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Abstract

Background: In this work, we develop a theoretical model that explains the survival data in West Nile Virus infection.

Results: We build a model based on three cell populations in an infected host; the collateral damage cells, the
infected dividing cell, and the infected non-dividing cells. T cell-mediated lysis of each of these populations is
dependent on the level of MHC-1 upregulation, which is different in the two infected cell populations,
interferon-gamma and free virus levels.

Conclusions: The model allows us to plot a measure of host health versus time for a range of initial viral doses and
from that infer the dependence of minimal health versus viral dose. This inferred functional relationship between the
minimal host health and viral dose is very similar to the data that has been collected for WNV survival curves under
experimental conditions.
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Background
Viruses in the family Flaviviridae are single-stranded,
plus-sense RNA viruses, principally transmitted by
mosquitoes and ticks. They are either viscerotropic, caus-
ing diseases such as dengue and yellow fever, or neu-
rotropic, causing central nervous system disease, like
West Nile virus encephalitis, Japanese encephalitis or
Saint Louis encephalitis, all of which may be fatal. These
viruses are found worldwide and the diseases they cause
pose a significant public health burden. A careful discus-
sion of the many facets of flavivirus infections can be
found in [1], and we therefore confine our introductory
remarks to the features salient to this paper.
Virus-infected cells process virus proteins into peptide

fragments in the proteasome and these are bound to class
I major histocompatibility complex molecules (MHC-I) in
the endoplasmic reticulum. With the transport of MHC
molecules to the cell surface, viral peptides displayed in
the context of MHC on the infected cell can be recog-
nized by virus-specific cytotoxic T lymphocytes (CTL).
Such CTL kill infected cells by a variety of lytic effector
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molecules prior to the release of mature virus progeny
from infected cells, thereby progressively reducing virus
numbers and ultimately eradicating virus from surviving
hosts (reviewed in [2]).
Paradoxically, flaviviruses such as West Nile (WNV)

and others, directly induce increased expression of MHC-
I, as well as MHC-II, and several adhesion molecules
involved in immune recognition by CTL. This increased
expression results in a marked increase in the efficiency of
recognition and killing of infected cells by WNV-specific
CTL ([3, 4]), because although the affinity of individ-
ual T cell receptor (TcR)-MHC-virus peptide interaction
is unchanged, the multiple intermolecular interactions
increases the avidity of interaction of virus-specific CTL
with the infected cell. This increased avidity also enables
the functional interaction with MHChi, infected cells by
CTL clones of low MHC-virus peptide affinity, i.e., clones
previously below the recognition threshold. Some of these
low-affinity CTL clones are likely to be self-reactive [4] or
even able to recognize MHC without peptide specificity
[5]. Thus, the increased avidity brought about by high
MHC expression enables low-affinity, self-reactive clones,
not normally involved in anti-viral immune responses, to
lyse both infected and uninfected target cells [6]. Adhe-
sionmolecules such as ICAM-1, as non-specific accessory
molecules upregulated by WNV infection, also increase
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the avidity of CTL-target cell interactions, further lower-
ing the affinity threshold for T cell recognition and target
cell lysis [7]. In addition, interferon-γ (IFN-γ ), released
by CTL on recognition of their cognate ligand, strongly
increases MHC and ICAM-1 expression on neighbor-
ing target cells, further contributing to the progressive
increase in avidity of interaction between CTL and target
cells [8]. In this context, the stage of the cell cycle in which
a cell is infected is also important; cells infected by WNV
in G0 (resting) increase MHC-I expression by 6-10-fold,
compared to a 2-3-fold increase observed in cells infected
during the cell cycle (G1 , S,G2+M) [3].WNV-infectedG0
cells are approximately 10-fold more susceptible to CTL
lysis than infected cycling cells exposed to the same CTL
[3]. Thus, WNV-infected cycling cells are less easily rec-
ognized, while the avidity of interaction between CTL and
infected G0 cells is significantly enhanced by the higher
levels of MHC-I and ICAM-1. Notably, WNV replicates
significantly better in the poorly recognized cycling cells
than in G0 cells. In vivo, most cells are in G0 , presumably
presenting an easy CTL target once infected, but a small
population of productively infected cycling cells main-
taining a low immunological profile, could substantially
increase the probability of virus transmission to the next
host [4]. As indicated above, the release of IFN-γ upon
target cell recognition by CTL would also increase MHC
and ICAM-1 expression on uninfected cells in the vicin-
ity of virus- infected cells, making highMHC-I-expressing
(uninfected) cells a potential target for lysis by low affin-
ity virus-specific and/or self-reactive (i.e., cross-reactive)
CTL clones. The collateral destruction of uninfected cells
by low-affinity clones of this kind would cause substan-
tial additional damage to the brain, with corresponding
increases in morbidity and mortality [9]. We have devel-
oped a model of the collateral damage caused by a West
Nile Virus infection, which is supported by simulation
results [10]. A discussion of the underlying simulation
code can be found in [11]. We have also used these simu-
lation results to explain the unusual ragged survival data
seen in West Nile Virus infections [12]. The previous
work, in focusing on very low level details, based on first
principles, could be regarded as a micro model. Here we
develop a macro model, based on a much higher level
approach and ideas. Each model has its pros and cons
but we believe each brings complementary insights into
a very complicated problem. Our focus here is therefore
on developing a macro level theoretical model of how
the survival of a host depends on the level of initial viral
dose. We believe this approach provides an abstract focus
which can also be directed towards more general mod-
els of immunopathology and we will briefly mention those
connections at the end. These more general models of
autoimmune response are the focus of additional work we
are doing.

WNV survival data
In a survival experiment, a population of animals such as
mice are infected with a common amount of virus and the
number of animals that die are counted. This experiment
is repeated for a range of virus. With most viruses, the
survival experiment gives a classical dose-response curve
which progressively and smoothly decays down to a sur-
vival of 0 animals at high virus. However, WNV has a
peculiar survival curve as shown in [12] but we can eas-
ily simulate what such a curve looks like as we have done
in Fig. 1. The purpose of this paper is to find a theoret-
ical model that explains this data. The derivations here
use standard ideas from advanced calculus and differen-
tial equations. The necessary background can be found in
any nonlinear modeling text such as [13]. We assume we
have a large population of cells T which consists of cells
which are dividing and are infected, D, cells which are not
dividing but are infected,N , non infected cells,H and non
infected cells which will be removed due to auto immune
action which we call C, for collateral damage. We assume
all of these variables depend on the three parameters, I,
the IFN-γ signal; theMHCI upregulation factorU and the
free virus level A. The approach we take here is a com-
mon one in such a nonlinear interaction environment. An
example of how this is used to develop a model of diabetes
detection can be found in [13].

TheCDN model
We assume the dynamics here are

C′(t) = F1(C,D,N)

D′(t) = F2(C,D,N)

N ′(t) = F3(C,D,N)

There are then three nonlinear interaction functions
F1, F2 and F3 because we know C, D and N depend on

Fig. 1 Simulated survival curve
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each other’s levels in very complicated ways. Usually, we
assume the initial dose S0 gives rise to some fraction of
infected cells which will differ in both the dividing and
nondividing cells. In our previous WNV simulations of
collateral damage [10], we assume p0 = 1.0e − 3 of the
initial dose gives rise to infected cells. This gives the num-
ber of infected cells to be p0 S0 which is split into p1 p0 S0
infected non dividing cells - i.e. inN , and p2 p0 S0 dividing
infected cells, i.e. inD, where p1+p2 = 1. Typically, we let
p1 = 0.99 and p2 = 0.01 but other choices could be made.
Thus, the total amount of virus that goes into infected
cells is p0 S0 and the amount of free virus is therefore
(1 − p0) S0. Thus, we could expect C0 = 0, D0 = p2 p0 S0
and N0 = D0 = p1 p0 S0. However, we will explicitly
assumewe are starting from a point of equilibrium prior to
the administration of the viral dose S0. We could assume
there is always some level of collateral damage, C0 in a
host, but we will not do that. We will therefore assume C,
D and N have achieved these values C0 = 0, D0 = 0 and
N0 = 0 right before the moment of infection. Hence, we
don’t expect there to be initial contribution to C′(0),D′(0)
andN ′(0); i.e. F1(C0,D0,N0) = 0, F2(C0,D0,N0) = 0 and
F3(C0,D0,N0) = 0. We are interested in the deviation of
C, D and N from their optimal values C0, D0 and N0, so
let c = C − C0, d = D − D0 and n = N − N0. We can
then write C = C0 + c, D = D0 + d and N = N0 + n The
model can then be rewritten as

(C0 + c)′(t) = F1(C0 + c,D0 + d,N0 + n)

(D0 + d)′(t) = F2((C0 + c,D0 + d,N0 + n)

(D0 + d)′(t) = F3((C0 + c,D0 + d,N0 + n)

or

c′(t) = F1(C0 + c,D0 + d, ,N0 + n)

d′(t) = F2((C0 + c,D0 + d,N0 + n)

n′(t) = F3((C0 + c,D0 + d,N0 + n)

Next, we do a standard tangent plane approximation on
the nonlinear dynamics functions F1, F2 and F3 to derive
approximation dynamics.

Linearization details
To develop a useful approximation to the CDN dynam-
ics, we use an appropriate tangent plane approximation
on the nonlinear dynamics functions F1, F2 and F3. The
mathematics behind this approximation come from mul-
tivariate calculus and can easily be reviewed if required.
The standard tangent plane expansions is as follows.

F1(C0 + c,D0 + d,N0 + n) = F1(C0,D0,N0)

+ ∂F1
∂c

(C0,D0,D0) c

+ ∂F1
∂d

(C0,D0,D0) d + ∂F1
∂d

(C0,D0,D0) n + EF1

F2(C0 + c,D0 + d,N0 + n) = F2(C0,D0,N0)

+ ∂F2
∂c

(C0,D0,D0) c

+ ∂F2
∂d

(C0,D0,D0) d + ∂F2
∂d

(C0,D0,D0) n + EF2
F3(C0 + c,D0 + d,N0 + n) = F3(C0,D0,N0)

+ ∂F3
∂c

(C0,D0,D0) c

+ ∂F3
∂d

(C0,D0,D0) d + ∂F3
∂d

(C0,D0,D0) n + EF3

But the terms F1(C0,D0,N0) = 0, F2(C0,D0,N0) = 0
and F3(C0,D0,N0) = 0. so we can simplify to

F1(C0 + c,D0 + d,N0 + n) = ∂F1
∂c

(C0,D0,D0) c

+ ∂F1
∂d

(C0,D0,D0) d

+ ∂F1
∂d

(C0,D0,D0) n + EF1

F2(C0 + c,D0 + d,N0 + n) = ∂F2
∂c

(C0,D0,D0) c

+ ∂F2
∂d

(C0,D0,D0) d

+ ∂F2
∂d

(C0,D0,D0) n + EF2

F3(C0 + c,D0 + d,N0 + n) = ∂F3
∂c

(C0,D0,D0) c

+ ∂F3
∂d

(C0,D0,D0) d + ∂F3
∂d

(C0,D0,D0) n + EF3

It seems reasonable to assume that since we are so close
to ordinary operating conditions, the errors EF1 , E

F
2 and EF3

will be negligible. Also, to save space, we let ()o denote
that we are evaluating the partial derivatives at the point
(C0,D0,D0). Thus our model approximation is

F1(C0 + c,D0 + d,N0 + n) ≈
(

∂F1
∂c

)o
c +

(
∂F1
∂d

)o
d

+
(

∂F1
∂n

)o
n

F2(C0 + c,D0 + d,N0 + n) ≈
(

∂F2
∂c

)o
c +

(
∂F2
∂d

)o
d

+
(

∂F2
∂n

)o
n

F3(C0 + c,D0 + d,N0 + n) ≈
(

∂F3
∂c

)o
c +

(
∂F3
∂d

)o
d

+
(

∂F3
∂n

)o
n
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and our corresponding nonlinear dynamics approxima-
tion is

c′ ≈
(

∂F1
∂c

)o
c +

(
∂F1
∂d

)o
d +

(
∂F1
∂n

)o
n

d′ ≈
(

∂F2
∂c

)o
c +

(
∂F2
∂d

)o
d +

(
∂F2
∂n

)o
n

n′ ≈
(

∂F3
∂c

)o
c +

(
∂F3
∂d

)o
d +

(
∂F3
∂n

)o
n

We can write this approximation Inmatrix - vector form
also: ⎡

⎣ c′
d′
n′

⎤
⎦ ≈

⎡
⎢⎣
Fo
1c Fo

1d Fo
1n

Fo
2c Fo

2d Fo
2n

Fo
3c Fo

3d Fo
3n

⎤
⎥⎦

⎡
⎣ c
d
n

⎤
⎦

where we now use a standard subscript scheme to indicate
the partials. Now let’s add IFN-γ , upregulation and virus
level.

The CDN IFN-γ , upregulation and virus model
We can think each variable C, D and N as depending on
the interferon level I, the upregulation levelU and the free
virus level A. Thus, we have

F1(C(I,U ,A),D(I,U ,A),N(I,U ,A)) = H1(I,U ,A)

F2(C(I,U ,A),D(I,U ,A),N(I,U ,A)) = H2(I,U ,A)

F3(C(I,U ,A),D(I,U ,A),N(I,U ,A)) = H3(I,U ,A)

We assume the dynamics here are then

C′ = H1(I,U ,A)

D′ = H2(I,U ,A)

N ′ = H3(I,U ,A)

As before assume C, D and C have achieved the same
optimal values C0 = 0, D0 = 0 and N0 = 0 prior to
the moment of infection with virus dose S0. These corre-
spond to the starting values of prior to infection for base
values I0, U0 and A0. Initially, we don’t expect IFN-γ sig-
nals so I0 = 0. Eventually, we do expect some level of
upregulation due to this initial dose and from experimen-
tal data, we expect the upregulation to be proportional to
the level of the dose S0; we will assume this is a simple scal-
ing factor, i.e. U0 = q1 S0 for some suitable parameter q1.
Also, once the viral dose is administered, we would expect
some fraction of it to remain as free virus which as dis-
cussed in [10] is modeled as A0 = (1−p0)S0. We will deal
with these initial values after infection later in the Section
“The IFN-γ , upregulation and free virus model”. But now,
we think of all the initial values as zero; i.e. I0 = 0,U0 = 0
and A0 = 0. We still don’t expect to have any contribu-
tion to C′(0), D′(0) and N ′(0); i.e. H1(I0,U0,A0) = 0,
H2(I0,U0,A0) = 0 and H3(I0,U0,A0) = 0. We are inter-
ested in the deviation of C, D and N from their optimal
values C0, D0 and N0 due to the changes i, u and a from

the base IFN-γ , upregulation and virus values. So let c =
C − C0, d = D − D0 and n = N − N0. We can then write
C = C0 + c, D = D0 + d and N = N0 + n The model can
then be rewritten as

(C0 + c)′(t) = H1(I0 + i,U0 + u,A0 + a)

(D0 + d)′(t) = H2(I0 + i,U0 + u,A0 + a)

(D0 + d)′(t) = H3(I0 + i,U0 + u,A0 + a)

which, as usual, implies

c′(t) = H1(I0 + i,U0 + u,A0 + a)

d′(t) = H2(I0 + i,U0 + u,A0 + a)

d′(t) = H3(I0 + i,U0 + u,A0 + a)

Next, we again perform a tangent plane approximation
on the nonlinear dynamics functions H1, H2 and H3 just
as we did in Section “Linearization details” for the F1, F2
and F3 we use for the CDN model.

Linearization details
Once again, it seems reasonable to assume that since we
are so close to ordinary operating conditions, the tangent
plane errors are negligible. Letting ()o denote that we are
evaluating the partial derivatives at the point (I0,U0,A0),
we find

H1(I0 + i,U0 + u,A0 + a) ≈
(

∂H1
∂i

)o
i +

(
∂H1
∂u

)o
u

+
(

∂H1
∂a

)o
a

H2(I0 + i,U0 + u,A0 + a) ≈
(

∂H2
∂i

)o
i +

(
∂H2
∂u

)o
u

+
(

∂H2
∂a

)o
a

H3(I0 + i,U0 + u,A0 + a) ≈
(

∂H3
∂i

)o
i +

(
∂H3
∂u

)o
u

+
(

∂H3
∂a

)o
a

The corresponding nonlinear dynamics approximation
in matrix - vector form is then⎡

⎣ c′
d′
n′

⎤
⎦ ≈

⎡
⎢⎣
Ho
1i H

o
1u Ho

1a
Ho
2i H

o
2u Ho

2a
Ho
3i H

o
3u Ho

3a

⎤
⎥⎦

⎡
⎣ i
u
a

⎤
⎦

where we now use a standard subscript scheme to indicate
the partials. We therefore find the nonlinear dynamics
approximation is⎡

⎣ c′
d′
n′

⎤
⎦ ≈

⎡
⎢⎣
Ho
1i H

o
1u Ho

1a
Ho
2i H

o
2u Ho

2a
Ho
3i H

o
3u Ho

3a

⎤
⎥⎦

⎡
⎣ i
u
a

⎤
⎦

where we now use a standard subscript scheme to indicate
the partials.
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The algebraic signs of the linearization matrix
If we hold everything constant except i which we increase
to i+ δi, what happens? Increasing the IFN-γ level should
increase collateral damage. Hence, Ho

1i = +. What about
the number of dividing cells that are infected? We do not
think this should have an effect; hence, Ho

2i = 0 too. A
similar argument suggests Ho

3i = 0 as well. Thus, the
coefficient matrix above which we call � so far looks like

� =
⎡
⎢⎣

+ Ho
1u Ho

1a
0 Ho

2u Ho
2a

0 Ho
3u Ho

3a

⎤
⎥⎦

Now hold everything constant except the upregulation
u and increase u to u + δu. What happens? Increasing
the upregulation level should increase collateral damage.
Hence, Ho

1u = +. Now infected cells are lysed once their
IFN-γ upregulation hits a certain level and the increase
in upregulation that makes the infected cells more visible
certainly effects this as it will take fewer additional IFN-γ
signals to trigger lysis. In general, there is a lag of say TD

L
and TN

L time steps before this happens. With the increase
δu, we expect TD

L and TN
L to both go down. Hence D and

N decrease and we have Ho
2u = − and Ho

3u = − for each
type of infected cell. Thus, the coefficient matrix looks like

� =
⎡
⎢⎣

+ + Ho
1a

0 − Ho
2a

0 − Ho
3a

⎤
⎥⎦

Next hold everything constant except the virus level a
and increase a to a + δa. What happens? Let’s think of
the virus increase δa as giving rise to an increase in the
amount of virus stored inside a dividing cell or a non divid-
ing cell. Now if the amount of virus in the cell goes up, that
means when the cell is lysed, there is more virus available
to infect cells which means more cells will be infected in
later times. An increase in virus means an increase in col-
lateral damage in general, so Ho

1a = +. At a given time
then, A is the virus level. We can write A = AF +AD +AN
where AF is the free virus, AD is the virus inside the divid-
ing cells and AN is the virus inside the nondividing cells.
So if AD goes up, we expect the amount of A and AF to
remain constant. Hence, if AD goes up, AN goes down.
The increase in AD would mean more virus is released

on lysis and hence an increase inD. However, that increase
in AD is a concomitant decrease in N . So we should have
Ho
2a = + and Ho

3a = −. Thus, the coefficient matrix now
looks like

� =
⎡
⎣ + + +
0 − +
0 − −

⎤
⎦

Or letting Ho
2u = −a, Ho

3u = −b, Ho
2a = c, Ho

3a = d, the
coefficient matrix now looks like

� =
⎡
⎣ + + +
0 −a c
0 −b −d

⎤
⎦

Thus, we have the changes in collateral damage and
infection levels

c′ = Ho
1i i + Ho

1u u + Ho
1a a

d′ = Ho
2u u + Ho

2a a
n′ = Ho

3u u + Ho
3a a

Now we need to estimate i, u and a.

The IFN-γ , upregulation and free virus model
The amount of interferon level I, the upregulation level
U and the free virus level A depend on the initial amount
of virus applied when in the equilibrium state; i.e. this is
the amount that causes the initial infection. This is So. We
assume the dynamics here are

I ′ = G1(I,U ,A)

U ′ = G2(I,U ,A)

A′ = G3(I,U ,A)

In the model of “The CDN IFN-γ , upregulation and
virus model” section, we assumed C, D and N depended
on the perturbations of I,U and A from a zero state. Now,
we want to model the I, U and A deviations from a base
state I0, U0 and A0 which is not zero. As previously dis-
cussed, we expect A0 = (1− p0) S0, the initial IFN-γ level
I0 = 0 and the initial upregulation level U0 = q1S0. Let
the deviations from these equilibrium values be given by
i = I − I0, u = U − U0 and a = A − A0. The model can
then be rewritten as

(I0 + i)′(t) = G1(i + I0,u + U0,a + A0)

(U0 + u)′(t) = G2(i + I0,u + U0,a + A0)

(A0 + a)′(t) = G3(i + I0,u + U0,a + A0)

or

i′(t) = G1(i + I0,u + U0,a + A0)

u′(t) = G2(i + I0,u + U0,a + A0)

a′(t) = G3(i + I0,u + U0,a + A0)

The approximation to the i, u and amodel is handled in
a way that is very similar to the previous two expansions
which were explained in some detail in “Linearization
details” section.

Linearization details
The linearization again involves a tangent plane approx-
imation to nonlinear dynamics functions, which are now
the functions G1, G2 and G3. It seems reasonable to
assume that since we are so close to ordinary operating
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conditions, the tangent plane errors as usual will be neg-
ligible. Thus, using ()S0 to denote the partials evaluated at
the base point the model approximation, we have

G1(i,u,a) ≈
(

∂G1
∂i

)S0
i +

(
∂G1
∂u

)S0
u +

(
∂G1
∂a

)S0
a

G2(i,u,a) ≈
(

∂G2
∂i

)S0
i +

(
∂G2
∂u

)S0
u +

(
∂G2
∂a

)S0
a

G3(i,u,a) ≈
(

∂G3
∂i

)S0
i +

(
∂G3
∂u

)S0
u +

(
∂G3
∂a

)S0
a

Thus our dynamics approximation in matrix - vector
form is ⎡

⎣ i′
u′
d′

⎤
⎦ ≈

⎡
⎢⎢⎣
GS0
1i GS0

1u GS0
1a

GS0
2i GS0

2u GS0
2a

GS0
3i GS0

3u GS0
3a

⎤
⎥⎥⎦

⎡
⎣ i
u
a

⎤
⎦

The dynamics approximation is then given by
⎡
⎣ i′
u′
d′

⎤
⎦ ≈

⎡
⎢⎢⎣
GS0
1i GS0

1u GS0
1a

GS0
2i GS0

2u GS0
2a

GS0
3i GS0

3u GS0
3a

⎤
⎥⎥⎦

⎡
⎣ i
u
a

⎤
⎦

The algebraic signs of the linearization matrix
The analysis of the signs of these partials is next. This is
similar to what we did for the previous model. If we hold
everything constant except i which we increase to i + δi,
what happens? Increasing the IFN-γ level should increase
IFN-γ . Hence, GS0

1i = +. What about the upregulation
level? We do not think this should have an effect; hence,
GS0
2i = 0 too. A similar argument suggestsGS0

3i = 0 as well.
Thus, the coefficient matrix above which we call � so far
looks like

� =
⎡
⎢⎣

+ GS0
1u GS0

1a

0 GS0
2u GS0

2a

0 GS0
3u GS0

3a

⎤
⎥⎦

Now hold everything constant except the upregulation
u and increase u to u+ δu. What happens? Increasing the
upregulation level should increase the IFN-γ level. Hence,
GS0
1u = +. If upregulation increases, the u′ goes up, hence

GS0
2u = +. What about the level of virus? If upregulation

increases, the increase in upregulation makes infected
cells more visible as it will take fewer additional IFN-γ sig-
nals to trigger lysis. In general, there is a lag of say TD

L and
TN
L time steps before this happens. With the increase δu,

we expect TD
L and TN

L to both go down. Hence, free virus
should increase; i.e.GS0

3u = +. Thus, the coefficient matrix
looks like

� =
⎡
⎢⎣

+ + GS0
1a

0 + GS0
2a

0 + GS0
3a

⎤
⎥⎦

Now hold everything constant except the virus level a and
increase a to a+δa.What happens? Let’s think of the virus
increase δa as giving rise to an increase in the amount of
virus stored inside a dividing cell or a non dividing cell.
Now if the amount of virus in the cell goes up, that means
when the cell is lysed, there is more virus available to infect
cells whichmeansmore cells will be infected in later times.
An increase in virus should not effect IFN-γ levels, so
GS0
1a = 0. An increase in virus must imply GS0

3a = + Now
reason as we did earlier: at a given time then, A is the free
virus level. We can write A = AF + AD + AN where AF is
the free virus, AD is the virus inside the dividing cells and
AN is the virus inside the nondividing cells. So if AF goes
up and the total amount of virus at this time is constant,
we expect AD and AN to go down. If the amount of virus
inside the cells decreases, we expect the upregulation to
decrease. So GS0

2a = −. Thus, the coefficient matrix now
looks like

� =
⎡
⎣ + + 0
0 + −
0 + +

⎤
⎦

Or letting GS0
2u = a, GS0

3u = b, GS0
2a = −c, GS0

3a = d, we
have the coefficient matrix now looks like

� =
⎡
⎣ + + 0
0 a −c
0 b d

⎤
⎦

Oscillations in upregulation and free virus
We now use standard results from the theory of linear
differential equation systems. This analysis relies on the
eigenvalues of our model systems. The eigenvalues of this
linearized system are found by solving the det(λI − �) =
0. Thus, for the coefficient matrix �, we have

det(λI − �) = det

⎡
⎢⎣

λ − GS0
1i −GS0

1u −GS0
1a

0 λ − GS0
2u −GS0

2a
0 −GS0

3u λ − GS0
3a

⎤
⎥⎦ = 0.

This gives

0 =
(
λ − GS0

1i

) ((
λ − GS0

2u

) (
λ − GS0

3a

)
− GS0

2uG
S0
3a

)

The eigenvalues of the two by two submatrix are the
most interesting. Consider the determinant

det
[

λ − α −β

β λ − α

]
= λ2 − 2αλ + α2 + β2

This has the complex roots ( here the symbol j is defined
to be j = √−1).

λ1 = α + βj, λ2 = α − βj
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Hence, we can get complex roots if[
GS0
2u GS0

2a

GS0
3u GS0

3a

]
=

[
α −β

β α

]

or GS0
2u = GS0

3a and GS0
3u = −GS0

2a. Since an eigenvalue
equation of the form

det
[

λ − a c
−b λ − d

]
= λ2 − (a + d)λ + ad + bc

has roots

λ = (d + a) ± √
(d + a)2 − 4(ad + bc)

2

= (d + a) ± √
d2 − 2ad + a2 − 4bc

2
,

we have complex roots if (a−d)2 − 4bc < 0. In particular,
if a = d = α and b = β and c = β , then we have−4β2 < 0
and the roots are complex. We can have complex roots for
other choices of a, b, c and D which implies conditions on
the partials which is something we can explore, but we will
not do that here. For our purposes, we will examine closely
what happens when a = GS0

2u = d = GS0
3a and b = GS0

3u =
−c = −GS0

2a The general solution to the system with the
complex eigenvalues we have been discussing is this. The
eigenvalues are λ1 = Go

1i and the complex conjugate pair
α ± βj where α = GS0

2u = GS0
3a and β = GS0

3u = −GS0
2a. The

eigenvectors here are simple

V + jW =
[
1
0

]
+ j

[
0
1

]
, V − jW =

[
1
0

]
− j

[
0
1

]

We can then solve for u and a to find[
u(t)
a(t)

]
= eαt

[
(a cos(βt) + b sin(βt)
(b cos(βt) − a sin(βt)

]

Letting R = √
a2 + b2, we find[
u(t)
a(t)

]
= Reαt

[
cos(βt − δ)

− sin(βt − δ)

]

where δ is defined as tan−1(b/a). The full solution is then⎡
⎣ i(t)
u(t)
a(t)

⎤
⎦ =

⎡
⎣ Ae−Go

1it

Reαt cos(βt − δ)

−Re−αt sin(βt − δ)

⎤
⎦

where A, R, Go
1i, β and δ determine a given model.

Here, we have u0 = q1S0 and a0 = (1 − p0)S0. Hence,
we roughly know at the time of the infection

q1S0 = (
Reαt cos(βt − δ

)∣∣
t=0 = R cos(δ)

(1 − p0)S0 = − (
Re−αt sin(βt − δ)

)∣∣
t=0 = R sin(δ)

Taking a ratio, we find

tan(δ) = a0
u0

= (1 − p0)S0
q1S0

= (1 − p0)
q1

.

Hence, δ = tan−1
(

(1−p0)
q1

)
and

R = u0 sec(δ) =
√
a02 + u02 = S0

√
q21 + (1 − p0)2.

Finally, recall we have α = GS0
2u and β = GS0

3u; thus, the
oscillatory solutions for upregulation and free virus are

[
u(t)
a(t)

]
= S0

√
q21 + (1 − p0)2 eG

S0
2u t

⎡
⎣ cos

(
GS0
3ut − tan−1

(
(1−p0)

q1

))
− sin

(
GS0
3ut − tan−1

(
(1−p0)

q1

))
⎤
⎦

It seems unreasonable to us that the phase shift δ should
be a constant; i.e. independent of S0. After all, the reason-
ing above is approximate and we should not think of this
as actually fixed. So we will assume that all critical param-
eters here are proportional to S0. Our rough calculation
showed us R = S0

√
q21 + (1 − p0)2, so it seems reasonable

that R is proportional to S0 in general. Therefore, we now
assume

RS0 ∝ S0 =⇒ RS0 = r1 S0
GS0
2u ∝ S0 =⇒ GS0

2u = r2 S0
GS0
3u ∝ S0 =⇒ GS0

3u = r3 S0
δS0 ∝ S0 =⇒ δS0 = r4 S0

for a new parameters r1, r2, r3 and r4. This leads to our
estimate of the dependence of the upregulation and free
virus on the initial dose S0: we have

[
u(t)
a(t)

]
= r1S0 er2S0 t

[
cos(r3S0 t − r4S0)
− sin(r3S0 t − r4S0)

]

A healthmodel
Roughly speaking, if the total number of cells is T , the
number of healthy cells can be approximated by

H = T − (C0 + c(t)) − (D0 + d(t)) − (N0 + n(t))

We know

c′ = Ho
1i i + Ho

1u u + Ho
1a a

d′ = Ho
2u u + Ho

2a a
n′ = Ho

3u u + Ho
3a a
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and so we are looking at deviations from the base values
I0 = 0,U0 = q1S0 andA0 = (1−p0)S0. It follows we have

C(t) = C0 + Ho
1i

(∫ t

0
i(s)ds

)

+Ho
1u

(
q1S0 +

∫ t

0
u(s)ds

)

+Ho
1a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

D(t) = D0 + Ho
2u

(
q1S0 +

∫ t

0
u(s)ds

)

+Ho
2a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

N(t) = N0 + Ho
3u

(
q1S0 +

∫ t

0
u(s)ds

)

+Ho
3a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

As discussed earlier, we have initially, C0 = 0, D0 =
p2 p0 S0 and N0 = p2 p0 S0. So we have

C(t) = Ho
1i

(∫ t

0
i(s)ds

)
+ Ho

1u

(
q1S0 +

∫ t

0
u(s)ds

)

+ Ho
1a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

D(t) = p2 p0 S0 + Ho
2u

(
q1S0 +

∫ t

0
u(s)ds

)

+Ho
2a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

N(t) = p2 p0 S0 + Ho
3u

(
q1S0 +

∫ t

0
u(s)ds

)

+Ho
3a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

Thus, we have

H(t)=T−(p1 p0 S0 + p2 p0 S0)−
(
Ho
1u+Ho

2u + Ho
3u

)
q1S0

− (
Ho
1a + Ho

2a + Ho
3a

)
(1 − p0)S0 − Ho

1i

∫ t

0
i(s)ds

−(
Ho
1u + Ho

2u + Ho
3u

) ∫ t

0
u(s)ds−(

Ho
1a+Ho

2a+Ho
3a

)

×
(∫ t

0
a(s)ds

)

Now collect all the terms involving S0 and set that coef-
ficient to 	 for convenience. Making this replacement, we
have

	 = (p1 + p2)p0 + (
Ho
1u + Ho

2u + Ho
3u

)
q1

+ (
Ho
1a + Ho

2a + Ho
3a

)
(1 − p0)

This leads to the simplification

H(t) = T − 	S0 − Ho
1i

∫ t

0
i(s)ds − (

Ho
1u + Ho

2u + Ho
3u

)
∫ t

0
u(s)ds

− (
Ho
1a + Ho

2a + Ho
3a

) (∫ t

0
a(s)ds

)

Now we have to compute these integrated transient
values. We label them as IT for the transient i integra-
tion; UT for the transient u integration; and AT for the
transient a integration. We then have

IT(t) =
∫ t

0
i(s)ds =

∫ t

0
Ae−Go

1is ds

UT(t) =
∫ t

0
u(s)ds =

∫ t

0
Reαt cos(βs − δ) ds

AT(t) =
∫ t

0
a(s)ds = −

∫ t

0
Re−αt sin(βs − δ)

The i integration is straightforward

IT(t) =
∫ t

0
i(s)ds =

∫ t

0
Ae−GS0

1i s ds = A
GS0
1i

(
1 − e−GS0

1i t
)

however, the UT integration are more complicated.

TheUT calculation
To evaluate this term, we use integration by parts. Nowwe
have to compute the integrated transient values required
to find the health estimate. We have labeled the integra-
tions asUT for the transient u integration; and AT for the
transient a integration. We then have

UT(t) =
∫ t

0
u(s)ds =

∫ t

0
Reαt cos(βs − δ) ds

AT(t) =
∫ t

0
a(s)ds = −

∫ t

0
Re−αt sin(βs − δ)

Integration details
First, let’s calculate UT . To evaluate this term, we use
integration by parts. We find

∫ t

0
eas cos(bs − c) =

(
1
b
eas sin(bs − c)

)∣∣∣∣
t

0

−a
b

∫ t

0
eas sin(bs − c) ds

= 1
(a2 + b2)

eat(b sin(bt − c)

+a cos(bt − c))

+ 1
a2 + b2

(b sin(c) − a cos(c))
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and so we can find UT as follows:

UT(t) =
∫ t

0
u(s)ds =

∫ t

0
Reαt cos(βs − δ) ds

= R(
α2 + β2) (eαt (β sin(βt − δ) + α cos(βt − δ))

+ (β sin(δ) − α cos(δ)))

We can rewrite this is a much better form using our
assumptions. First, rewrite as

UT(t) = R√
α2 + β2

eαt
(

β√
α2 + β2

(
sin(βt − δ)

+ α√
α2 + β2

cos(βt − δ)

)

+ R√
α2 +β2

(
β√

α2 +β2
sin(δ) − α√

α2 + β2
cos(δ)

)

Now we find AT . Another standard integration by parts
gives

∫ t

0
eas sin(bs − c) =

(
−1
b
eas cos(bs − c)

)∣∣∣∣
t

0

+a
b

∫ t

0
eas cos(bs − c) ds

= 1(
a2 + b2

) eat(−b cos(bt − c)

+a sin(bt − c))

+ 1
a2 + b2

(b cos(c) + a sin(c))

and so we can find AT also:

AT(t) =
∫ t

0
a(s)ds = −

∫ t

0
Re−αt sin(βs − δ)

= − R(
α2 + β2)eαt(−β cos(βt − δ) + α sin(βt − δ))

− R
α2 + β2 (β cos(δ) + α sin(δ))

Model results
We know α, β , δ and R are really dependent of S0. For
convenience of exposition, we drop the superscript S0 in
our calculations below

R√
α2 + β2

= r1S0√
r22 + r23S0

= r1√
r22 + r23

,
α√

α2 + β2

= r2S0√
r22 + r23S0

= r2√
r22 + r23

β√
α2 + β2

= r3S0√
r22 + r23S0

= r3√
r22 + r23

, δ = r4S0.

Finally, let’s define two new parameters, θ1 and θ2 as
θ1 = r1√

r22+r23
and θ2 = tan−1

(
r3
r2

)
. Using the above, we

can rewrite UT(t) as

UT(t) = θ1 er2S0 t

⎛
⎜⎝ r3√

r22 + r23
sin(r3S0t − r4S0)

+ r2√
r22 + r23

cos(r3S0t − r4S0)

⎞
⎟⎠

+θ1

⎛
⎜⎝ r3√

r22 + r23
sin(r4S0)− r2√

r22 + r23
cos(r4S0)

⎞
⎟⎠

Using a standard reference triangle for the phase angle
θ2, we see cos(θ2) = r2√

r22+r23
and sin(θ2) = r3√

r22+r23
. We can

then rewrite UT(t) again as

UT(t) = θ1 er2S0 t(sin(θ2) sin(r3S0t − r4S0)
+ cos(θ2) cos(r3S0t − r4S0))
+θ1 (sin(θ2) sin(r4S0) − cos(θ2) cos(r4S0))

and using standard trigonometric identities, we then have

UT(t) = θ1 er2S0 t cos(r3S0t−r4S0−θ2)−θ1 cos(r4S0+θ2)

TheAT calculation
Recall, as showing in as shown in “Integration details”, we
know

AT(t) =
∫ t

0
a(s)ds = −

∫ t

0
Re−αt sin(βs − δ)

= − R(
α2 + β2)eαt(−β cos(βt − δ) + α sin(βt − δ))

− R
α2 + β2 (β cos(δ) + α sin(δ))

Another standard integration by parts similar to what
was done in “Integration details” allows us to find AT . We
note the same comment on the dependence of R, α, β and
δ on S0 holds still. Now using these values and the terms
Q1 and Q2, we we can rewrite AT(t) as follows:

AT(t)= − R(
α2 + β2)eαt(−β cos(βt − δ) + α sin(βt − δ))

− R
α2 + β2 (β cos(δ) + α sin(δ))

Now using the simplifications we obtained for α and
β in terms of r2 and r3, we can rewrite this complicated
expression as
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AT(t) = −θ1er2S0t

⎛
⎜⎝− r3√

r22 + r23
cos (r3S0t − r4S0)

+ r2√
r22 + r23

sin (r3S0t − r4S0)

⎞
⎟⎠

−θ1

⎛
⎜⎝ r3√

r22 + r23
cos(r4S0)+ r2√

r22 + r23
sin(r4S0)

⎞
⎟⎠

Next, using the phase shift θ2, we have

AT(t) = −θ1 er2S0t(− sin(θ2) cos(r3S0t − r4S0)
+ cos(θ2) sin(r3S0t − r4S0))
−θ1 (sin(θ2) cos(r4S0) + cos(θ2) sin(r4S0))

This then leads to our final form

AT(t) = −θ1 er2S0t sin(r3S0t−r4S0−θ2)−θ1 sin(r4S0+θ2)

Building the health model
Recall the health model is

H(t)=T − 	S0−Ho
1i IT(t)−(

Ho
1u + Ho

2u + Ho
3u

)
UT(t)

− (
Ho
1a + Ho

2a + Ho
3a

)
AT(t)

Let cu = Ho
1u + Ho

2u + Ho
3u and ca = Ho

1a + Ho
2a + Ho

3a.
Then we have

H(t) = T − 	 S0 − Ho
1i IT(t) − cu UT(t) − ca AT(t)

Now plug what we have found for our integrations. We
have

H(t) = T − 	S0 − Ho
1i

A
Go
1i

(
1 − e−Go

1it
)

− cu
{
θ1 er2S0 t cos(r3S0t − r4S0 − θ2)

−θ1 cos(θ2) cos(r4S0 + θ2)
}

− ca
{
−θ1 er2S0t sin(r3S0t − r4S0 − θ2)

−θ1 sin(r4S0 + θ2)
}

Then we can rewrite as

H(t) = T − 	S0 − Ho
1i

A
Go
1i

(
1 − e−Go

1it
)

− θ1 cu
{
er2S0 t cos(r3S0t − r4S0 − θ2)

− cos(r4S0 + θ2)
}

+ θ1 ca
{
er2S0t sin(r3S0t − r4S0 − θ2)

+ sin(r4S0 + θ2)
}

Now put the er2S0t together. We find

H(t) = T − 	S0 − Ho
1i

A
Go
1i

(
1 − e−Go

1it
)

+ θ1 (cu cos (r4S0 + θ2) + ca sin (r4S0 − θ2))

− θ1 er2S0t (cu cos(r3S0t − r4S0 − θ2)

− ca sin(r3S0t − r4S0 − θ2))

Let’s simplify some more using another phase shift.
Define the phase angle θ3 = tan−1

(
cu
ca

)
; then, we can

rewrite the health like this.

H(t) = T − 	S0 − Ho
1i

A
Go
1i

(
1 − e−Go

1it
)

− θ1 er2S0t
√
c2u + c2a

(
cu√

c2u + c2a
cos(r3S0t − r4S0 − θ2)

−ca
√
c2u + c2a sin (r3S0t − r4S0 − θ2)

)

+ θ1

√
c2u + c2a

(
cu√

c2u + c2a
cos(r4S0 + θ2)

+ ca√
c2u + c2a

sin (r4S0 − θ2)

)

This can be recast as

H(t) = T − 	S0 − Ho
1i

A
Go
1i

(
1 − e−Go

1it
)

− θ1 er2S0t
√
c2u + c2a (cos(θ3) cos (r3S0t − r4S0 − θ2)

− sin(θ3) sin (r3S0t − r4S0 − θ2))

+ θ1

√
c2u + c2a (cos(θ3) cos(r4S0 + θ2)

+ sin(θ3) sin(r4S0 − θ2))

= T − 	S0 − Ho
1i

A
Go
1i

(
1 − e−Go

1it
)

− θ1 er2S0t
√
c2u + c2a cos(r3S0t − r4S0 − θ2 + θ3)

+ θ1

√
c2u + c2a cos(r4S0 − θ2 − θ3)

Next, we can combine the ratio Ho
1i

A
GS0
1i

into the new

parameter ζ
S0
1 and rewrite GS0

1i as ζ
S0
2 to give

H(t) = T − 	S0 − ζ
S0
1

(
1 − e−ζ

S0
2 t

)

− θ1er2S0t
√
c2u + c2a cos(r3S0t− r4S0 − θ2 + θ3)

+ θ1

√
c2u + c2a cos(r4S0 − θ2 − θ3)
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Finally, let s1 = θ1
√
c2u + c2a. Then, we have the last form

of the health estimate:

H(t) = T − 	S0 − ζ
S0
1

(
1 − e−ζ

S0
2 t

)

− s1er2S0t cos(r3S0t − r4S0 − θ2 + θ3) (1)
+ s1 cos(r4S0 − θ2 − θ3) (2)

We could also assume the terms ζ
S0
1 and ζ

S0
2 are propor-

tional to S0. We would model this by implying ζ
S0
1 = r5S0

and ζ
S0
2 = r6S0. We then find

H(t) = T − 	S0 − r5 S0
(
1 − e−r6S0t

)

− s1er2S0t cos(r3S0t − r4S0 − θ2 + θ3) (3)
+ s1 cos(r4S0 − θ2 − θ3) (4)

These parameters depend in complex ways on the ini-
tial virus dose S0 and it is very difficult to tease out the
details. The only data we have to help fit this model is the
survival data, so the next step of seeing how this model of
health gives rise to the experimental survival data requires
additional analysis.

Results and discussions
We are going to graph Eq. 4 for various values of the
parameters. First, we set the parameters as showin in
Fig. 2.
Then, we define some auxiliary functions in Fig. 3.
Then, we generate a plot of health versus time for a

range of choices of S0, here represented by S0 as shown in
Fig. 4. For each plot, we find the minimum value and store
it in the variable Min. We can then plot Min versus ini-
tial viral dose S0 and see if the plot looks like a traditional
WNV survival curve. We then place all of this code into
a MatLab function and use it in the usual way to generate
the plots. For these choice of parameters, we can plot the
minimal health curve which is shown in Fig. 5. Another
choice of parameters, leads to an even better minimum
health curve which captures the essence of the WNV sur-
vival plot. The parameter choices for this run are shown
in Fig. 6. For these parameters values, all of the health
plots versus time can be seen in Fig. 7 and show much
oscillation. The corresponding minimal health curve is
then shown in Fig. 8. We can make this look more like

the real survival data by scaling the minimal health val-
ues and plotting them as a percentage. When we do this,
we find a plot that is a bit easier to compare to the real
data. It is not perfect, of course, but it is very interesting
that we are capturing the essential quality of the data using
our theoretical model. The percentage minimal values are
shown in Fig. 9. From these experiments, it is clear what is
happening. The model

H(t) = T − 	S0 − r5 S0
(
1 − e−r6S0t

)

− s1er2S0t cos(r3S0t − r4S0 − θ2 + θ3)

+ s1 cos(r4S0 − θ2 − θ3)

can be written in terms of decay and push - pull terms as
follows:

− 	S0 = decay

− r5 S0
(
1 − e−r6S0t

)
= decay

− s1er2S0t cos(r3S0t − r4S0 − θ2 + θ3)+ s1 cos(r4S0− θ2 − θ3)

= push - pull

Thus, we have H(t) always decreases unless the push -
pull terms counteract that decay. Hence, what is impor-
tant is the term

�(t) = −s1er2S0t cos(r3S0t − r4S0 − θ2 + θ3)

+s1 cos(r4S0 − θ2 − θ3)

can oscillate as viral load increases. To do this, it is impor-
tant for the two terms in �(t) to be out of phase. Hence,
roughly speaking cos(r3S0t−r4S0−θ2+θ3)must be some-
times negative when cos(r4S0 − θ2 − θ3) is positive. This
allows for an increase in health of approximately ξ s1 where
ξ is the difference between the two terms. This is possi-
ble when the two cos arguments are out of phase by about
π radians. Note it is also important that the exponential
term er2S0t allows growth. The interaction dynamics are
determined by

[
GS0
2u GS0

2a

GS0
3u GS0

3a

]
=

[
α −β

β α

]

Fig. 2 Set the parameters
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Fig. 3 Define needed functions

and we have argued that the appropriate algebraic signs
for this coefficient matrixM are

M =
[ + −

+ +
]

We can have complex eigenvalues and hence oscillating
behavior if the signs were

M =
[ − +

− −
]

but then the real part of the eigenvalues would be nega-
tive and we would have to model the exponential term as
e−r2S0t . The induced oscillations would then be damped
and the potential for the WNV survival curve would
vanish.

Collateral damage
We should also see oscillations in the collateral damage.
Recall the collateral damage population is given by

C(t) = C0 +Ho
1i

(∫ t

0
i(s)ds

)

+ Ho
1u

(
q1S0 +

∫ t

0
u(s)ds

)

+ Ho
1a

(
(1 − p0)S0 +

∫ t

0
a(s)ds

)

= C0 +Ho
1i IT(t) + Ho

1u (q1S0 + UT(t))
+ Ho

1a ((1 − p0)S0 + AT(t))

We can then substitute for IT(t), UT(t) and AT(t) and
obtain

C(t) = C0 + r5S0
(
1 − e−r6S0t

)

+ Ho
1u

(
q1S0 + θ1 er2S0 t cos(r3S0t− r4S0 − θ2)

−θ1 cos(r4S0 + θ2))

+ Ho
1a

(
(1 − p0)S0− θ1 er2S0t sin(r3S0t − r4S0 − θ2)

−θ1 sin(r4S0 + θ2))

Now, collect terms aswe did in our earlier simplifications.
We rewrite as

C(t) = C0 + r5S0
(
1 − e−r6S0t

)
+(

Ho
1a (1− p0) + Ho

1u q1
)
S0

+ θ1 er2S0t
(
Ho
1u cos(r3S0t − r4S0 − θ2)

−Ho
1a sin(r3S0t − r4S0 − θ2)

)
− θ1

(
Ho
1u cos(r4S0 + θ2) + Ho

1a sin(r4S0 + θ2)
)

We can also introduce an additional phase shift, φ, as
follows. It will be different from the phase shift

θ3 = tan−1
(
cu
ca

)
= tan−1

(Ho
1u + Ho

2u + Ho
3u

Ho
1a + Ho

2a + Ho
3a

)

as here we only use the H1 partials: φ = tan−1
(
Ho
1a

Ho
1u

)
. We

rewrite as

C(t) = C0 + r5S0
(
1 − e−r6S0t

)
+ (

Ho
1a (1 − p0) + Ho

1u q1
)
S0

+θ1

√(
Ho
1u

)2 + (
Ho
1a

)2er2S0t(cos(φ) cos(r3S0t−r4S0−θ2)

− sin(φ) sin(r3S0t − r4S0 − θ2))

− θ1

√(
Ho
1u

)2 + (
Ho
1a

)2
(cos(φ) cos(r4S0 + θ2)

+ sin(φ) sin(r4S0 + θ2))

Fig. 4 Generating survival plots
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Fig. 5Minimum heath versus viral dose

We can then use the the usual cos laws of addition and
subtraction of angles to repackage this as

C(t) = C0 + r5S0
(
1 − e−r6S0t

)
+ (

Ho
1a (1 − p0) + Ho

1u q1
)
S0

+ θ1

√(
Ho
1u

)2+(Ho
1a)

2er2S0t cos(r3S0t− r4S0 − θ2 + φ)

− θ1

√
(Ho

1u)
2 + (Ho

1a)
2 cos(r4S0 + θ2 − φ)

Now define s2 = θ1

√(
Ho
1u

)2 + (
Ho
1a

)2 and rewrite as

C(t) = C0 + r5S0
(
1 − e−r6S0t

)
+ (

Ho
1a (1 − p0) + Ho

1u q1
)
S0

+ s2 er2S0t cos(r3S0t − r4S0 − θ2 + φ)

− s2 cos(r4S0 + θ2 − φ)

Since collateral damage is initially zero, we have as our
final form

C(t) = r5S0
(
1 − e−r6S0t

)
+ (

Ho
1a (1 − p0) + Ho

1u q1
)
S0

+s2 er2S0t cos(r3S0t − r4S0 − θ2 + φ)

−s2 cos(r4S0 + θ2 − φ)

Previously, we used the simplification

	 = (p1 + p2)p0 + (
Ho
1u + Ho

2u + Ho
3u

)
q1

+ (
Ho
1a + Ho

2a + Ho
3a

)
(1 − p0)

This needs to be modified to

	1 = Ho
1u q1 + Ho

1a (1 − p0).

Hence, although we can use some of parameter choices
from our health simulations, it is difficult to compare
completely as S2, 	1 and φ are different. Our final collat-
eral damage function is then

C(t) = 	1S0 + r5S0
(
1 − e−r6S0t

)
+ s2 er2S0t cos(r3S0t

−r4S0 − θ2 + φ) − s2 cos(r4S0 + θ2 − φ)

We can easily run a quick simulation to see if our pre-
diction that the collateral damage will have oscillations is
true or not. We use the function Collateral() for this
which is listed in Fig. 10. The parameter values we use are
as similar as possible to the ones we used in generated the
survival curves, although the values of s2, 	1 and φ are
necessarily new choices. We ran the simulation with these
parameter values and then plotted both themaximum and
minimum collateral values versus the viral dose in Fig. 11.
Note that there is variation in the collateral damage due
to the nonlinear interactions between the upregulation, u,
and the free virus, a.

Conclusions
The presence of a form of self damage in our WNV infec-
tion model therefore appears to be a consequence of the
nonlinear interactions in the i, u and amodel:

⎡
⎣ i′
u′
d′

⎤
⎦ ≈

⎡
⎢⎢⎣
GS0
1i GS0

1u GS0
1a

GS0
2i GS0

2u GS0
2a

GS0
3i GS0

3u GS0
3a

⎤
⎥⎥⎦

⎡
⎣ i
u
a

⎤
⎦

Note, if the two populations D and C coincide, one sig-
nal is unnecessary - say u - and this model reduces to a
two dimensional model

[
i′
a′

]
≈

[
GS0
1i GS0

1a

GS0
3i GS0

3a

][
i
a

]

and the chance of oscillation between the cellular pop-
ulation groups is lost. Hence, we can note some conse-
quences and predictions due to our model.

Fig. 6 Set the parameters for another run
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Fig. 7 Heath plots versus time for many viral doses

• The crucial assumption here is that the viral
infections effect on the host divides into two parts.
For a WNV infection, these two cell populations are
the dividing and nondividing infected cells, D and N ,
respectively. We can envision other infectious agents
or triggers that give rise to such a split response
which then in principle could engender a similar
collateral damage response which we interpret as an
autoimmune reaction. So there is hope that this
approach could perhaps give us insight into more
general autoimmune responses. Note that Fig. 11
shows there is collateral damage that oscillates due to
the infectious agent which here is WNV. It is clear
that other triggering events, another virus or bacteria
or even an environment toxin, could give rise to this
behavior as well.

Fig. 8Minimum heath versus viral dose

Fig. 9Minimal heath percentage versus viral dose

• Specific to the WNV model, we assume that
GS0
2u = +, GS0

3u = +, GS0
2a = −, GS0

3a = +, which then
says the coefficient matrix of the linearized
upregulation and free virus model has the form

[
GS0
2u −GS0

2a

GS0
3u GS0

3a

]
=

[ + −
+ +

]

This algebraic sign pattern itself can give rise to
complex eigenvalues for the linearized nonlinear
interaction model and we have not explored this
more general problem. We have noted in our
discussion in Section “Results and discussions” that if
we did not have GS0

2u = +, we could still have
oscillatory behavior but it would be damped and
therefore it would not explain the data we see in the
survival experiments. Here, we have posited specific
relations that give rise to clearcut oscillations. We
have assumed GS0

2u = GS0
3a and GS0

3u = −GS0
2a which

gives rise to the characteristic coefficient matrix
[
GS0
2u −GS0

3u

GS0
3u GS0

2u

]
=

[
αS0 −βS0

βS0 αS0

]

• The assumptions above then give rise to a general
model of how the minimal health changes with
varying initial virus dose, which appears to allow us to
approximate the data we can measure.

The exact replication of the data found in the biologi-
cal situation is unlikely to occur. Indeed, a standard dose
response curve of survival does not usually repeat exactly
from experiment to experiment, except in the form of it,
even when using genetically identical animals. The ragged
dose response of mortality seen inWNV infection is simi-
larly subject to biological variability. Clearly, with no virus
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Fig. 10 Collateral damage calculations

there will be 100% survival, and with a large amount of
virus there will be 100% death, as expected in a standard
dose response curve. In between these two doses, how-
ever, the response to infection is subject to probability,
which affects the outcome (survival or death). Thus, if the
experiment were undertaken several times it would show
the ragged form on each occasion, but not exactly the
same percentage survival at each dose used. This implies
that small biological differences at the starting point of

Fig. 11 Collateral damage versus viral dose

infection, albeit in genetically identical mice, may sub-
tend a large range of endpoints. It is of interest to note
that bypassing the early initiation of the adaptive immune
response, by inoculating virus intracranially, that the stan-
dard graded dose response occurs with WNV. This is
because the replication of the virus overtakes the animal
before an effective immune response can be generated,
emphasising the role of the immune system in generating
this ragged survival curve [12].

Conclusions
We have shown that we can build a reasonable model of
how WNV infects a host’s cell in such a way that damage
to the host can decrease, even though the inoculating viral
dose increases.

Methods
Our model is a macro one and we believe it provides
insight as to how we can model more general auto-
immune reactions. We propose that for an infectious
agent or trigger to cause oscillations in health it is required
that the trigger causes alterations in two distinct cell
populations. Then, if the nonlinear interactions between
these two populations satisfies the conditions for damped
oscillatory response we have mentioned here, we should
see oscillations in the host health. We consider this
work essentially a theoretical model and as we explore
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what we can do to extend the results to more general
auto-immune settings, we hope that we can generate
greater mechanistic insight into auto-immune disease.
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