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Background: In former studies we showed in a rat model of renal transplantation that Mesenchymal Stromal Cells
(MSC) prevent acute rejection in an independent way of their endowing in the graft. In this study we investigated
whether MSC operate by resetting cytokine network and Scatter Factor systems, i.e. Hepatocyte Growth Factor
(HGF), Macrophage Stimulating Protein (MSP) and their receptors Met and RON, respectively.

Methods: MSC were injected into the renal artery soon after reperfusion. Controls were grafted untreated and
normal rats. Rats were sacrificed 7 days after grafting. Serum and renal tissue levels of IFN-y, IL-1, IL-2, IL-4, IL-6,
IL-10, MSP/RON, HGF/Met systems, Treg lymphocytes were investigated.

Results: In grafted untreated rats IFN-y increased in serum and renal tissue and IL-6 rose in serum. MSC prevented
both the phenomena, increased IL-10 serum levels and Treg number in the graft. Furthermore MSC increased serum
and tissue HGF levels, Met tubular expression and prevented the suppression of tubular MSP/RON expression.

Conclusions: Our results demonstrate that MSC modify cytokine network to a tolerogenic setting, they suppress
Th1 cells, inactivate monocytes/macrophage, recruit Tregs. In addition, MSC sustain the expression of the Scatter
Factor systems expression, i.e. systems that are committed to defend survival and stimulate regeneration of tubular
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Background

Mesenchymal Stromal Cells (MSC) are pluripotent cells
that differentiate into various mature cell types [1,2]. A
distinctive property of MSC is that they are not im-
munogenic [3,4], and inhibit cell and antibody-mediated
immunity in several ways, including the induction of T
regulatory cell differentiation [5-14]. In a rat model of
kidney transplantation we found that MSC injected in the
graft improved its function and attenuated renal injury, re-
ducing significantly tubulitis, vasculitis, glomerulitis and
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immune cell infiltration. Furthermore, we traced MSC in
the recipient tissues and found an irrelevant number of
them in the kidney. The last finding suggests that media-
tors account for the protection provided by MSC to the
renal graft [15]. A renal protective effect of MSC was
shown also in a mouse model of renal transplantation, in
which MSC suppressed rejection when they were infused
before transplantation, while post-transplant infusion
worsened graft outcome [16]. Interestingly, MSC injected
before transplantation were found in lymphoid organs and
did not localize in the graft, confirming the need for some
mediation of MSC effects. Indeed a mediated action of
MSC has been proved in diverse experimental disease
models [17-23], and cytokines have been proposed to play
the role of effectors [24-32]. However, as yet no evidence
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has been given that MSC modify the cytokine network in
the setting of renal graft, so that we have felt it interesting
to test the hypothesis in the present study.

In addition, we have thought of the Scatter Factors as
a system that could be reset by MSC and provide protec-
tion in the renal graft model. The Scatter Factor (SF)
system consists of Hepatocyte Growth Factor (HGF) and
Macrophage Stimulating Protein (MSP) and their recep-
tors Met and RON respectively. There are several rea-
sons to think that MSC operate through the SF system.
In fact, the SFs are expressed in normal kidney [33-35]
and participate in the regulation of cell growth and in-
flammation in various renal diseases including auto-
immune forms, e.g. they stimulate renal cell growth and
modulate monocyte traffic in the kidney [36-42]. Fur-
thermore, we demonstrated that in experimental anti
Thy-1 nephritis MSC improve renal injury by modulat-
ing SFs [43].

In summary, we investigated whether MSC injected
into the renal graft modify the cytokine network and SFs
in a way that fits with the concept that these systems are
the effectors of MSC-induced graft protection.

Results and discussion

Characterization of rat MSC

As detailed elsewhere the MSC used in the present study
were isolated from Sprague Dawley EGFP rats and differ-
entiated into osteogenic and adipogenic cells. Flow fluoro-
cytometry analysis showed that MSC were positive for
CD90 (295%) and CD73 (295%) and were negative for
CD45 (<5%), CD11b (<5%), CD34 (<5%), CD79 (<5%).

Tissue and serum levels of cytokines

The expression in renal tissue of IFN-y, IL-10, IL-6, IL-
2, IL-1 was significantly increased in grafted kidneys not
injected with MSC compared with native kidneys. MSC
injection attenuated significantly the rise of IFN-y and
caused a further increase of IL-10. MSC did not modify
tissue levels of any else cytokine. IL-4 tissue levels were
similar in all groups (Table 1). In MSC untreated rats
grafting was associated with a rise in serum levels of all
tested cytokines, except for IL-4. MSC treatment reduced

Table 1 Cytokine levels in renal tissue
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serum IFN-y and IL-6 and increased IL-10 compared to
untreated rats (Table 2).

Tubular necrosis and tubular cell proliferation
Tubules with necrotic cells were significantly less in
grafts injected with MSC compared to untreated grafts
(Figure 1, panel a). The expression of PCNA was sup-
pressed in grafts not injected with MSC, but it was
spared by MSC treatment (Figure 1, panel b).

Foxp3 cells infiltrate

In the grafted kidneys not injected with MSC we found
few Foxp3 positive cells (2 + 1/section) and the number in-
creased in MSC treated rats (10 + 5/section, p < 0.05). In
the spleen we detected 15 + 10 cells/section (Figure 2).

HGF/Met System

Serum and renal tissue HGF levels, HGF mRNA expression in
kidneys

HGF serum levels significantly decreased in grafted rats
that were not injected with MSC compared to control
normal rats. MSC treatment returned serum HGF to
normal levels (Figure 3, upper panel).

Both HGF protein and HGF mRNA were reduced in
grafted kidneys compared to native organs. MSC injec-
tion prevented the loss of HGF protein (Figure 3, middle
panel), although HGF mRNA levels were lower probably
for a feedback mechanism (Figure 3, lower panel).

Renal expression of Met

The widespread expression of Met protein in tubules of
native kidneys (Figure 4, panel A) was almost completely
abrogated in untreated grafted kidneys (Figure 4, panel B).
MSC infusion prevented Met loss (Figure 4, panel C). The
result was confirmed by Western Blot for Met performed
on kidney tissue (Figure 4, lower panel).

MSP/RON system

Renal expression of MSP/RON

Immunohistochemistry showed that MSP was expressed
in tubular cells of native kidneys (Figure 5 panel a) and
it was undetectable in untreated grafts except for some

pg/mg A B C BvsC p

INF-y 35.2+0.02° 206.3 + 64.4° 116.7 £56.1 ! Sp <0.005 vs B, C; °p < 0.005 vs C
IL-10 8.6+ 1.4° 25.53+0.7° 42.2+10.6 1 Sp <0.005 vs B, C; °p < 0.001 vs C
IL-6 117.7£11.36° 245.5+28.8 283.0 £32.7 NS °p <0.001 vs B, C

IL-2 140.6 +0.14° 227 +93.1 262+103.4 NS °p < 0.005 vs B, C

IL-1 235.8 + 134.4° 505.4 £219.7 493+ 142 NS °p <0.005 vs B, C

IL-4 13.05+1.4 26.6+6 32.8+5.2 NS NS

Groups are defined in Figure 8. A indicates cytokine levels in kidneys of healthy rats, B and C indicate cytokine levels in renal tissue of recipient rats 7 days after
transplantation. Data represent means + SD. The symbols § and ° indicate the different statistical power.
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pg/ml A B C Bvs C p

INF-y 14+0.08° 151.2+78.6° 86.7 £32.1 ! °p <0.0001 vs B, C; 5p < 0.05 vs C
IL-10 0° 83.9+9.7% 139.1+20.4 1 °p <0.0001 vs B, C; *p < 0.05 vs C
IL-6 0° 183+61.01" 14.09 + 0.06 ! °p <0.0001 vs B, C; *p < 0.05 vs C
IL-2 0° 61+24.7 94.6 61 NS °p<0.05vs B, C

IL-1 0° 1515+ 613 1843+ 670 NS °p <0.005 vs B, C;

IL-4 0 0 0 NS

Groups are defined in Figure 8. A indicates serum cytokine levels in healthy rats. B and C indicate serum cytokine levels in recipient rats 7 days after
transplantation. Data are means + SD. The symbols §, °, *, # indicate the different statistical power.

tubules in which it was distributed with luminal pattern
(Figure 5, panel b). MSC restored tubular MSP in trans-
planted rats, but in a different pattern from normal, i.e.
luminal instead of cytoplasmic (Figure 5, panel c). As
MSP also its receptor, RON, was diffusely expressed with
cytoplasmic pattern in tubules of healthy rats (Figure 5,
panel d), while in transplanted rats with acute rejection
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Figure 1 Tubular necrosis and tubular cell proliferation.
Groups are defined as in Figure 8. Panel a: Columns represent the
ratio between necrotic tubules number and total counted tubules
(bars are SD). °p < 0.001 vs C; *p < 0.0001 vs B and C. Panel b: Boxes
represent 25-75% percentile of tubular PCNA-positive cell number/
HPF (bars are medians, whiskers: min to max). *p < 0.005 vs A and B.

tubular RON expression was significantly decreased
(Figure 5, panel e) and reappeared in tubules of allo-
grafts treated with MSC (Figure 5, panel f). In untreated
grafts RON was expressed also by some inflammatory
cells in the interstitium, but it was absent in infiltrating
cells of MSC treated rats (Figure 5, panels e and f).

MSP mRNA expression in kidneys

RT-PCR showed a significant decrease of MSP mRNA in
the untreated graft. MSC injection was associated with
recovery of MSP mRNA expression (Figure 6).

MSC express MSP mRNA
We performed in vitro experiments aimed to understand
whether MSC are possible producers of MSP.

PBMC known to be constitutive MSP producers (44)
were used as controls. The expression of MSPmRNA was
investigated by quantitative PCR in PBMC and in MSC.
The expression of MSP mRNA in PBMC was held as the
arbitrary unit. MSC expressed a greater amount of consti-
tutive MSP compared with PBMC (Figure 7).

RON mRNA and RON protein expression in monocytes
RON mRNA expression normalized to the beta-actin
significantly increased in monocytes stimulated in vitro
for 6 h with LPS and INF-y than in monocytes cultured
in basal condition (C) respectively (LPS: 3,8 + 0,5 fold in-
crease, p<0.001 vs C) (IFN-y: 70,.03 £ 0,3 fold increase,
p <0.001 vs C) (data not showed).

RON positive monocytes percentage in basal condition
(C) was 28,4 +2%, but it increased significantly after
in vitro monocytes stimulation for 24 h with respectively
LPS and INF-y (LPS: 54,4+ 4%, p<0.05 vs C; IFN-Y:
56,7 + 3.5%, p < 0.05 vs C) (data not showed).

Conclusions

We formerly showed that MSC injected in a rat model
of renal transplantation attenuated the severity of rejec-
tion and we found also that such effect was independent
of MSC endowing in the transplanted kidney. The latter
findings indicate that MSC operate through intermediate
effectors, as it was elegantly demonstrated by Bi et al. [29]
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of group C (Magnification X 200).

Figure 2 Foxp3 positive cells. Foxp3 staining of representative kidney and spleen sections. Panel a shows Foxp3 positive cells in cortical tubules
after 7 days from transplantation in rats of group C (Magnification X400). Panel b shows Foxp3 positive cells in medullary tubules after 7 days from
transplantation in rats of group C (Magnification X 200 and X400). Panel ¢ shows Foxp3 positive cells in spleen after 7 days from transplantation in rats

fold change. °p < 0.05 vs A.
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Figure 3 Serum HGF levels, HGF mRNA and HGF protein in
kidney of control and allografted rats on day 7. Groups are
defined as in Figure 8. Upper panel: serum HGF levels in A, B, C groups
of rats. Columns are means, Bars are SD. *p < 0.005 vs A and C. Middle
panel: Western blot performed with anti-HGF antibody in renal tissue
of groups A, B, C. The p69-kDa band represents the a sub of active
heterodimer HGF. Lower panel: HGF mRNA expression in renal tissue
analyzed by RT PCR in all groups of rats. Columns indicate HGF mRNA
expression normalized to the beta-actin expression and converted into

who reproduced MSC effects by substituting MSC for
their culture medium.

Aim of the present study was to identify possible effec-
tors of the protection provided by MSC in the renal
transplant model. Actually, the study consisted of a
straightforward continuation of our former ones in
which we demonstrated that MSC prevent the rejection
[15,44].

We have pointed out two systems: (i) the cytokine net-
work that regulates the immune response in acute rejec-
tion, and (ii) the Scatter Factors systems that have been
shown to promote repair and to modulate immune cell
traffic in renal tissue in different models of kidney dis-
ease [36-42,45]. In addition to confirming that MSC sig-
nificantly decrease CD4, CD8 cells and monocytes
infiltration [15], here we report that on day 7 of grafting
in MSC untreated rats, e.g. rats with acute severe rejec-
tion IFN-y and IL-10 levels rose impressively both in
serum and in graft tissue, while MSC injection prevented
the rise in IFN-y and simultaneously it caused a further
rise in IL-10 levels. Since IFN-y is a nominal marker of
Thl lymphocyte activity, while IL-10 is Th2 cells product
[46,47], these results suggest that MSC reset the balance
between the two T helper subpopulations, contrasting the
prevalence of Thl over Th2. MSC effects on T cell subsets
included also a rise of Foxp3+ cells number, i.e. Treg lym-
phocytes in the transplanted kidney. This finding confirms
that MSC induce Tregs, as shown in patients with SLE
[48] and renal graft [49] in which circulating Tregs rose
after MSC infusion and in a mouse model of renal trans-
plantation in which pre-transplant MSC infusion was as-
sociated with a significant prolongation of graft survival by
Treg-dependent mechanism [16]. Altogether the results of
our study suggest that MSC reset T cell subpopulations,
decreasing the prevalence of Thl cells that are main effec-
tors of rejection, increasing the activity of the immunosup-
pressive Th2 subset and recruiting tolerogenic Tregs. In
addition to changing the T cell phenotypic distribution,
MSC blocked IL-6 overproduction, a major inflamma-
tory product of monocyte/macrophage cell and effector
of acute rejection [50,51]. Therefore, MSC suppressed
the cytokines that drive the graft assault by the two
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Figure 4 Met expression in kidney of control and allografted rats on day 7. Groups are defined as in Figure 8. Upper panel: Met expression
in representative renal sections of control and allografted rats on day 7. Panel A: normal kidney, Panel B: untreated allograft, Panel C: MSC treated
allograft (Magnification X200). Middle panel: Bars represent the medians of Met positive tubules number/HPF in all groups of rats, boxes represent
the 25-75% percentile, whiskers: min to max. °p < 0.001 vs B, * p < 0.005 vs A, * p < 0.005 vs C. Bottom panel: Western blot performed with
anti-Met antibody in renal tissue of all groups of rats. The p170-kDa band represents pro-Met, the p140-kDa band represents mature Met
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major cell effectors of acute rejection, Th1l lymphocytes
and monocytes.

A new information given by our study is that MSC
have relevant effects on the Scatter Factor systems. In
fact, in MSC untreated rats the HGF/Met couple was
suppressed in serum (HGF) and in renal tissue (both
HGF and Met). MSC prevented such abatement of
HGEF/Met, thus saving a system that has been proved to
protect the kidney in diverse experimental models of
renal disease. Actually, HGF has several features that fa-
cilitate renal healing: it stimulates proliferation and
blocks apoptosis of injured tubular cells, it induces for-
mation of new tubular structures in renal epithelial cells
and generates new capillary vessels [52-54], it downregu-
lates the inflammatory and immune response, e.g. by
inactivating dendritic cells [55,56], resetting cytokine
network and addressing transformation of T cells to the

Th2 phenotype [57]. HGF was shown also to interfere
with the expression of immune co-stimulatory molecules,
and to prolong survival of cardiac allograft by preventing
acute rejection in a rodent model [58]. Furthermore, in a
model of acute renal rejection, administration of recom-
binant HGF expanded Treg cell subset [59]. Indeed, there
is an impressive overlap between the activities that are at-
tributed to HGF and the changes induced by MSC in
grafted rats, e.g. the shift of T cells to a tolerogenic pheno-
type, the rescue of tubular cells from death and the in-
crease in tubular cell proliferation, that are the most
distinctive features of HGF activity on renal tubular cells.
Therefore, we believe that HGF/Met is a system that me-
diates the protective MSC effect on the kidney graft. Inter-
estingly, MSC induced a rise in HGF levels also in another
rat model of renal diseases, i.e. anti-Thy 1 nephritis [43]
and ischemia-reperfusion injury [60] and in both models
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Figure 5 MSP and RON expression in kidney of control and allografted rats on day 7. Groups are defined as in Figure 8. Panel a: MSP
expression in representative renal section of normal kidney, note the strong cytoplasmic pattern of staining, panel b: MSP expression in representative
renal section of untreated allograft, note the almost complete absence of MSP expression, panel ¢: MSP expression in representative renal section of MSC
treated allograft, note the luminal pattern of MSP staining (Magnification X200). Panel d: RON expression in representative renal sections of normal kidney,
panel e RON expression in representative renal sections of untreated allograft, note the presence of RON positive inflammatory cells and the significant
reduction of RON tubular staining, panel f: RON expression in representative renal sections of MSC treated allograft, note the reappearance of RON tubular
staining and absence of RON positive inflammatory cells (Magnification X200). Panel g: Bars represent the medians of MSP positive tubules number/HPF in
all groups of rats; Boxes represent 25-75% percentile of MSP positive tubules, whiskers: min to max) i: °p < 0.005 vs B; *p < 005 vs C, ° p < 001 vs A. Panel h:
Bars represent the medians of RON positive tubule number/HPF in all groups, boxes represent the 25-75% percentile, whiskers: min to max. *p < 0.01 vs C,
°p <0005 vs Band C.
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Figure 7 Semiquantitative MSPmRNA expression in PBMC, MSC
Figure 6 MSP mRNA expression of control and allografted rats. in basal condition evaluated by reverse transcription (RT)-PCR
Groups are defined as in Figure 8. MSP mRNA expression in renal that used 1 mg of RNA as the template. PBMC known for their
tissue analyzed by RT PCR in all groups of rats. Columns indicate capacity to produce MSP were used as controls. Columns indicate
MSP mRNA expression normalized to the beta-actin expression and MSP mRNA expression normalized to the beta-actin expression and
converted into fold change. *p < 0.05 vs A and C. converted into fold change. *p < 0.001 vs.




Gregorini et al. BMC Immunology 2014, 2:44
http://www.biomedcentral.com/1471-2172/2/44

HGF overexpression was associated with prevention of
renal damage.

In contrast to the abundant literature available on the
pleiotropic activities of HGF/Met, the homologous factor
MSP and its receptor RON are less known and their role
in renal physiology and disease has been scarcely investi-
gated. We have shown that tubular cells produce MSP
and that MSP and RON are diffusely expressed in the
normal kidney [33]. Studies in vitro have demonstrated
that MSP induces in tubular cells proliferation, resist-
ance to apoptosis, migration and branching morphogen-
esis, i.e. effects that altogether suggest a role of MSP
expressed in the kidney as an autocrine/paracrine factor
that protects survival and stimulates proliferation of
tubular cells. In fact, MSP was shown to attenuate renal
injury in the glycerol-induced model of acute renal fail-
ure [37]. In the present study we found that MSP and
RON were suppressed in renal grafts not injected with
MSC ie. in the setting of unopposed acute rejection.
MSC injection had significant effects on MSP/RON sys-
tem that consisted of (i) recovery of MSP mRNA levels
in tubular cells, (ii) recovery of MSP and RON expressed
in tubular cells with MSP shifted in a different cell loca-
tion, i.e. on the cell surface rather than inside the cyto-
plasm, (iii) suppression of RON in infiltrating monocyte/
macrophage cells. We interpret this combination as a
series of actions that benefit the kidney by (i) restarting
the translation of MSP and the production of MSP pro-
tein in an amount that makes it detectable in the tubular
cell (ii) shifting the MSP molecule to the cell surface, i.e.
in a site where it can meet its receptor and possibly acti-
vate it in an autocrine fashion (iii) suppressing RON in
monocytes thus restraining their ability to address tubu-
lar cells. As for the last effects, in order to understand
the underlying mechanism we designed an in vitro ex-
periment that demonstrated for the first time that MSC
express constitutively mRNA of MSP in amount greater
than that expressed by PBMC, i.e. a reference constitu-
tive MSP producer [61]. RON expression in monocytes
is induced by IFN-y. Since MSC suppress IFN-y both in
serum and in renal tissue, it seems reasonable that this
mechanism accounts for the absence of RON in mono-
cytes infiltrating the renal graft injected with MSC.

Recent studies in a mouse model of renal transplant-
ation have shown that MSC effects on graft function de-
pend on the time of their injection, i.e. MSC worsen
kidney function when injected after grafting, while they
prevent rejection and ameliorate renal outcome when
administered 1 or 7 days before the grafting [16]. These
observations have a relevant impact on deciding the
mode of MSC administration that should be used in
clinical transplantation. We have chosen to inject MSC
into the renal artery soon after reperfusion of the graft
for two reasons: (i) to avoid changes in MSC activity
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caused by their transit in the lung, and (ii) to administer
MSC in a setting that is easily reproducible in the cir-
cumstances of transplantation from a cadaver donor, in
which the identity of the recipient is known just at the
last minute. Our demonstration that this mode is feas-
ible offers a potential advantage, mainly because, once
our model is proven safe in humans, it allows to deliver
MSC to recipients of kidney from cadaver donors that
represent the majority of patients crowding the waiting
lists. However, the two models are hardly comparable
not only because of the different mode of administra-
tion, but also because the studies were performed in dif-
ferent species. Nonetheless it is interesting that both of
them give useful information to programme use of MSC
in humans, and both identify Tregs as effectors of MSC
immunosuppressive action. In summary, we have dem-
onstrated that the prevention of rejection provided by
MSC is associated with a shift of T cells to an immune
suppressive phenotype and with the recruitment of the
Scatter Factor systems. These observations identify can-
didate mediators of MSC activity.

Methods

Animals and experimental model

The present study was carried out as a straightforward
continuation of our former studies in a rat model of kid-
ney transplant in which we demonstrated that MSC pre-
vent severe rejection [15,44]. In fact, we used specimens
of serum and renal tissue that were sampled from the
same rats and were stored on purpose. The design of the
animal experiments is summarized in Figure 8. In brief,
11-week old Fisher F344 rats were used as kidney do-
nors, 7-week old Lewis RT1 rats were used as recipients
and Transgenic Sprague—Dawley rats (n=5) expressing
Enhanced Green Fluorescent Protein (EGFP) (Japan Slc,
Hamamatsu, Japan) were used as MSC donors [62].

We studied an allogeneic model (Fisher F344 to Lewis
RT1, 20 rats) of renal transplant in which both native
kidneys were excised soon before grafting and no im-
munosuppressive drug therapy was administered. The
experimental group consisted of ten rats that were in-
fused into the artery of the grafted kidney with 3x106
MSC in 1 ml of PBS (Sigma Aldrich, St. Louis, MO,
USA) (group C), soon after reperfusion. We used two
control groups, one of normal not grafted rats (n=5,
group A), one of grafted rats that were infused into the
graft artery with 1 ml of saline (n =10, group B). Blood
was drawn from the caudal vein at days 0 and day 7 and
serum was stored at —20°C. All the rats were sacrificed
at day 7, the kidneys and spleens were removed and cut
in two sagittal halves. One half was fixed in 10% forma-
lin, the other one was frozen in liquid nitrogen.

Animal studies have been conducted after the approval
by animal ethical committee of the University of Pavia.
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Figure 8 Experimental design. We studied a kidney transplant allogeneic model (Fisher to Lewis, 20 rats).
infused into the renal artery soon after graft reperfusion only with saline. 10 allografted rats (group C) were infused into the renal artery with 3 x 10°MSC in
1 ml of PBS soon after graft reperfusion. Bilateral nephrectomy was performed in all rats soon before transplantation. 5 healthy rats (Lewis) were the
control group (group A). No immunosuppressive therapy was administered. Blood was drawn from the caudal vein at day 0 (the day of transplantation,
before the surgery), and at day 7. All the rats were sacrificed at day 7. A: healthy rats. B: allografted rats treated with saline, C: allografted rats treated

10 allografted rats (group B) were

Cytokine levels

IFN-y, IL-1, IL-2, IL-4, IL-6, IL-10 serum levels were
measured in rats of control group and 7 days after trans-
plantation in allografted rats by ELISA (R&D Systems,
Minneapolis, USA). The same cytokines were measured
at day 7 in the graft by protein assay (Search Light Rat
Cytokine Array), (Pierce Chemical Company, Rockford,
IL, USA). All experiments were quadruplicated.

Renal morphology
Tubular necrosis, tubular cell proliferation, MSP, RON, Met,
Foxp3, ED1, GFP antigen expression
3-um thick sections cut along the sagittal plane of
formalin-fixed kidney were stained with periodic acid-
Schiff, and evaluated by two investigators in double
blind fashion, using an Olympus IX8 microscope con-
nected with a CCD camera and software imaging ana-
lysis Cell-R (Olympus America, Center Valley, PA, USA).
We scored for primary necrosis, i.e. necrosis that was
not associated with tubulitis, 40 nonoverlapping high-
power fields in 5 (HPF) not consecutive renal sections
for each animal and quantified tubular necrosis as the
ratio between necrotic tubules number and total tubules
counted. A tubule was counted as having necrosis when
tubular cells had one or more of the following features:
isometric vacuolization, cell membrane rupture with loss
of cytoplasm, nuclear fragmentation, detachment from
basal membrane. Tubular cell proliferation was evaluated

counting cells expressing Proliferating Cell Nuclear Anti-
gen (PCNA). Renal expression of PCNA, MSP, RON, Met,
ED1 antigen, Foxp3 and Green Fluorescent Protein (GFP)
were studied by immunohistochemistry in formalin fixed
tissue in 10 non-overlapping high-power fields of each
section. The sections of paraffin embedded tissue were
collected on poly-L-lysine-coated slides (Dako, Carpin-
teria, CA, USA), they were dewaxed in xylol, passed in a
decreasing series of alcohol, and finally rehydrated with
distilled water. Endogenous peroxidase was blocked with
H,0, 3.7% vol/vol followed by H,O for 15 min. After 3
washings in 150 mM of PBS the sections underwent
microwave antigen retrieval. Subsequently they were ex-
posed overnight at 4°C to the following antibodies: 1)
monoclonal mouse anti-PCNA antibody (Ab) (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), 1:200; 2) polyclonal
goat anti-mouse MSP Ab (Santa Cruz Biotechnology),
1:600; 3) monoclonal mouse anti human RON Ab
(Transduction Laboratories, Lexington, KY, USA),
1:750; 4) monoclonal mouse anti-human Met Ab
(Novocastra Laboratories Ltd, Newcastle, UK), 1:20, 5)
ED1 antigen, 1:80 (Serotec LtD, Oxford, UK), 6) anti
Foxp3 Ab, 1:50 (eBioscience Ltd, Hatfield, UK), 7) mono-
clonal mouse anti-GFP antibody IgG1, diluted 1:1000 (Che-
micon International, Temecula, CA, USA). After 3
washings in PBS the immunocomplex was visualized with
the biotin-streptavidin-peroxidase complex and 3,3-diami-
nobenzidine (Dako, Glostrup, Denmark). Sections were
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faintly counterstained with Harris hematoxylin. Negative
controls included both omission of the primary Ab and
substitution of IgG for primary antibodies. Positive con-
trols for EGFP positive cells were sections of kidney of
EGEFP rat. We counted the number of PCNA, Foxp3, GFP
positive cells, MSP, RON, Met positive tubules number
and RON positive interstitial cells in ten renal sections for
each animal.

HGF serum levels

HGF serum levels were measured in control and allo-
grafted rats 7 days after transplantation by ELISA (Insti-
tute of immunology, Tokyo, Japan). All experiments
were quadruplicated.

Western blot for HGF, Met

Tissue samples were frozen at —70°C in liquid nitrogen im-
mediately following nephrectomy. Tissues were pulverized
with a Mikro-Dismembrator (B.Braun Biotech Inter-
national, Melsungen, Germany) in the presence of liquid
nitrogen. The powdered whole tissues were washed twice
with PBS and homogenized in ice cold buffer containing
10 mM PIPES, pH 6.8, 100 mmol/L NaCl, 5 mmol/L
MgCl,, 300 mmol/L sucrose, 5 mmol/L ethylene-glycosbis-
(P—aminoethyl ether)-N-N’-tetraacetic acid (DIM buffer),
1% Triton X-100, 100 pmol/L sodium ortho-vanadate, and
protease inhibitors (aprotinin 10 pg/mL, pepstatin 10 pg/
mL, leupeptin 50 pg/mL, soybean trypsin inhibitor
100 pg/mL phenylmethanesulfonyl fluoride 1 mmol/L)
(Sigma-Aldrich). Equal amounts of protein (800 pg), deter-
mined using the BCA Protein Assay Reagent Kit (Pierce
Chemical Company), were separated on 7,5% sodium
dodecylsulfate-polyacrylamide gel electrophoresis and
transferred to nitrocellulose Hybond filters (Amersham -
GE Healthcare, Little Chalfont, Buckinghamshire, UK).
Filters were probed with goat polyclonal anti HGF a Ab
(c-20, Santa Cruz) that recognizes the « subunit of active
heterodimer HGEF, the rabbit polyclonal anti Met Ab that
recognizes pro-Met and mature Met [ subunit (c-28,
Santa Cruz). The specific binding was detected by the en-
hanced chemiluminescence system ECL-Plus (Pierce
Chemical Company).

In vitro experiments
Cell cultures
Peripheral blood mononuclear cells (PBMC) were iso-
lated from rat blood by standard Ficoll-Hystopaque
density gradient separation (Sigma-Aldrich). Monocytes
were collected after 45 min of adherence to plastic cul-
ture plates and resuspended in RPMI 1640 medium, FCS
10%, and penicillin/streptomycin 1% (Invitrogen, Carlsbad,
CA, USA) at 37°C in humidified 5% CO2 atmosphere.

To understand whether IFN-y modified monocytes
RON expression, we studied RON mRNA and RON
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protein in circulating monocytes soon after sampling
and in monocytes cultured in absence and presence of
LPS (10 pg/ml, Sigma - Aldrich) and INF-y (10 ng/ml,
R&D Systems) for 6 h and for 24 h respectively.

Monocytes RON mRNA, mesenchymal stem cells MSP
mRNA, Renal MSP mRNA and HGF mRNA expression

Total RNA was extracted from renal tissue and cell cul-
tures using respectively trizol method and guanidine-
based RNeasy” Mini Kit (QIAGEN GmbH, Hilden,
Germany). All RNA was treated with DNase from RNase-
Free DNase Set (QIAGEN) and dissolved in nuclease free
water. Extracted RNA was tested for quantity and integrity
by spectrophotometric analysis (NanoDrop - Thermo Sci-
entific, Waltham, MA, USA). A total of 1 ug of RNA per
condition was reverse transcribed into complementary
DNA (cDNA) through 1st Strand ¢cDNA Synthesis Kit for
Real Time (RT) -PCR (AMV) (Roche Applied Science,
Penzber, Germany). cDNA was used to perform RT-PCR
analysis in 96-well optical reaction plates, using ABI prism
5700 (Applied Biosystems, Foster City, CA, USA) and the
5-exonuclease assay (TagMan technology) in a volume of
25 pl reaction containing TagMan Universal Master Mix,
optimized concentrations of FAM-labelled probe, and spe-
cific forward and reverse primers for beta-actin, HGF,
MSP and RON selected from Assay on Demand (Applied
Biosystems). Controls included RT-PCR with water re-
placing cDNA. The results were analysed using a com-
parative method, and the values were normalized to the
beta-actin expression and converted into fold change, as
previously described [63].

Expression of RON receptor in monocytes

A total of 10 ml of EDTA - anticoagulated peripheral
blood and 3X10° monocytes were incubated for 30 min
with 10 pl of mouse anti rat RON mAb (Transduction
Laboratories) diluted 1:10. Subsequently the samples
were incubated for 30 min with 2 ul of goat anti mouse
PE conjugated followed by incubation for 30 min with
2 pl of mouse anti rat CD11b FITC conjugated (BD Bio-
sciences, San Jose, CA) to identify rat monocytes. Before
examination samples of whole blood were treated with
lysis buffer. All samples were resuspended in 500 pl of
PBS and analyzed in FACScan operating with Cell Quest
3.3 software (BD Biosciences). Goat PE- conjugated IgG
antibodies were used as negative controls.

Statistical analysis

ANOVA followed by the Newman-Keuls test or Kruskal-
Wallis test and Student t test were used for comparison
of the medians and means. All data was analysed using
Graph Pad Prism software.
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