cells cul-
tured in IL-1β-stimulated endothelial supernatant already
had a high frequency of CD16 and CD66 positive cells,
which was further increased following the addition of G-
CSF. Thereafter, the cells also became highly positive for
CD15, CD11b and CD11c. Control granulocytes differen-
tiated in stem cell medium plus cytokines in the absence
of endothelial supernatant developed an equivalent mor-
phology and immunephenotype. There were no differ-
ences between the burst activities of G-CSF matured
granulocytes from different interleukin conditions (p >
0.05, Table 4).

Differentiated cells were analyzed for their granulocytic
function. Cells which were harvested directly from G-CSF
cultures had high spontaneous burst rates, which were
even higher than after they had been exposed to
Escherichia (E.) coli (Figure 4A). Yet, these cells
responded two- and ten-fold better to N-formyl-methio-

Table 2: Colony forming activity of HPC expanded in IL-stimulated EC supernatant for one week.

Concentration (U/ml) BFU-E (×103) CFU-GM (×103) CFU-Mix (×103) PE (%)

Post isolation (5 × 104 cells) N/A 2.5 ± 0.18 3.3 ± 0.48 0.16 ± 0.02 7.9 ± 0.57

Controls
- No stimulus N/A 2 ± 0.28 2.7 ± 0.46 0.36 ± 0.14 6.4 ± 0.67
- BSA 0.1% 3 ± 0.46 4.3 ± 0.74 0.14 ± 0.05 4.5 ± 1.1c

IL-1β 10 3.6 ± 1.1a 1.8 ± 0.56 0.16 ± 0.07 0.97 ± 0.06a,b,c

100 5.2 ± 1.6a,c 2.4 ± 0.82 0.22 ± 0.08 1 ± 0.06a.b.c

1,000 6.4 ± 1.2a,b,c 2.4 ± 0.43 0.22 ± 0.08 1.1 ± 0.08a,b,c

IL-3 10 10 ± 3.3a,b,c 3.1 ± 1 2.2 ± 0.74a,b,c 3.9 ± 1.3c

100 9.5 ± 3.2a,b,c 3.1 ± 1 2.1 ± 0.71a,b,c 1.6 ± 0.54a,c

1,000 12.8 ± 4.3a,b,c 6.3 ± 2.1a,c 5 ± 1.7a,b,c 1.7 ± 0.58a,c

IL-6 10 1.5 ± 0.34c 1.5 ± 0.37b>,c 0.28 ± 0.11 8.2 ± 1.7
100 2.1 ± 0.4 3.1 ± 0.67 0.18 ± 0.07 8.9 ± 1.4
1,000 3.1 ± 0.58 4 ± 0.69 0.24 ± 0.08 11.8 ± 1.2a,b,c

Hematopoietic colony formation was determined after fourteen days in semisolid methylcellulose cultures supplemented with erythropoietin, GM-
CSF, IL-3 and stem cell factor. Total colonies were defined by multiplying counted colonies with the number of expanded cells divided by the 
number of input cells. Mean values ± SE from four to nine independent experiments conducted in triplicate. BFU-E: burst-forming unit erythrocyte; 
CFU-GM: colony-forming unit granulocyte macrophage; CFU-Mix; mixed colony-forming unit (granulocyte, erythrocyte, megakaryocyte, 
macrophage); PE: plating efficiency; N/A: not applicable; BSA: bovine serum albumin
a: significant different compared to non-stimulated supernatant; b: significant different compared to BSA supernatant; c: significant different 
compared to freshly isolated CD34(+) cells.
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nyl-leucyl-phenylalanin (fMLP) and phorbol 12-myr-
istate 13-acetate (PMA), respectively. When the
differentiated cells were incubated overnight in human
serum at 37°C, E. coli or PMA induced a ten-fold burst,
whereas no effect was seen in response to fMLP (Figure
4B). Burst rates between cells, which had been stored
overnight in human serum and those without serum incu-
bation were significantly different (p ≤ 0.018). Oxygen
radical formation was also significantly higher in granulo-
cytes generated in stimulated EC supernatant than in
granulocytes differentiated with cytokines alone (Figure
4C), but lower than in granulocytes from peripheral
blood.

Discussion
Human endothelium, the gatekeeper between blood and
tissue, plays a decisive role in the initiation of cellular
immune responses [3]. The way in which endothelium
influences HPC in the blood circulation during an inflam-
mation, however, is unknown. The data presented here
gives new insights into the unique role of endothelium as
a conductor in the inflammatory orchestra, especially on
the influence of IL-1β, IL-3 and IL-6 stimulated endothe-
lium on the proliferation and differentiation of HPC.

The highest fold increases were determined in superna-
tants from IL-1β-stimulated EC. IL-1, for example, does
induce endothelial cells to secrete hematopoietic growth
factors [15] like stem cell factor [16], GM-CSF [17] and G-

Table 4: Burst activities of differentiated cells expanded in IL-stimulated endothelial supernatant.

Control E. coli fMLP PMA

IL-1β
(FBS)

52.5 ± 13.1
(593 ± 156.9)

509.5 ±
107.9 (169.1 ± 30.6)

62.7 ± 10.5
(1336 ± 320.5)

350.4 ± 95.5
(2873.4 ± 615.9)

IL-3 55.4 ± 13.2 800.7 ± 343.1 74 ± 33.1 784.3 ± 334.7
IL-6 39 ± 9.4 467.6 ± 167.31 177 ± 124 287.1 ± 104.5

After culturing the cells for one week with G-CSF (100 ng/ml) and keeping them overnight in human serum, expanded cells showed a ten-fold 
increased burst activity in response to E. coli and PMA. Oxygen radical formation in cells from different interleukin conditions were comparable (p 
> 0.05). Shown are average results of mean fluorescence activities ± SE from five independent experiments. In brackets: mean results after storage 
in FBS-based medium (n = 10).
PMA: phorbol 12-myristate 13-acetate; E. coli: Escherichia coli; fMLP: N-formyl-methionyl-leucyl-phenylalanin.

Table 3: Cobblestone area and long-term culture initiating cells (LTC-IC) of HPC post-isolation and of cells cultured in IL-stimulated 
EC supernatant for one week.

Concentration (U/ml) CAFC LTC-IC
2-week 5-week

Post isolation N/A 4.9 ± 0.73 23.2 ± 4.2 16.3 ± 3

Control No addition 11.6 ± 2.5c 16.8 ± 4.5 17 ± 4.3
0.1% BSA 9.6 ± 2.8 17.8 ± 4.5 16.2 ± 4.2

IL-1β 10 3.7 ± 1.1 5.4 ± 2.4a,c 7 ± 2.2
100 4.9 ± 0.95 3.4 ± 1.2a,b,c 6.6 ± 2.3
1,000 5.6 ± 0.92 0.45 ± 0.2a,c 3.7 ± 2.2c

10,000 19.2 ± 7.1b,c 0.38 ± 0.17a,b,c n.d.

IL-3 10 3.6 ± 1.1a,c 8.1 ± 2a,c 3.2 ± 2c

100 4.3 ± 1.5a 2.8 ± 0.58a,b,c 2.3 ± 0.59c

1,000 2.2 ± 0.5a,c 4 ± 0.88a,b,c 1.8 ± 0.61c

IL-6 10 3.6 ± 1.1 9 ± 2 11 ± 3.2
100 4.3 ± 1.5 20.9 ± 4.1 13.2 ± 6.3
1,000 2.2 ± 0.5a,b 15.7 ± 3.3 8.5 ± 3.4

Freshly isolated and expanded HPC were cultured on the murine bone marrow stroma cell line MS-5 and scored for cobblestone-area formation 
after two and five weeks. LTC-IC were scored by replating 5-week CAFC in methylcellulose for secondary colony formation. Shown are mean 
results ± SD of three independent experiments in triplicate; a: significant different compared to non-stimulated supernatant (p < 0.05); b: significant 
different compared to BSA supernatant (p < 0.05); c: significant different compared to freshly isolated CD34(+) cells.
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Flow cytometry of expanded cells before and after culturing for a subsequent week in G-CSFFigure 3
Flow cytometry of expanded cells before and after culturing for a subsequent week in G-CSF. Expression of 
CD16 and CD66 was up-regulated in HPC expanded in IL-3 and IL-6 stimulated EC cultures (p < 0.05), while in IL-1β cultures, 
no further up-regulation was observed. Increase of granulocytic glycoproteins occurred in parallel to the development of gran-
ulocytic morphology. Pictures were taken from one representative result of six independent experiments. A) forward scatter – 
side scatter, IgG control; B) CD16 and CD66 expression before culturing with G-CSF; C) CD16 and CD66 expression and cell 
morphology after culturing with G-CSF.
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CSF [18]. The latter two are well-known to be responsible
for HPC expansion and granulocytic differentiation. In
fact, Bioplex assays confirmed the IL-1β induced increase
of G-CSF, GM-CSF, IL-1, IL-6 and IL-8 which are known
hematopoietic growth factors [19]. IL-13, IL-17, macro-
phage inflammatory protein 1 and monocyte chemoat-
tractant protein 1 were also higher in IL-1β stimulated EC
supernatant than in BSA-stimulated samples. This could
explain why predominately white blood cell precursors
expanded in IL1β-conditioned EC medium retaining
CD33, a marker for myeloid progenitors. Functional tests
proved the proliferation of myeloid progenitors resulting
in high numbers of 2-wk cobblestones and the lack of
primitive HPCs demonstrated by the absence of 5-wk
CAFC and LTC-IC.

One effect of IL-1β on HPCs is the indirect enhancement
of their sensitivity for IL3 [6], possibly by upregulating IL-
3 receptors on endothelial cells. IL-3 improves the ex vivo
expansion of HPC induced by FLT3/FLK2-ligand, stem
cell factor and thrombopoietin [20]. In our culture sys-
tem, IL-3 led to an equivalent fold increase of cell num-
bers as IL-1β and the highest number of mixed colonies,
which speaks in favor of the expansion of oligopotential
HPC. The reduced number of 5-week cobblestones and
long-term culture initiating cells, however, opposes the
expansion of primitive hematopoietic stem cells. Admin-
istered on endothelial cells, IL-3 induces the in vitro adhe-
sion of basophilic granulocytes [21] with endothelium
supporting the IL-3 dependent differentiation of eosi-
nophilic granulocytes [22]. The latter stands in agreement
with our morphologic results showing the development
of eosinophilic granula in expanded HPC.

Another supporter of the IL-3 dependent HPC prolifera-
tion is IL-6 [23]. Previous works analyzed the importance
of IL-6 within the hematopoietic/endothelial conun-
drum. For example, IL-6 was found to be one of the most
crucial endothelial factors supporting HPC expansion in a
combination of multiple cytokines plus endothelial cells
[24]. More committed cells do express the receptor for IL-
6 [25], whereas it is absent on early uncommitted HPC,
although these cells are responsive to IL-6 in complex with
the soluble IL-6 receptor [8,26]. Their combined use dra-
matically stimulates the expansion of primitive hemat-
opoietic progenitor cells in the presence of SCF [8,26].
This might account for the observed delay in cell expan-
sion, which led to a five-fold increase one week later than
in IL-1β and IL-3 endothelial supernatants.

In our study, HPC maintained in IL-6 stimulated EC
supernatant retained CD34 and CD133, which was also
the case in BSA- and non-stimulated cultures. Besides,
cells grown in supernatants from IL-6, BSA or non-stimu-
lated EC had the best plating efficiencies, the highest

number of 5-week cobblestones and LTC-IC indicating
that mainly primitive progenitors expanded. Considering
the fold increases in BSA- and non-stimulated superna-
tant, one could hypothesize that IL-6 had no effect on the
endothelial cells despite STAT3 phosphorylation. How-
ever, from the five conditions tested, only cells grown in
IL-6-stimulated EC supernatant had a significantly higher
plating efficiency than freshly isolated HPC. Therefore, IL-
6 seemed to induce the secretion of endothelial factors
propagating the expansion of hematopoietic progenitors,
whereas IL-1β and IL-3 induced the secretion of endothe-
lial factors promoting the proliferation of myeloid precur-
sors. In former studies [27], IL-6 could only affect
endothelial chemokine production in the presence of sol-
uble IL-6 receptor. As we used fetal and human bovine
serum in our culture conditions, the soluble IL-6 receptor
was probably drawn from the applied media supple-
ments.

The add-back of interleukins to non-stimulated EC condi-
tioned medium did not significantly influence cell expan-
sions compared to non-stimulated supernatant which
speaks against a contaminating interleukin effect. Intrigu-
ingly, non-stimulated and BSA-generated supernatants
also induced the proliferation of HPC, although at much
lower levels. BSA stimulation actually increased endothe-
lial G-CSF, GM-CSF, IL-6 and IL-8, though the levels were
much lower than in IL-1β stimulated supernatants
(unpublished data). Following a period of two weeks,
fold increases were equivalent to those determined in IL-
6 conditioned medium, and the results of CAFC in com-
bination with LTC-IC suggest that the expansion of undif-
ferentiated HPC was initiated. This stands in line with
other studies demonstrating that endothelial cells support
HPC survival and expansion [14,28,29]. As co-infusion of
bone marrow mesenchymal cells with bone marrow HPC
supports engraftment of bone marrow transplants [30],
simultaneous application of human umbilical cord EC
with cord blood-derived HPC could improve the survival
of cord blood grafts. Accordingly, cerebral endothelial
cells were found to be very promising adjuvants for bone
marrow regeneration in animal studies [31]. Human
umbilical cords, a much more accessible source of
endothelial cells, could be used in the same way, being
isolated whenever cord blood is collected.

In the absence of interleukins, more progenitors
expanded, if they were cultured in direct contact with EC.
When interleukins are added, however, a different sce-
nario opens. Like Jazwiec and colleagues we found a
higher cell expansion, if HPC and EC were cultured sepa-
rately from each other [4]. This implies that ligand-recep-
tor interactions between both cell types prevents HPC
proliferation. Another reason could be that endothelial
cells reabsorb hematopoietic growth factors in a para-
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Granulocytic functionalityFigure 4
Granulocytic functionality. Phagoburst results are shown in response to PMA, fMLP and E. coli of HPC expanded in IL1-
stimulated EC and following further differentiation by G-CSF in comparison to granulocytes differentiated by cytokines alone. 
A) HPC differentiated following expansion in IL1-stimulated EC supernatant; B) HPC differentiated following expansion in IL1-
stimulated EC supernatant and overnight storage in human serum prior to analysis; C) HPC differentiated in a cytokine combi-
nation of erythropoietin, SCF and G-CSF without endothelial supernatant. Shown is one representative result of eight inde-
pendent experiments. Shaded histograms: sample fluorescence; white line: negative control. PMA: phorbol 12-myristate 13-
acetate; E. coli: Escherichia coli; fMLP: N-formyl-methionyl-leucyl-phenylalanin.
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crine-autocrine fashion [32], thereby competing with the
HPC for growth factor internalization and consumption.
Since endothelial cells are positive for c-kit, the receptor
for stem cell factor, as well as GM- and G-CSF receptors
[33,34], this could very well be the case.

Expanded cells from all IL culture conditions could be dif-
ferentiated into functionally mature granulocytes with
typical granulocytic immunephenotypes and burst activi-
ties double as high as of HPC grown in cytokines alone.
Although high reactions of cells generated in IL-stimu-
lated medium were determined in response to PMA and
fMLP, oxygen bursts in response to E. coli were initially
below the negative control. This was related to high spon-
taneous burst rates, which disappeared, if the cells had
been incubated in human serum overnight. That does
imply that the culture medium contained fluorescent
components which needed to be washed out before chal-
lenging the cells. One also has to bear in mind, that bac-
terial toxins and PMA are known as strong stimulators of
ADAM17, a protease which is responsible for the shed-
ding of various cell proteins like TNFα and the soluble IL-
6 receptor [35,36]. Once transfused in vivo, these cells
might therefore be functionally competent.

In bioengineering, the use of feeder layers has been repeat-
edly recommended for HPC expansion [37-41]. Coculture
models usually include the administration of stroma cells
[42,43], while other groups focus on the application of
endothelial cells [28,44,45].

In concordance with previous results on TNFα-stimulated
EC [14], IL-stimulated bone marrow fibroblasts did not
lead to the same fold increases as endothelium. In con-
trast to findings from other groups [46-48], IL-3 stimu-
lated bone marrow fibroblasts led to significantly lower
cumulative cell counts. One reason could be the fact that
we used only single cytokines and not a combination of
hematopoietic growth factors. Another could lie in the
different sources of stroma cells [49]. We used either pri-
mary bone marrow stroma cells isolated from leukemic
patients or the murine stroma cell line MS-5. The latter is
known to support the expansion of primitive hematopoi-
etic progenitor cells [50] in the absence of growth factors
[51]. Human interleukins don't necessarily have to have a
stimulatory effect on these. Stroma cells from leukemic
patients are subjected to several variables like patient's
age, stage of disease or therapeutic regime, which can
account for an abnormal milieu in cell cultures. Though
EC from human umbilical cords also vary interindividu-
ally, they still are of comparable quality.

Since endothelial cells and cord blood HPC can be iso-
lated from the same donor simultaneously, cytokine stim-
ulated EC could be used in autologous bioreactors for the

expansion and differentiation of homologous blood cells.
This distinguishes endothelial cells as an attractive feeder
population, permitting spatial separation of feeder and
expanding cells. As supernatants of IL-stimulated EC led
to higher fold increases as contact and indirect contact cul-
tures, sequential instead of simultaneous culturing is pos-
sible starting with endothelial cell plating and harvesting
of supernatants followed by HPC expansion cultures.

In conclusion, supernatants from interleukin-stimulated
endothelial cells can be used to expand and differentiate
hematopoietic cells ex vivo. While IL-6 helped to preserve
HPC functionality, IL-1β and IL-3 rather induced the dif-
ferentiation of granulocytic precursors. Further genetic
analyses, e.g. by oligonucleotide microarrays of stimu-
lated and non-stimulated EC could further clarify which
factors involved in HPC expansion and/or differentiation
are produced by endothelial cells.

Methods
Cord blood, HPC isolation
Cord blood specimens were collected in heparin-coated
syringes and blue caps from full-term delivered neonates,
following written consents from the mothers. Mononu-
clear cell fractions were isolated by Ficol (Biochrom, Ber-
lin, Germany) followed by two wash steps. CD34(+) HPC
were immunomagnetically selected as previously
described [52].

IL-stimulation of endothelial and bone marrow stroma 
cells
Human umbilical cord EC were obtained by flushing
umbilical veins with 0.1% collagenase (Sigma-Aldrich,
Steinheim, Germany) [14]. The cells were then cultured in
endothelial cell conditioning medium consisting of M199
(Biochrom, Berlin, Germany) supplemented with 16%
fetal bovine serum (FBS, Hyclone, South Logan, UT), 4%
human serum from healthy volunteers, 2 mM L-
glutamine, 0.15 mg/ml endothelial growth factor supple-
ment (Intracel; Rockville, MD), 0.015 mg/ml heparin and
1% fungicide. Bone marrow stroma cells were harvested
from bone marrow aspirates from leukemia patients [14]
and cultured in RPMI 1640 supplemented with 10% FBS,
2 mM L-glutamine and 100 U/ml penicillin/streptomy-
cin. In two experiments, cells from the murine bone mar-
row line MS-5 (kindly provided by Katja Weisel,
Germany) were used. Confluent monolayers from pas-
sages two to six were stimulated with either IL-1, -3 or -6
(all Peprotech, Rocky Hill, MD) for 16 hours. All
cytokines were dissolved in 0.01% BSA and phosphate
buffered saline (PBS). Supernatants were filtered through
a 0.2 μm sterile filter and diluted 1:2 with stem cell
medium. Stem cell medium consisted of Iscove's modi-
fied Dulbecco's medium (IMDM, Biochrom) supple-
mented with 20% FBS, 2 mM L-glutamine, 50 μg/ml
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gentamicin and 7.3 × 10-5 M mercaptoethanol. Optimum
duration of interleukin-stimulation was evaluated in
time-course experiments (2, 4, 8, 16, 24 and 48 hours).

HPC and EC Culture Systems
In supernatant samples, CD34(+) hematopoietic progen-
itor cells (104-105 cells in 3 ml) were cultured in a 1:2 mix-
ture of IL-1β, IL-3 or IL-6 stimulated EC supernatant and
stem cell medium in 6-well culture plates. Interleukin
concentrations for endothelial stimulations ranged from
1 to 10,000 U/ml. Control samples consisted of non-stim-
ulated supernatant and supernatant stimulated with 20 μl
of 0.1% bovine serum albumin (1 μg/mL, Sigma-Aldrich)
leading to a final concentration of 10 ng/ml. Other con-
trols consisted of non-stimulated endothelial supernatant
mixed with stem cell medium and supplemented with IL-
1β, IL-3 or IL-6 as well as a mix of endothelial and stem
cell medium supplemented with interleukins. Cultures
were fed once to twice a week by removal of 0.5 ml and
replacement with 0.7 ml supernatant-media-mix.

Cell counts, morphology, immune phenotype and colony
formation were determined following a period of one and
two weeks. Initial experiments included the comparison
of direct contact and indirect contact systems. Here, HPC
(104-105) were either cultured in direct contact with a con-
fluent EC monolayer or on top of a 0.4 μm microporous
transmembranes (Corning costar, http://www.corn
ing.com) above the EC layer. On five occasions, endothe-
lial cells were replaced by bone marrow fibroblasts.

Cell counts, morphology and flow cytometry
After seven, fourteen and, for cumulative cell counts, after
21 days viable cells were determined by a hemocytometer
using trypan blue. In direct contact cultures, HPC were
distinguished from EC by assessing the number of
CD45(+) cells by flow cytometry.

Frequencies of CD14, CD15, CD16, CD19, CD33, CD34,
CD45, CD66 (all BD Pharmingen, San Diego, CA) and
CD133 (PE-labeled, Miltenyi Biotech, Bergisch-Gladbach,
Germany) positive cells were measured by dual staining as
described previously [53]. Briefly, 0.5 – 1 × 105 cells were
washed once with 1 ml PBS, and resuspended in 100 μl
plus 1.8 μl anti-human FITC or PE labeled antibodies.
After incubation for 20 minutes at 4°C, excess antibodies
were removed and stained cells were analyzed by flow
cytometry (FACScan, Becton Dickinson, Heidelberg, Ger-
many).

Light microscopy of cytospin preparations were carried
out by Diffquik staining [54], and pictures were taken by
a SC 35 Type 12 camera (Olympus, Hamburg, Germany)
at 40× magnification.

Hematopoietic colony formation
The plating efficiency of the isolated HPC was analyzed by
plating 1 × 103 CD34(+) hematopoietic progenitor cells in
1 ml of methylcellulose (Stem cell Technologies, Vancou-
ver, BC) supplemented with 30% fetal calf serum, 20 ng/
ml c-kit ligand (stem cell factor, Peprotech), 20 ng/ml IL-
3, 6 U/ml erythropoietin (Roche, Hertfordshire, GB) and
100 ng/ml granulocyte-macrophage (GM) colony-stimu-
lating factor (CSF, Peprotech) [52]. Input numbers of cul-
tured cells were adjusted by multiplying 103 with the fold
increases. After two weeks, cultures were scored for granu-
locyte-macrophage colony-forming units (CFU-GM),
mixed colony forming units (CFU-Mix) and burst-form-
ing units erythrocyte (BFU-E). Colonies consisting of
more than 50 cells were scored using an inverted micro-
scope and the plating efficiencies were determined by
dividing the total number of colonies by the number of
input cells. Each measurement was performed in tripli-
cate.

Cobblestone area-forming cells (CAFC) and long-term 
culture initiating cells (LTC-IC)
CAFC assays were performed as previously described [55].
In brief, appropriate numbers of freshly isolated or
expanded cells were seeded onto confluent murine bone
marrow MS-5 stroma in 12.5-cm2 flasks in α-MEM
medium supplemented with 12.5% horse serum (PAA
Laboratories, Pasching, Germany), 12.5% FBS, 10-5 M
hydrocortisone, 2 mM L-glutamine, 50 μg/ml gentamicin,
and were demi-depopulated on a weekly basis. Cobble-
stone areas were scored at two and five weeks using an
inverted phase microscope to identify phase-dark hemat-
opoietic areas of at least five cells beneath the stromal
layer. The LTC-IC content was determined by assaying for
secondary colony forming cells in subsequent methylcel-
lulose cultures following five weeks of stromal co-culture.

Granulocytic differentiation
For granulocytic maturation, two-week expanded cells
were cultured for an additional week in IMDM supple-
mented with 20% FBS and 100 ng/ml G-CSF (4 × 105 cells
in 2 ml). In some experiments, cells were kept at 37°C in
autologous or pooled human serum prior to their func-
tional assessment. Oxygen radical formation was deter-
mined using the commercially available Phagoburst test
(Orpegen, Heidelberg, Germany) as recommended by the
manufacturer [56]. Briefly, cultured cells were subjected to
external stimuli such as opsonized E. coli, fMLP or PMA.
Samples without any additional stimulus served as nega-
tive control. Dihydrorhodamine 123 (fluorescent rhod-
amine) indicated the presence of free oxygen radicals,
which corresponded to NADPH oxidase activity. Cells
were gated on granulocytes and their rhodamine fluores-
cence was measured by flow cytometry.
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Statistical analysis and ethics
Student's t-tests for paired samples to compare results
from interleukin- and non-treated or BSA-treated EC, cal-
culation of means, standard errors and p-values were per-
formed using Microsoft Excel 2000, Version 9.0.
Differences with p-values less than 0.05 were termed as
significant. The study was approved by the ethical review
board of the Charité, registration number EA1/012/08.
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CD133 and CD34 expression of HPC cultured in IL-6 stimulated 
endothelial supernatant. after one week in culture (A) CD133 and CD34 
were still present, whereas a distinct subset of CD133(+) cells did not 
stain for CD34. Reduced CD34 was paralleled by reduced CD133 posi-
tivity in the second week (B), while still more CD133(+)CD34(-) cells 
than double positive cells were detected.
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