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Abstract

Background: While tumor necrosis factor alpha (TNF-a) inhibitors (TNFi) and other biologics are very effective
against autoimmune diseases, they can also cause infectious diseases. Therefore, it is important to clarify whether
the TNFi sometimes used to treat patients with rheumatoid arthritis (RA) complicated with human T-lymphotropic
virus type-I (HTLV-I) infection have the unintended side effect of promoting HTLV-I proliferation.

Methods: We used the HTLV-I-infected cell line HCT-5, derived from spinal fluid cells of a patient with HTLV-|
associated myelopathy, to evaluate the production of cytokines and chemokines, TNF-a receptor (TNFR), the
expression of HTLV-I associated genes, the HTLV-I proviral load (PVL), the expression of HTLV-I structural protein,
and apoptosis. We used Jurkat cells as a control.

Results: Supernatants of HCT-5 showed time-dependent elevations of IL-6, RANTES and ICAM-1. HCT-5
supernatants treated with infliximab, adalimumab, etanercept (ETN), golimumab and certolizumab pegol showed
no significant differences in the levels of these molecules compared to the control. Neither TNFR1 nor TNFR2
expression was altered by any TNFi treatment, relative to phosphate-buffered saline (PBS) treatment, with the
exception that TNFR2 was significantly decreased and internalized in HCT-5 cells by ETN treatment. The HTLV-I
associated genes Tax and HBZ and the PVL levels were not significantly changed. Immunofluorescence staining
of HCT-5 for an HTLV-l-associated protein, GAG, was also not significantly different between any of the TNFi
treatments and the PBS treatment. DNA ladders as an index of apoptosis were not detected. Apoptotic cells were
not increased by the addition of any TNFi.

Conclusions: In vitro, TNFi did not affect the cytokine profiles, expression of associated genes and proteins, proviral
load or apoptosis of HCT-5 cells. The results suggested that TNFi treatment of RA patients complicated with HTLV-I
might have no effect on HTLV-I infection.
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Background

Human T-lymphotropic virus type-I (HTLV-I) is a retro-
virus that infects 10 to 20 million people worldwide [1].
There are areas in sub-Saharan Africa, the Caribbean, and
South America where >1% of the general population is in-
fected, [2] and southwestern Japan including Nagasaki
Prefecture is one of the endemic areas [3]. Although the
majority of infected people remain asymptomatic, HTLV-I
is associated with severe diseases such as adult T-cell
leukemia/lymphoma (ATL) and HTLV-I-associated myel-
opathy (HAM). Many strategies have been evaluated for
the treatment of ATL and HAM, but no treatments have
shown sufficient efficacy.

Tumor necrosis factor alpha (TNF-«) inhibitors (TNFi)
are an important agent for a number of inflammatory con-
ditions, including rheumatoid arthritis (RA), [4] ankylos-
ing spondylitis, [5] and inflammatory bowel disease [6].
However, multiple adverse effects of TNF-a inhibition
have been identified, including infections, malignancies,
and the induction of autoimmunity and demyelinating
diseases. With respect to viral infection, hepatitis B virus
(HBV) occasionally reactivates, and a flare of HBV disease
may occur [7].

However, it is unknown whether HTLV-I proliferates
and whether HTLV-I-associated diseases worsen when
biologics including TNFi are used. Answers to these
questions are needed by clinicians who use biologics. In
Japan, approximately one million individuals are carriers
of HTLV-], [8] which means that one person per 100 in-
dividuals has an HTLV-I infection. In an RA cohort
study, 21.3% of the RA patients were treated with a TNFi
[9]. Whenever possible, clinicians would prefer to avoid
the use of TNFi to treat HTLV-I-infected patients, but
in the case of patients with RA complicated by HTLV-1
infection, the use of TNFi is unavoidable due to the high
prevalence of both conditions. Because the use of
biologics for such patients is relatively new, the problem
of biologics—induced enhancement of HTLV-I in RA pa-
tients is also a fairly new concern. In addition, a signifi-
cant increase in the standardized incidence ratio for
malignant lymphoma was identified in a Japanese na-
tionwide cohort of patients treated with biological
disease-modifying anti-rheumatic drugs (DMARDs) in-
cluding TNFj, [10] but that study did not reveal whether
the standardized incidence ratio for ATL increased. We
searched for cases of ATL or HAM patients treated with
a TNFi as an autoimmune disease treatment by conduct-
ing a PubMed search, but to the best of our knowledge,
there were no such reports with the exception of one
smoldering ATL case [11].

For the above reasons, it is necessary establish whether
a TNFi can be used safely to treat patients with inflam-
matory diseases such as RA complicated with HTLV-I
infection. For this purpose, we plan to perform both in

Page 2 of 11

vitro and clinical investigations to ascertain the safety of
TNFi treatment in patients with HTLV-I infection. To
this end, we herein assessed changes in the cytokine
profiles, associated proteins, proviral load (PVL), and
apoptosis in an HTLV-I infected cell line treated with
several different TNFi.

Methods

Cell lines

The HTLV-I-infected T-cell line HCT-5 derived from the
cerebrospinal fluid cells of a HAM patient was used. This
cell line is interleukin (IL)-2-dependent and was main-
tained in RPMI 1640 (Wako Pure Chemical Industries,
Tokyo) containing 20% fetal bovine serum (FBS) (Thermo
Fisher Scientific, Waltham, MA) and 1% penicillin/
streptomycin (Thermo Fisher Scientific) supplemented
with 100 U/ml of recombinant human IL-2 (kindly pro-
vided by Shionogi & Co., Osaka, Japan) and L-glutamine
(Sigma-Aldrich, St. Louis, MO). Jurkat cells, a human
T-cell lymphoblast-like cell line, were used as a control
cell line. THP-1, a human monocytic leukemia cell line,
was used to ascertain whether the TNFi worked as
expected to inhibit TNF-a.

These cell lines were maintained in RPMI 1640 con-
taining 10% FBS and 1% penicillin/streptomycin. All cell
lines were incubated in a humidified incubator at 37 °C
with an atmosphere of 5% carbon dioxide.

Reagents and TNFi

We purchased infliximab (IFX; Centocor, Malvern, PA),
adalimumab (ADA; Abbott, Abbott Park, IL), etanercept
(ETN; Amgen, Thousand Oaks, CA), golimumab (GLM;
Janssen Biotech, Horsham, PA) and certolizumab pegol
(CZP; UCB Pharma, Brussels, Belgium). We used lipo-
polysaccharide (LPS; Sigma-Aldrich) to stimulate the
THP-1 cells.

Multiplex cytokine/chemokine bead assays

We performed multiplex cytokine/chemokine bead
assays using culture supernatants and Milliplex MAP
Human Cytokine/Chemokine Panel 1 Pre-mixed 41Plex
(Merck Millipore, Darmstadt, Germany). We analyzed
the results with a Bio-Plex’ MAGPIX™ Multiplex Reader
(Bio-Rad, Hercules, CA) according to the manufacturer’s
instructions. The cytokines/chemokines that could be
measured by the Milliplex MAP Human Cytokine/
Chemokine Panel 1 Pre-mixed 41Plex include vascular
endothelial growth factor (VEGF), tumor necrosis factor-
beta (TNF-B), TNF-a, transforming growth factor-a
(TGF-a), regulated on activation, normal T cell expressed
and secreted (RANTES), platelet-derived growth factor
(PDGF)-AB/BB, PDGF-AA, macrophage inflammatory
protein (MIP)-1a, macrophage inflammatory protein
(MIP)-1B, macrophage-derived chemokine (MDC) (C-C



Fukui et al. BMC Immunology (2017) 18:7

motif chemokine [CCL]22), monocyte chemotactic protein-
3 (MCP-3), monocyte chemotactic protein-1 (MCP-1), in-
ducible protein-10 (IP-10), IL-2, -3, -4, -5, -6, -7, -8. -9, -10,
-12, -13, -15, -17, IL-12 (p70), IL-12 (p40), IL-1ra, IL-1f,
IL-1a, interferon-gamma (IFN-y), interferon-a2 (IFN-a2),
growth-related oncogene (GRO), granulocyte macrophage
colony stimulating factor (GM-CSF), granulocyte colony
stimulating factor (G-CSF), fractalkine, Fms-related tyro-
sine kinase 3 ligand (FIt-3 L), fibroblast growth factor
(FGF)-2, eotaxin, epidermal growth factor (EGF), and sol-
uble CD40L (sCD40L). We used the Bio-Plex Pro Human
Cytokine Group II x-Plex Panel (Bio-Rad) to determine
the serum levels of intercellular adhesion molecule
(ICAM)-1, vascular cell adhesion molecule (VCAM)-1,
IL-18, and stromal cell-derived factor (SDF)-1a.

Cytokine enzyme-linked immunosorbent assays (ELISAs)
We used a cytokine ELISA immune assay to measure
the levels of IL-6, TNF-a, sSICAM-1/CD54 and CCR5/
RANTES in culture supernatants of HCT-5 and Jurkat
cells to which we had added five types of TNFi. The
IL-6, TNF-a, sICAM-1/CD54 and CCR5/RANTES
Quantikine ELISA kits were purchased from R&D
Systems (Minneapolis, MN). The level of each cytokine was
determined according to the manufacturer’s instructions,
and then the optical density at 450 nm was measured.

TNF-a receptor analysis

We performed fluorescence-activated cell sorting (FACS)
analysis to examine the cell surface expression of TNF-R1
and -R2, using fluorescein isothiocyanate (FITC)-conju-
gated anti-CD120a (TNF-R1) and anti-CD120b (TNF-R2)
human monoclonal antibodies (mAbs; MBL International,
Woburn, MA). FITC-conjugated mouse IgG1 was used as
an isotype control (BD Biosciences, San Jose, CA).
Experiments were performed using a FACS Canto II Flow
Cytometer and FACS Diva software (BD Biosciences).

RNA extraction and quantitative reverse transcription PCR
for gene expression
We extracted total RNA from HCT-5 and Jurkat cells by
using a Kingfisher Pure RNA Blood kit (Thermo Fisher
Scientific) according to the manufacturer’s instructions,
and the total RNA was applied for cDNA synthesis with
a SuperScript VILO cDNA Synthesis Kit (Invitrogen,
Carlsbad, CA). Reverse transcription was performed with
1 ug of total RNA at 25 °C for 10 min, 42 °C for 60 min,
and 85 °C for 5 min, in a final volume of 20 pl

The expressions of viral Tax (forward, 5'-CCCACTTCC
CAGGGTTTGGA-3’; reverse, 5 -GGCCAGTAGGGCG
TGA-3'; probe, 5-FAM-CCAGTCTACGTGTTTGGA
GACTGTGTACA-TAMRA-3’), and HTLV-I bZIP factor
(HBZ) mRNAs (forward, 5-CTCAGGGCTGTTTCGA
TGCT-3; 5'-GCCCGTCCACCAATTCCT-3';

reverse,
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probe, 5'-FAM-CCTGTGTCATGCCCGGAGGACC-TA
MRA-3’), and porphobilinogen deaminase (PBGD, for-
ward, 5 -AACCAGCTCCCTGCGAAGA-3’; reverse,
5'-CCAGGATGATGGCACTGAACT-3’; probe 5'-FAM-
ACTCCTGAACTCCAGATGCGGGAACT-TAMRA-3")
were measured using a cDNA template with LightCycler
480 probes Master Mix (Roche Diagnostics, Mannheim,
Germany) and a LightCycler480 PCR System (Roche
Diagnostics).

After 50 cycles, the absolute amounts of Tax, HBZ, and
PBGD mRNA were interpolated from standard curves
generated by the dilution method using plasmids derived
from a clone transfected with a pCR2.1-TOPO Vector
(Life Technologies, Tokyo, Japan) containing amplicons
from the Tax, HBZ, and PBGD genes, respectively. To
normalize the results for variability in the concentration
and integrity of the RNA and cDNA, we used the PBGD
gene as an internal control for each sample.

HTLV-I proviral load (PVL)

We extracted the genomic DNA of cells using Qiagen
DNA Blood Mini kits (Qiagen, Crawley, UK). The quan-
titative polymerase chain reaction (qQPCR) detection for
HTLV-I was performed as described previously [12—15].
Briefly, primers were set in the pX region, and the dens-
ity of the template was 30 ng per reaction. PVL was
quantified using the Tax primer and probe. The PVL
was normalized using B-globin and is presented as a
percentage.

Immunofluorescence

The HCT-5 cells were incubated for 10 min in
phosphate-buffered saline (PBS) containing 4% parafor-
maldehyde at 4 °C and immersed in methanol at —20 °C
for 10 min. After blocking in 5% normal horse serum in
PBS, the cells were incubated in the diluted primary
antibodies for 1 h at room temperature, followed by
incubation in FITC-labeled and tetramethylrhodamine
isothiocyanate (TRITC)-labeled secondary antibodies
supplemented with Hoechst dye 33258 for nuclear stain-
ing. After being washed in PBS, the cells were mounted in
Vectashield mounting medium (Vector Laboratories,
Burlingame, CA) and scanned using a BIOREVO BZ-9000
fluorescence microscope (Keyence, Tokyo, Japan).

The following antibodies were used as primary
antibodies: TNF Receptor 1 Polyclonal Antibody (Bioss
Antibodies, Woburn, MA), TNFR2 Polyclonal Antibody
(Proteintech, Chicago, IL), and Monoclonal Mouse
anti-HTLV-I pl19, HTLV-I p28 antibody (Chemicon,
Hofheim, Germany).

Assessment of apoptosis
Apoptotic DNA ladders were detected by using an
Apoptotic DNA Ladder Kit (Sigma-Aldrich). Briefly, the
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cultured HCT-5 cells in six-well plates were lysed and
mixed with isopropanol. After the plates were washed
with PBS, the pre-warmed elution buffer was applied to
obtain DNA. For the DNA ladder detection, the samples
were applied to a 1% agarose gel with ethidium bromide
in 1x Tris, boric acid and EDTA-buffer. Apoptotic U937
cells in the kit were used as a positive control.

Annexin V staining

The evaluation of apoptosis and cell death was performed
by staining with propidium iodide (PI) (MBL, Nagoya,
Japan) and phycoerythrin (PE)-conjugated annexin V
(MBL). After being washed with PBS, the cells were
stained by PI and PE-conjugated annexin V for 15 min in
ambient air. A FACS analysis was performed using a
FlowSight Imaging Flow Cytometer (Merck-Millipore,
Germany). PI-negative and annexin V-positive cells were
defined as apoptotic cells. We calculated the percentage of
apoptotic cells among all cells.

Statistical analysis

We used a Student’s t-test to determine the significance of
differences in the levels of IL-6, TNF-a, sSICAM-1/CD54,
CCR5/RANTES, Tax, HBZ, and PVL, and the percentage
of apoptotic cells. P-values <0.05 were considered sig-
nificant. Statistical analyses were performed with JMP
Statistical Software, ver. 11 (SAS Institute, Cary, NC).

Results
Multiplex cytokine/chemokine bead assays
It was previously reported that HTLV-I-infected CD4+ T
cells spontaneously secreted proinflammatory cytokines
such as TNF-a and IFN-y [16]. In the present study, to
identify the types of cytokines and chemokines secreted by
HCT-5 cells into the culture supernatant compared to
those secreted by the Jurkat cells, we performed multiplex
cytokine/chemokine bead assays. Because we previously
ascertained that HCT-5 cells could be kept without stimu-
lation by IL-2 for at least 96 h, [17] we used culture super-
natants at 0, 24, 48, 72 and 96 h without IL-2 stimulation.
In the HCT-5 cells, we observed time-dependent in-
creases in the levels of IL-6, IP-10, MDC, MIP-1q,
RANTES, ICAM-1, VCAM-1, TNF-q, and IFN-y in the
culture supernatants without any stimulation (Fig. 1a, b).
In the Jurkat cells, there were no increases in these cyto-
kines or chemokines, and most of the cytokines and che-
mokines were below measurable limits (data not shown).

Changes in the cell count and cytokine and chemokine
levels in the HCT-5 cells treated with each TNFi

Before using each TNFi on the HCT-5 cells, we ascer-
tained whether it properly inhibited TNF-a in THP-1
cells. Forty-eight hours after the THP-1 cells were stimu-
lated by LPS (1 pg/mL) with each TNFi, we measured
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the levels of IL-6, TNF-a, ICAM-1 and RANTES in the
culture supernatants by ELISAs. TNF-a was inhibited by
all of the TNFi except ETN. IL-6 and ICAM-1 in the
culture supernatants were inhibited by all of the TNFi.
There were significant decreases in the levels of
RANTES in the ETN-, GLM- and CZP-treated cells
(Fig. 2a).

To identify whether TNFi induced an increase or de-
crease in the total number of cells, we counted the cells
under a light microscope. The cultured HCT-5 cells
(1.0 x 10°) in six-well plates with each TNFi (10 pg/mL)
and PBS increased time-dependently to approximately
1.5 x 10° at 96 h. The HCT-5 cell line treated with each
TNFi showed a time-dependent increase in cell counts
at 0, 48 and 96 h, and there were no significant differ-
ences in the increases compared to those administered
PBS alone (data not shown).

To determine the changes in the cytokines and chemo-
kines in culture supernatants, we used ELISAs to measure
IL-6, TNF-a, ICAM-1 and RANTES in the culture super-
natants of HCT-5 and Jurkat cells 48 h after the addition
of each TNFi or PBS. There were no significant differences
in the levels of IL-6, TNF-a, ICAM-1 or RANTES in the
culture supernatants of HCT-5 cells compared to those
treated with PBS alone (Fig. 2b). In the Jurkat cells, there
were also no differences (data not shown).

Expressions of TNFR1 and -2 on HCT-5 and Jurkat cells
treated with each TNFi

To identify the changes in the expressions of TNF recep-
tor (TNFR)1 and -2 caused by each TNFi, 48 h after the
addition of each TNFi or PBS, we assessed the expressions
of TNFR1 and -2 on HCT-5 cells by performing a FACS
analysis (Fig. 3a). There were no significant differences in
the expressions of TNFR1 for any of the TNFi compared
to that with PBS. There were no significant differences in
the expressions of TNFR2 except in the ETN-treated cells;
in these cells, the TNFR2 expression was decreased
(Fig. 3a). There were no significant differences in the ex-
pressions of TNFR1 or -2 in the Jurkat cells (Fig. 3b).

To assess the expressions of TNFR1 and -2 on the cell
membrane and cytoplasm in HCT-5 cells treated with
ETN, we performed immunofluorescence staining. In
the HCT-5 cells treated with either ETN or PBS, TNFR1
was expressed in the cytoplasm and cell membrane.
TNFR2 was expressed on the cell membrane of the PBS-
treated cells but not on that of the ETN-treated cells. In
the ETN-treated cells, TNFR2 was expressed mainly in
the cytoplasm (Fig. 3c).

No changes in the mRNAs of Tax or HBZ, or the PVL in
HCT-5 cells treated with TNFi

The HTLV-I viral gene Tax is the gene for a potent
transactivating protein that is required for the expression
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of the viral gene [18]. Another HTLV-I antisense-
encoded gene, HBZ, along with its protein form, is also
important for the proliferation of HTLV-1 [19]. There-
fore, to identify the TNFi-induced changes of Tax and
HBZ in the HCT-5 and Jurkat cell lines, we measured
the expressions of the mRNAs of Tax and HBZ at 48 h
after the addition of each TNFi or PBS. There were no

significant differences in the expressions of the mRNAs
of Tax (Fig. 4a) or HBZ (Fig. 4b).

The PVL is the most frequently used marker for prog-
nosis and disease progression in infected patients [2].
For example, the PVL is correlated with the progression
of motor disability in HAM patients [20] Using the same
method as used for Tax and HBZ, we measured the PVL
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Fig. 2 a THP-1 was stimulated by LPS (1 pg/mL) with each TNFi (10 pg/mL) and PBS to ascertain the effect of each TNFi. Forty-eight hours after
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48 h after the addition of each TNFi (10 ug/mL) or PBS (three independent experiments). Error bars represent the standard deviations

at 48 h after the addition of each TNFi or PBS. None of
the TNFi increased the PVL significantly compared with
PBS, although the PVL of the HCT-5 cells without TNFi
was 42.7 proviral copies per cell (Fig. 4c). In the Jurkat
cells, provirus was not detected.

No effects on GAG expression by any of the TNFi in

HCT-5 cells

The HTLV-I structural protein GAG is processed into
the virion core proteins [19]. To assess the potential ef-
fects of the TNFi on GAG expression, we performed

HTLV-I p19 and p28 (GAG) staining 48 h after the
addition of each TNFi (10 pg/ml) or PBS. No significant
differences in GAG expression were observed (Fig. 5).

Assessment of apoptosis in HCT-5 cells

To assess the apoptosis in HCT-5 cells treated with each
TNFi or PBS, we performed apoptotic DNA ladder de-
tection. Apoptotic DNA ladders were not detected 48 h
after the addition of any of the TNFi (10 pg/ml) or PBS
(Fig. 6a). In addition, we performed annexin V staining
of HCT-5 48 h after the addition of each of the TNFi
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) cells by FACS analysis. ¢ Immunofluorescence staining of TNFR1 and TNFR2

(10 pg/ml) or PBS (Fig. 6b). Approximately 5% of the
cells were apoptotic in each case, with no significant dif-
ferences in the percentage of apoptotic cells among the
TNFi and PBS treatments.

Discussion

Our present findings demonstrated that none of the
TNFi induced any significant change in the proliferation
of HTLV-I-infected cells, the cytokine or chemokine
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Fig. 4 mRNA expression of Tax (a), HBZ (b) and PVL (c) 48 h after the addition of each TNFi (10 ug/mL) and PBS. (three independent experiments).
PBGD: housekeeping gene. Error bars represent the standard deviations

production, the expression of TNFR1, the expressions of
Tax or HBZ, the PVL, the level of GAG, or apoptosis,
compared to the values in the HTLV-I-infected cells
treated with PBS alone.

When a TNFi is necessary to treat RA patients compli-
cated with HTLV-I infection, the occurrence and exacer-
bation of both ATL and HAM are a concern. Clinically,
two RA cases complicated with HTLV-I infection were
reported to show no increase in PVL by TNFi treatment
[21] In another report, a patient with smoldering ATL
and HTLV-I-associated arthropathy that was refractory
to corticosteroid, DMARDs and rituximab therapy was
treated successfully with ETN [11] These reports are
valuable in that they show the safety of TNFi for HTLV-
I infections, but at the same time their value is limited
because they are case reports rather than studies on
large numbers of patients.

The risk of TNFi-induced ATL must be considered.
TNEF-a was originally recognized in 1975 for its ability to
lyse tumors in a variety of in vitro and mouse models,
[22] and TNFi were thus assumed to induce tumors. In
contrast, a paradoxical tumor-promoting role of TNF

has also become apparent [23]. The tumorigenesis of
TNFi is therefore more complex than original thought.

Tax is thought to induce ATL by promoting cellular
proliferation through the enhancement of cellular sur-
vival and impairment of DNA damage-repair mecha-
nisms [24]. In the process of viral proliferation, HTLV-1
regulates not only Tax [25] but also HBZ [26]. Our
present results demonstrated that the levels of HBZ in
HCT-5 cells were not significantly changed by treatment
with various TNFi. Because Tax and HBZ were not in-
creased following treatment with any of the TNFi in this
study, TNFi may not induce ATL. In addition, PVL was
not increased by the treatments in this study. Since there
was no TNFi-induced increase in either Tax or HBZ, it
seems reasonable that there was also no increase in PVL
or GAG.

The inhibition of apoptosis is important for viral pro-
liferation, and a functional inactivation of p53 is induced
by Tax [27]. In regard to the relationship between apop-
tosis and TNFj, it has been reported that the apoptosis
of T lymphocytes was induced by IFX [28] and ADA
[29]. in a human-mouse chimeric model. In addition,

Fig. 5 After HCT-5 cells were stimulated with PBS or 10 pg g/ml of a TNFi for 48 h, they were treated with a mouse monoclonal anti-HTLV-I p19
p28 (GAG) antibody followed by donkey anti-mouse FITC-labeled secondary antibody. Hoechst 33258 was used for counterstaining of the nucleus

(merged view). Bar: 20 um (three independent experiments)
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IFX activates the p53 gene, whereas ETN does not [30].
In the present study, none of the TNFi appeared to
enhance apoptosis, although we hypothesize that all
TNFi except for ETN are capable of inducing the apop-
tosis of T lymphocytes, including HCT-5 cells, and inhi-
biting the occurrence of ATL.

Finally, we must consider the risk of HAM due to
TNFi treatment. Several reports have examined the rela-
tion between inflammation and HTLV-I infection. Tax
boosts the expression of the Thl master regulator T box
transcription factor and consequently promotes the pro-
duction of IFN-y [31] HBZ has been shown to induce
systemic inflammation by impairing the suppressive
function of Treg cells via an interaction with Foxp3 and
NFAT in HBZ-transgenic mice [32] Clinically, patients
with HAM have high circulating levels of TNFa- and
IL-2-secreting HTLV-I-specific CD4+ T cells [16] In the
present study, we observed the elevated production of
multiple cytokines and chemokines, including IL-6,
RANTES, ICAM-1, TNF-a and IEN-y, in the supernatant
of HCT-5 cells.

In this vein, it should be noted that immunosuppressive
and immunomodulatory therapies have been reported to
have beneficial effects in patients with HAM, [33] suggest-
ing that the production of cytokines and chemokines is
important in the pathophysiology of this disorder. Al-
though we did not observe a reduction of cytokines or
chemokines induced by any of the TNFi in the present
study, on the basis of previous studies it appears that TNFi
could have the effect of alleviating HAM.

With respect to our results showing that TNFR2 was
decreased and internalized in the HCT-5 cells treated
with ETN, it is apparent that among the TNFi, ETN had
a different effect on TNFR2. ETN is a soluble p75 TNF
receptor fusion protein, [34] while the other TNFi are
monoclonal antibodies directed against TNF-a [35]. This
difference may have affected the decreased expression of
TNFR2 in the ETN-treated HCT-5 cells in the present

study through a mechanism described by RE. Kast in
2005 [36].

This study has some limitations. Because this was an in
vitro study using a cell line established from a HAM pa-
tient, the results do not necessarily reflect the clinical ef-
fects of TNFi in vivo. In addition, our findings have no
validity in ATL cell lines because there are some etio-
logical differences between HAM and ATL. For example,
the expression of Tax is frequently disrupted in ATL, [37]
but HBZ is uniformly expressed in ATL [38]. The ques-
tions of whether TNFi directly induce ATL and whether
TNFi treatment presents a risk for the development of
ATL in daily practice remain to be addressed. Tax has the
ability to cause ATL through the induction of cell-cycle
progression, DNA damage, impairment of DNA repair,
and cellular transformation [39]. The present study did
not assess these factors. However, our findings showed no
increase of Tax, and we thus speculate that Tax-mediated
effects causing ATL did not increase. In this regard, we
have begun clinical investigations in HTLV-I infected RA
patients treated with biologics including TNFi.

Conclusions

We have shown that TNFi did not affect the cytokine
profiles, the mRNA of HTLV-I-associated proteins, the
PVL or the apoptosis of HCT-5 cells. This study is the
first in vitro investigation to evaluate the effects of TNFi
on HTLV-I-infected cells. Further in vitro and in vivo
studies are needed to assess the effects of TNFi on
HTLV-I to clinically ascertain the safety of TNFi treat-
ments in RA patients complicated with HTLV-I
infection.
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