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Monocyte differentiation and macrophage
priming are regulated differentially by
pentraxins and their ligands
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Abstract

Background: Circulating bone marrow-derived monocytes can leave the blood, enter a tissue, and differentiate into M1
inflammatory, M2a remodeling/fibrotic, or M2c/Mreg resolving/immune-regulatory macrophages. Macrophages can also
convert from one of the above types to another. Pentraxins are secreted proteins that bind to, and promote efficient
clearance of, microbial pathogens and cellular debris during infection, inflammation, and tissue damage. The pentraxins
C-reactive protein (CRP), serum amyloid P (SAP), and pentraxin-3 (PTX3) can also bind a variety of endogenous ligands. As
monocytes and macrophages are exposed to differing concentrations of pentraxins and their ligands during infection,
inflammation, and tissue damage, we assessed what effect pentraxins and their ligands have on these cells.

Results: We found that many polarization markers do not discriminate between the effects of pentraxins and
their ligands on macrophages. However, pentraxins, their ligands, and cytokines differentially regulate the
expression of the hemoglobin-haptoglobin complex receptor CD163, the sialic acid-binding lectin CD169, and
the macrophage mannose receptor CD206. CRP, a pentraxin generally thought of as being pro-inflammatory,
increases the extracellular accumulation of the anti-inflammatory cytokine IL-10, and this effect is attenuated
by GM-CSF, mannose-binding lectin, and factor H.

Conclusions: These results suggest that the presence of pentraxins and their ligands regulate macrophage
differentiation in the blood and tissues, and that CRP may be a potent inducer of the anti-inflammatory cytokine IL-10.
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Background
Cells of the mononuclear phagocytic system, monocytes
and macrophages, are found in every tissue of the body
and regulate infections, inflammation, and tissue repair,
and are critical in the protection from, or development
of, autoimmune diseases, asthma, fibrosis, and cancer
[1]. Tissue resident macrophages derive from progenitor
cells that develop in the fetal yolk sac and fetal liver,
whereas circulating monocytes are bone marrow-derived
cells that leave the blood, enter tissues, and then differenti-
ate into macrophages during inflammation, infection, or
tissue damage [2]. There are different types of macro-
phages such as M1 inflammatory macrophages, and M2
remodeling/fibrotic (M2a) or resolving/immune-regulatory

(M2c; sometimes called Mreg) macrophages [3]. Although
many markers have been proposed that discriminate these
subsets, there are no definitive markers to identify macro-
phage subtypes [4]. In addition, as macrophages change
their phenotypic markers and physiology when exposed to
different environmental signals, macrophage phenotypes
may be more of a series of overlapping subsets or a con-
tinuum, rather than defined and permanent subsets [5].
In persistent diseases, macrophages can be either

activated to drive a disease process, or either absent or
suppressed and therefore unable to aid in the resolution
of a condition [1]. In tuberculosis, Leishmaniasis, tryp-
anosome infections, and some tumors, the macrophages
have an M2a or M2c phenotype, and it has been hypoth-
esized that shifting these to an M1 phenotype could be
therapeutic [1]. Conversely, in fibrosis, the macrophages
have an M2a pro-fibrotic phenotype, and shifting these
to an M2c phenotype could be therapeutic [1, 6].
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Understanding, and being able to manipulate, macro-
phage differentiation could have a significant impact on
a wide variety of diseases.
Pentraxins are secreted proteins that bind to, and

promote efficient clearance of, microbial pathogens and
cellular debris during infection, inflammation, and tissue
damage [7]. Pentraxins also regulate macrophage re-
sponses. The pentraxin serum amyloid P (SAP) is a con-
stitutive component of plasma and drives monocytes
and macrophages to a M2c phenotype, as defined by
upregulation of the potent anti-inflammatory and anti-
fibrotic cytokine IL-10 [8–10]. In animal models, SAP
inhibits fibrosis and promotes disease resolution by acti-
vating the CD209 receptor [11], activating Fcγ receptors
(FcγR) [8, 11, 12] and by potentiating extracellular
accumulation of IL-10 [6, 8, 11]. In contrast to SAP, the
pentraxin CRP has been thought to induce a M1 pheno-
type [13]. Serum levels of human CRP increase up to a
thousand fold during infection and inflammation [14],
and elevated serum CRP levels are a biomarker for pre-
dicting inflammatory diseases [15]. In animals, overex-
pression of CRP strongly potentiates inflammation and
fibrosis [16]. However, CRP can inhibit experimental
allergic encephalomyelitis (EAE) and kidney inflamma-
tion by macrophage- and IL-10-dependent mechanisms
[17, 18]. A third pentraxin, PTX3, is upregulated during
inflammation in humans, but in mice appears to be pro-
inflammatory in some models and limits inflammation in
other models, and its effects on human or mouse macro-
phages is unclear [7, 19]. These data indicate that pentra-
xins have complex and important roles in inflammation
and tissue damage. Pentraxins not only act on cells as in-
dependent molecules but also in association with a variety
of ligands [7]. SAP, CRP, and PTX3 all bind the comple-
ment component C1q, and promote phagocytosis of
complement-bound bacteria [20–22]. Additional pentra-
xin ligands include complement component Factor H,
which binds CRP and PTX3, and mannose-binding lectin
(MBL), which binds SAP and PTX3 [7, 23, 24].
As circulating monocytes, differentiating macrophages,

and tissue resident macrophages are exposed to the three
pentraxins and their ligands during infection, inflamma-
tion, and tissue damage, we assessed what effect pentra-
xins and their ligands have on macrophages. In this
report, we show that pentraxins and their ligands have dis-
tinct effects on monocyte differentiation into macrophages
and macrophage priming from one subtype to another
subtype. In addition, we show that CRP can induce pro-
duction of the anti-inflammatory cytokine IL-10.

Methods
Cell isolation and cell culture conditions
All protocols were approved by the local ethical commit-
tees and performed in accordance with national guidelines

and regulations. Human peripheral blood was collected
from healthy adult volunteers who gave written consent
and with specific approval from the Texas A&M Univer-
sity human subjects Institutional Review Board. Peripheral
blood mononuclear cells (PBMC) were isolated from hep-
arinized blood using Ficoll-Paque Plus (GE Healthcare
Biosciences, Piscataway, NJ), as described previously [9].
PBMC were cultured at 37 °C in a humidified incubator
with 5% (vol/vol) CO2 in either 8-well glass slides
(Falcon-Corning, Tewksbury, MA or EMD-Millipore,
Billerica, MA) or 96 well μ-plates (ibidi, Madison,
WI) with 200 μl/well at 5 x 105 cells per ml in
RPMI-1640 (Lonza, Walkersville, MD) containing 100
U/ml penicillin, 100 μg/ml streptomycin (Lonza), and
10% fetal calf serum (FCS; Seradigm, Radnor, PA) [9, 11, 25].
Although both human AB serum and FCS can be used for
human monocyte/macrophage cultures, we used FCS as it
contains low levels of pentraxins and their ligands [26–31].

Monocyte differentiation, macrophage priming, and
macrophage polarization
For monocyte differentiation, PBMC were incubated for
6 days in the presence or absence of the indicated concen-
trations of SAP (EMD Millipore, Billerica, MA), CRP
(#30-ac05AF, Fitzgerald Industries, Acton, MA), or PTX3
(R&D Systems, Minneapolis, MN) [9, 25]. As commercial
SAP preparations contain 0.1% azide, we buffer-exchange
the SAP into 20 mM sodium phosphate, pH 7.4, as de-
scribed previously [9, 32]. CRP and PTX3 preparations
were purchased free of azide. For macrophage priming,
PBMC were incubated in the presence or absence of
25 ng/ml M-CSF or GM-CSF (BioLegend, San Diego, CA)
for 6 days [4, 33, 34]. The medium was then removed and
fresh medium containing M-CSF or GM-CSF was then
added, containing the indicated concentrations of pentra-
xins in the presence or absence of 30 μg/ml C1q (Fitzgerald
Industries), 100 μg/ml factor H (Fitzgerald), or 2 μg/ml
MBL (NovoProtein, Summit, NJ) for an additional 2 days.
To polarize macrophages, PBMC were incubated for 6 days
in the presence of 25 ng/ml M-CSF or GM-CSF and then
polarized into M1 macrophages with 10 ng/ml IFN-γ
(BioLegend) and LPS (Sigma, St. Louis, MO) or M2 macro-
phages with 10 ng/ml IL-4 (BioLegend) [33, 35, 36]. All re-
agents were isolated from human material and/or tested for
LPS/endotoxin and found to be <0.01 EU/ml or <1.0 EU
per μg of protein (apart from the LPS), as determined by
the manufacturer. After 6-day monocyte differentiation
experiments or 8-day macrophage priming experiments,
supernatants were collected and stored at either 4 °C (for
less than 2 days) or at −20 °C, and the plates were air-dried
as described previously [9]. Supernatants were analyzed by
ELISA using kits for IL-4 (Peprotech, Rocky Hill, NJ), IL-10
(BioLegend), IL-12 (BioLegend), and IFN-γ (Peprotech)
following the vendor’s protocol.
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Immunocytochemistry (ICC)
For 8-well slides and 96 well plates, cells were fixed with
acetone for 15 min, air dried for 15 min and then non-
specific binding was blocked by incubation in PBS
containing 4% BSA (PBS-BSA) for 60 min. Slides were
then incubated with 5 μg/ml primary antibodies (Table 1)
in PBS-BSA for 60 min as described previously [9].
Isotype-matched irrelevant mouse and rat monoclonal
antibodies (BioLegend), or irrelevant rabbit or goat poly-
clonal antibodies (R&D Systems, Minneapolis, MN), at
5 μg/ml in PBS-BSA were used as controls. Primary
antibodies were detected with either biotinylated donkey
F(ab’)2 anti-mouse IgG, biotinylated mouse F(ab’)2 anti-
rat IgG, or biotinylated donkey F(ab’)2 anti-rabbit IgG
(all cross-adsorbed against human Ig; Jackson Immu-
noResearch, West Grove, PA). All secondary antibodies
were used at 1 μg/ml in PBS-BSA for 30 min. Biotinyl-
ated antibodies were detected by a 1/500 dilution of
ExtrAvidin alkaline phosphatase (Vector Laboratories,
Burlingame, CA) in PBS-BSA. Staining was developed
with the Vector Red Alkaline Phosphatase Kit (Vector
Laboratories) for 5–7 min, and then counterstained with
Gill’s hematoxylin #3 (Sigma-Aldrich, St. Louis, MO)
following the manufacturer’s directions. Macrophages
were identified as 15–40 μm diameter cells with a large
nucleus and pronounced cytoplasm.

Statistics
Statistical analysis was performed using GraphPad Prism
4 software (GraphPad, San Diego, CA). Statistical signifi-
cance between two groups was determined by t tests or
Mann–Whitney tests, or between multiple groups using
1-way ANOVA with Dunn’s test. Significance was de-
fined as p < 0.05.

Results
Pentraxins affect the expression of CD163, CD169, and
CD206 in macrophages
There is no definitive set of markers to identify polarized
macrophages [4, 5]. Therefore, we first assessed the
effect of pentraxins on macrophage polarization using
markers previously identified as being expressed on M1
macrophages including IFN-γ receptor (CD119), MHC
class II, CCR7, and IRF5; M2a macrophages including
Dectin-1, resistin-like molecule-β (RELMβ; FIZZ2),
IRF4, and fibronectin (Fn); and M2c macrophages in-
cluding sphingosine kinase-1 (SPK), TNFRSF14 (CD270)
and SIRPα (CD172a) [4, 35–42]. As discussed by Murray
et al. [4], all macrophages regulate the immune response,
therefore we will use the term M2c, as defined by
Mantovani [3], to define the IL-10 producing regulatory/
resolving macrophage phenotype. We specifically did
not isolate monocytes away from the other cell types

Table 1 Antibody list

Marker Description of marker Clone or Catalog
number

Isotype Source

CD163 hemoglobin-haptoglobin complex receptor RM3/1 Mouse IgG1 BioLegend

CD169 Siglec-1 Sialoadhesin (Sn) 7-239 Mouse IgG1 BioLegend

CD172a/b Signal regulatory protein α/β (SIRPα/β) SE5A5 Mouse IgG1 BioLegend

CD200R OX-2 receptor-cell surface receptor OX-108 Mouse IgG1 BioLegend

CD206 Macrophage mannose receptor (MMR) 15-2 Mouse IgG1 BioLegend

CCR7 (CD197) Receptor for chemokines CCL19/ELC and CCL21 3D12 Rat IgG2a eBioscience

Dectin-1 (CLEC7A) C-type lectin family Clone 259931 MAB 1859 Mouse IgG2b R&D Systems

Fibronectin Matrix protein EP5 Mouse IgG1 GeneTex

IFN-γ receptor (CD119) Cytokine receptor GIR-94 Mouse IgG2b BD Bioscience

Interferon regulatory factor 4 (IRF4) transcription factor EP5699 (ab133590) Rabbit
monoclonal

Abcam

Interferon regulatory factor 5 (IRF5) transcription factor EPR6094 (ab124792) Rabbit
monoclonal

Abcam

MHC class II (DR) major histocompatibility complex L243 Mouse IgG2a BioLegend

Raf1 serine/threonine-protein kinase Y198 (ab32025) Rabbit
monoclonal

Abcam

RELM Beta (FIZZ 2) resistin-like molecule beta Found in
inflammatory zone 2

GTX88677 Goat polyclonal GeneTex

TNFRSF14 (CD270) cell surface receptor of the TNF-receptor
superfamily

ab47677 Rabbit
polyclonal

Abcam

sphingosine kinase 1 (SPHK1) phosphorylates sphingosine to
sphingosine-1-phosphate

GTX107509 Rabbit
polyclonal

GeneTex
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found in PBMC, so that we could determine the effect
of pentraxins and their ligands on monocyte differenti-
ation and macrophage polarization in the presence of
other immune cells. PBMC were cultured for 6 days in
the presence of GM-CSF to differentiate the monocytes
into M1-like macrophages, or M-CSF to differentiate the
monocytes into M2-like macrophages [4, 33, 43, 44], and
then pentraxins were added for additional 2 days to
prime the macrophages. Compared to no pentraxin,
there was no significant effect of SAP, CRP, or PTX3 on
the percent of morphologically-identifiable macrophages
expressing the markers listed above (Fig. 1). Antibodies
against many of the markers only stained a subset of
macrophages, indicating a heterogeneity of macrophages
in these standard culture conditions. To confirm that we
could identify polarized macrophages, PBMC were cul-
tured for 6 days in the presence of M-CSF or GM-CSF
and then polarized into M1 or M2 macrophages with ei-
ther IFN-γ and LPS or IL-4. We found that the M1
marker IRF5 was upregulated in cultures containing
IFN-γ and LPS, and the M2 marker IRF4 was upregu-
lated in cultures containing IL-4 [33, 35, 36] (Fig. 2).
These results suggest that pentraxins do not appear to
affect the percent of macrophages expressing CD119,
MHC class II, CCR7, IRF5, Dectin-1, RELMβ, IRF4,
fibronectin, SPK, CD270, or CD172a.
Testing other markers, we then found that the

hemoglobin-haptoglobin complex receptor CD163, the
sialoadhesin CD169, and the C-type lectin CD206 were
differentially expressed by human macrophages when
cultured in the presence or absence of pentraxins (Fig. 3).
CD163 has been used as both a tumor-associated and
M2 macrophage marker, CD169 has been used as a
marker of subsets of macrophages in lymph nodes, lung,
and GI tract independent of the M1/M2 classification
system, and CD206 has been used as a general M2 marker
[4, 37, 45, 46]. However, the association of these three re-
ceptors with the broad M2 classification is difficult to
interpret, as the M2 subset of macrophages contains pro-
fibrotic M2a macrophages, M2c anti-inflammatory
macrophages, and tumor-associated macrophages [4].
Compared to macrophages cultured with M-CSF in the
absence of pentraxins, SAP increased the percentage of
macrophages expressing CD169 and CD206, CRP in-
creased the percentage expressing CD169, and PTX3 in-
creased the percentage expressing CD169 and CD206
(Fig. 3a-c). Compared to macrophages cultured with GM-
CSF in the absence of pentraxins, SAP increased the per-
centage expressing CD206, CRP increased the percentage
expressing CD163, CD169, and CD206, and PTX3 in-
creased the percentage expressing CD169 (Fig. 3d-f). We
occasionally observed (by morphology) dendritic cells in
cultures with GM-CSF (Fig. 3g insert). These results sug-
gest that in cultures with M-CSF or GM-CSF, pentraxins

affect the percentage of macrophages expressing detect-
able levels of CD163, CD169, and CD206.

Effect of pentraxin ligands on macrophages
In healthy humans the plasma levels of CRP and PTX3
are low (<2 μg/ml and < 25 ng/ml respectively) and SAP
is approximately 30 μg/ml, whereas during inflammation
CRP and PTX3 levels may rise to 50–500 μg/ml and
200–800 ng/ml respectively, but SAP levels remain con-
stant [7]. Pentraxins bind to several plasma proteins.
SAP, CRP, and PTX3 all bind the complement compo-
nent C1q [20–22], CRP and PTX3 bind Factor H, while
SAP does not [7, 23], and SAP and PTX3, but not CRP,
bind mannose-binding lectin (MBL) [24]. The plasma
concentrations of C1q (50–200 μg/ml), Factor H (200–
600 μg/ml), and MBL (1–3 μg/ml) are relatively constant
and are not significantly altered during inflammation
[47–51]. To determine if the above factors affect the
response of macrophages to pentraxins, we cultured hu-
man PBMC with either M-CSF or GM-CSF for 6 days
and then added increasing concentrations of pentraxins
in the presence or absence of a single concentration of
each pentraxin-binding ligand, and cultured the cells for
an additional 2 days. For the cells cultured with M-CSF,
neither the pentraxins nor the ligands had any signifi-
cant effect on the percentage of macrophages expressing
CD163 (Fig. 4a-c). 3 to 30 μg/ml SAP, 1 to 300 μg/ml
CRP, and 20 to 200 ng/ml PTX3 increased the percent-
age of cells expressing CD169 (Fig. 4d-f ). At 1 and
60 μg/ml SAP, all three ligands increased the percentage
of macrophages expressing CD169. In the presence of
CRP, the ligands had no significant effect, and in the
presence of 20 to 200 ng/ml PTX3, C1q significantly
reduced the percentage of macrophages expressing
CD169. 10 μg/ml SAP, 30–600 μg/ml CRP (higher con-
centrations than used for the data in Fig. 3), and 20 to
800 ng/ml PTX3 increased the percentage of cells ex-
pressing CD206 (Fig. 4f-i). In the presence of 20 ng/ml
PTX3, MBL reduced the percentage of macrophages ex-
pressing CD206 (Fig. 4i). These results suggest that for
macrophages cultured with M-CSF, pentraxins and the
ligands C1q and MBL can modulate the expression of
CD169 and CD206.
For the cells cultured with GM-CSF, we found that

neither the pentraxins nor the ligands had any signifi-
cant effect on the percentage of macrophages express-
ing CD163, apart from CRP at 10 μg/ml (Fig. 5a-c). 1
to 300 μg/ml CRP and 20 to 400 ng/ml PTX3 in-
creased the percentage of cells expressing CD169
(Fig. 5d-f ). At 3 to 30 μg/ml SAP, MBL and C1q in-
creased the percentage of macrophages expressing
CD169, in the presence of CRP the ligands had no ef-
fect, and at 50 to 200 ng/ml PTX3, C1q significantly
reduced the percentage of macrophages expressing
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CD169. 3 and 10 μg/ml SAP and 10 μg/ml CRP in-
creased the percentage of macrophages expressing
CD206 (Fig. 5g). These results suggest that for mac-
rophages cultured with GM-CSF, pentraxins and the
ligands C1q and MBL can modulate the expression of
CD169 and CD206.

CRP can potentiate IL-10 accumulation
Besides cell surface receptors, M1 and M2 primed mac-
rophages also secrete different cytokines, M1 macro-
phages secrete elevated levels of IL-12, M2a fibrotic
macrophages secrete IL-4, and M2c macrophages secrete
IL-10 [4, 6]. We collected supernatants from cells

Fig. 1 Expression of M1/M2 polarization markers on macrophages cultured with pentraxins. PBMC were cultured with either (a-c) 25 ng/ml
M-CSF or (d-f) 25 ng/ml GM-CSF for 6 days and then SAP (10 μg/ml), CRP (10 μg/ml), or PTX3 (10 ng/ml) was added for an additional two days.
PBMC were then air-dried, fixed, and stained by immunocytochemistry (ICC) with the indicated antibodies or irrelevant control antibodies.
Following immunocytochemical staining, at least 100 macrophages were examined from at least 10 randomly selected fields, and the percentage
of positive cells is expressed as the mean ± SEM (n = 4–5 separate donors)
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Fig. 2 Expression of IRF5 (M1 marker) and IRF4 (M2 marker) on polarized macrophages. PBMC were cultured with 25 ng/ml of either M-CSF or
GM-CSF for 6 days, and macrophages were then polarized for 2 days with either LPS + IFNγ or IL-4. Cells were then air-dried, fixed, and stained by
ICC with antibodies. Positive cells are identified by red staining, and nuclei are counterstained blue. Bar is 100 μm. Asterisk indicates a cluster of
macrophages stained with anti-IRF5 antibodies

Fig. 3 Effect of a single concentration of pentraxin on macrophage markers. PBMC were cultured with either (a-c) 25 ng/ml M-CSF or (d-f) GM-
CSF for 6 days and then SAP (10 μg/ml), CRP (10 μg/ml), or PTX3 (10 ng/ml) was added for an additional two days. Cells were then air-dried, fixed,
and stained by ICC with antibodies against (a and d) CD163, b and e) CD169, c and f) CD206. Results shows the percent positive macrophages
expressed as the mean ± SEM (n = 3–4 separate donors). *p < 0.05, **p < 0.01 (1-way ANOVA with Dunn’s test). g Representative images of PBMC
cultured in the presence or absence of pentraxins and then stained for CD169. Bar is 0.1 mm. Insert shows a dendritic cell in PBMC cultured in GM-CSF
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cultured in the presence of M-CSF and GM-CSF, and
then primed with pentraxins in the presence or absence
of ligands, and assayed for IL-4, IL-10, IL-12, and IFN-γ.
We only found detectable levels of IL-10 in our culture
conditions. As previously described [8], in the presence
of M-CSF or GM-CSF, SAP increased IL-10 accumula-
tion (Fig. 6a and d). In M-CSF, but not GM-CSF, 30 to
300 μg/ml CRP increased IL-10 accumulation (Fig. 6b).
PTX3 had no significant effect on IL-10 accumulation.
With M-CSF and no pentraxins, MBL and C1q in-
creased IL-10 accumulation (Fig. 6a-c). With M-CSF and
100 and 300 μg/ml CRP, Factor H and MBL decreased
IL-10 accumulation (Fig. 6b). These results suggest that

CRP can affect IL-10 production and that this is reduced
by the presence of GM-CSF, Factor H, or MBL.
To determine if the lack of signal for IL-12 was due to

the pentraxins not stimulating the cells to secrete IL-12,
or a technical issue with ELISA sensitivity, we tested the
supernatants from M1- and M2-primed macrophages.
When cells were cultured with M-CSF or GM-CSF and
then polarized with LPS+ IFN-γ, we could detect high
levels of both IL-10 and IL-12 (Additional file 1: Figure
S1). These results suggest that the inability to detect IL-
12 in cultures of PBMC with pentraxins and/or ligands
indicates that these molecules do not generate a signal
that induces IL-12 production.

Fig. 4 Effect of M-CSF priming, pentraxin concentration, and pentraxin ligands on macrophage markers. PBMC were cultured in M-CSF for 6 days
and then with increasing concentrations of (a, d, g) SAP, (b, e, h) CRP, or (c, f, i) PTX3, in the presence or absence of factor H (100 μg/ml), MBL
(2 μg/ml), or C1q (30 μg/ml), for an additional two days. Cells were then air-dried, fixed, and stained by ICC with antibodies against (a-c) CD163,
(d-f) CD169, and g-i) CD206. Results shows the percent positive macrophages expressed as the mean ±SEM (n = 4 CD163; n= 9 CD169; n= 4
CD206 separate donors)
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Effect of pentraxins and ligands on monocyte
differentiation
Depending on the health of an individual, monocytes
will be exposed to different concentrations of pentraxins
in the blood and as they differentiate into macrophages
in the tissues. To model these conditions, we cultured
PBMC for 6 days to induce monocyte differentiation
into macrophages in the presence or absence of pentra-
xins and ligands. None of the pentraxins had a signifi-
cant effect on the percentage of macrophages expressing
CD163 (Fig. 7a-c). 1 to 30 μg/ml CRP and 20 to 50 ng/
ml PTX3 increased the percentage of macrophages
expressing CD169 (Fig. 7e-f ). 0.3 to 60 μg/ml SAP, 0.1 to

100 μg/ml CRP, and 10 to 400 pg/ml PTX3 increased
the percentage of macrophages expressing CD206
(Fig. 7g-i). The ligands did not significantly alter the
number of macrophages expressing CD163 (Fig. 7a-c).
At 0.3 to 10 μg/ml SAP, MBL and C1q increased the
percentage of macrophages expressing CD169 (Fig. 7d).
At 20 to 50 ng/ml PTX3, MBL and C1q decreased the
percentage of macrophages expressing CD169 (Fig. 7 f),
and at 20 to 100 ng/ml PTX3, C1q also decreased the per-
centage of macrophages expressing CD206 (Fig. 7i). These
results suggest that for monocytes differentiating into
macrophages, pentraxins and the ligands C1q and MBL
can modulate the expression of CD169 and CD206.

Fig. 5 Effect of GM-CSF priming, pentraxin concentration, and pentraxin ligands on macrophage markers. PBMC were cultured in GM-CSF for
6 days and then with increasing concentrations of (a, d, g) SAP, (b, e, h) CRP, or c, f, i) PTX3, in the presence or absence of factor H (100 μg/ml),
MBL (2 μg/ml), or C1q (30 μg/ml), for an additional two days. Cells were then air-dried, fixed, and stained by ICC with antibodies against (a-c) CD163,
(d-f) CD169, and g-i) CD206. Results shows the percent positive macrophages expressed as the mean±SEM (n = 4 CD163; n = 9 CD169; n = 4 CD206
separate donors)
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To determine if pentraxins and/or their ligands also
regulate extracellular cytokine accumulation as mono-
cytes differentiate into macrophages, we collected
supernatants from cells cultured in the presence of
pentraxins in the presence or absence of ligands, and
assayed for IL-4, IL-10, IL-12, and IFN-γ. We only
found detectable levels of IL-10 in our culture condi-
tions. As described previously [8], SAP modestly in-
creased IL-10 accumulation (Fig. 8). CRP strongly
potentiated IL-10 accumulation, and PTX3 had no
significant effect. The addition of ligands did not
significantly affect IL-10 accumulation (Fig. 8). These
results suggest that for monocytes differentiating into

macrophages, CRP can also affect IL-10 production
and this is independent of ligands.

Discussion
Pentraxins regulate macrophage responses, either by
enhancing phagocytosis, by regulating complement
activation, or by directly binding to receptors to alter
macrophage differentiation and polarization [10, 11, 52].
In this report, we found that CD163, CD169, and CD206
expression was differentially regulated by pentraxins,
and that the pentraxin ligands Factor H, MBL, and C1q
altered some of these responses for CD169 and CD206.
In addition, we found that CRP was a potent inducer of

Fig. 6 Effect of priming, pentraxin concentration and pentraxin ligands on IL-10 production. PBMC were cultured in (a-c) M-CSF or d-f) GM-CSF
for 6 days and then with increasing concentrations of (a, d) SAP, b, e) CRP, or c, f) PTX3, in the presence or absence of factor H (100 μg/ml), MBL
(2 μg/ml), or C1q (30 μg/ml), for an additional two days. Supernatants were then collected from the cells and assessed by ELISA for IL-10. Insert
shows IL-10 production by SAP alone. Values are mean ± SEM (n = 8 SAP for M-CSF; n = 9 CRP for M-CSF; n = 9 PTX3 for M-CSF, n = 5 SAP for
GM-CSF; n = 9 CRP for GM-CSF; n = 5 PTX3 for GM-CSF per group). *p < 0.05 (1-way ANOVA with Dunn’s test)
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IL-10 production in monocytes and macrophages cul-
tured in the presence of M-CSF but not GM-CSF.
We found that most of the published macrophage

polarization markers were unaltered by culturing cells in
the presence of the pentraxins, even though these same
markers were expressed differentially by macrophages
using standard polarization conditions. These data suggest
that pentraxin regulation of macrophage polarization is
more subtle than a straightforward M1/M2a/M2c scheme
and more akin to the view of macrophage polarization as
a continuum[5]. In addition, we found that the presence
of Factor H, MBL, and C1q altered the expression of
macrophage markers induced by pentraxins, such that
C1q augmented the expression of CD169 by SAP, but C1q
inhibited CD169 and CD206 expression induced by

PTX3. Several groups including our own have previously
shown that SAP and PTX3 can promote CD206 expres-
sion, but the observation that MBL and C1q can counter-
act these effects again suggests that experiments with a
single pentraxin concentration do not adequately repre-
sent the environment found at sites of inflammation.
CRP is generally thought of as being an inflammatory

mediator, due to its upregulation during infection and
the correlation of high CRP levels with poor prognosis
in persistent inflammatory conditions such as cardiovas-
cular disease [14]. However, others have argued that the
effect of CRP is more subtle and the concentration of
CRP present in a lesion, the presence of co-factors such
as bacterial products and complement pathway proteins,
and the site of tissue response may determine the pro-

Fig. 7 Effect of pentraxin concentration and pentraxin ligands on monocyte differentiation. PBMC were cultured in for 6 days with increasing
concentrations of (a, d, g) SAP, (b, e, h) CRP, or c, f, i) PTX3 in the presence or absence of factor H (100 μg/ml), MBL (2 μg/ml), or C1q (30 μg/ml). Cells
were then air-dried, fixed, and stained by ICC with antibodies against (a-c) CD163, (d-f) CD169, and (g-i) CD206. Results show the percent positive
macrophages expressed as the mean±SEM (n = 4 separate donors)
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or anti-inflammatory nature of CRP [7, 17]. Several re-
ports also indicate that CRP can promote the production
of the anti-inflammatory cytokine IL-10, suggesting that
elevated CRP levels may by a means to downregulate
inflammation [17, 18, 53, 54]. The effect of CRP may
be further complicated by the relative levels of CRP
in the circulation compared to the tissue or inflam-
matory site, as transgenic mice expressing CRP in le-
sions have differential responses to mice with high
levels of systemic CRP [55].
The role of PTX3 in regulating inflammation is also

dependent on spatial and temporal conditions [7]. PTX3
can reduce platelet activation and neutrophil migration
during the early stages of inflammation, and bind com-
plement component proteins (such as C1q, MBL, and
Factor H), to limit tissue injury [56, 57]. However,
increased PTX3 levels can exacerbate persistent and
autoimmune diseases, such as chronic heart and lung
diseases [58–60]. Our observations that MBL and C1q
can reverse PTX3-induced CD169 and CD206 expres-
sion suggest that both local and systemic concentrations
of pentraxin ligands will have a profound effect on
macrophage phenotype and function.
The four proteins regulated by pentraxins were the

hemoglobin-haptoglobin complex receptor CD163, the
surface receptors CD169 and CD206, and the anti-
inflammatory cytokine IL-10. CD163 is a member of the
scavenger receptor cysteine-rich (SRCR) superfamily, and
is exclusively expressed in monocytes and macrophages
[61]. CD163 is a receptor involved in the clearance and
endocytosis of hemoglobin/haptoglobin complexes by
macrophages, and may thereby protect tissues from free
hemoglobin-mediated oxidative damage [62]. CD163
expression is upregulated by glucocorticoids and IL-10,
and downregulated by LPS, TNF, and GM-CSF, suggest-
ing that CD163 is a marker for alternatively activated
macrophages [63, 64]. However, CD163 positive macro-
phages are frequently found in tissue samples from
chronic inflammation, and high levels of soluble CD163
are present in plasma from a wide range of inflamma-
tory diseases [65–67].
CD169, also known as Sialoadhesin or Siglec-1, is a

lectin that binds to proteins with sialic acid residues,
and is expressed by subsets of macrophages in secondary

Fig. 8 Effect of differentiation, pentraxin concentration, and
pentraxin ligands on IL-10 production. PBMC were cultured for 6 days
with increasing concentrations of (a) SAP, (b) CRP, or (c) PTX3, in the
presence or absence of factor H (100 μg/ml), MBL (2 μg/ml), or C1q
(30 μg/ml). Supernatants were then collected from the cells and
assessed by ELISA for IL-10. Insert shows IL-10 production by SAP
alone. Values are mean ± SEM (n = 3–4 separate donors). *p < 0.05
(1-way ANOVA with Dunn’s test)
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lymphoid organs (spleen and lymph nodes) and in tissues
exposed to environmental antigens (lung, GI tract, and
liver) [46]. CD169 appears to promote the phagocytosis of
pathogens, leading to enhanced immune responses, but
inhibits autoimmune responses [68]. However, increased
CD169 expression promotes macrophage uptake of patho-
gens to augment adaptive T cell and B cell responses, but
increased CD169 is also associated with an increased risk
of autoimmune and cardiovascular disease [46, 69, 70].
These data suggest that the local and systemic concentra-
tions of SAP, PTX3, C1q, and MBL will ultimately regulate
CD169 expression and function.
CD206, also known as the macrophage mannose recep-

tor is a lectin that binds to mannose, N-acetylglucosamine,
and fucose sugars on molecules, but only in the presence
of calcium [71]. CD206 is also expressed by specific sub-
sets of macrophages, including lung alveolar macrophages
and spleen, lymph node and bone marrow macrophages,
but in different anatomical sites to macrophages express-
ing CD169 [72]. CD206 recognition of bacteria without
bound complement components (unopsonized) sup-
presses macrophage activation, whereas macrophage
activation does occur when bacteria are opsonized
and therefore bind receptors on macrophages other
than CD206 [73–75]. This appears to be a mechanism
to prevent inflammatory responses against commensal
bacteria, such as in in the lung [42].
The expression of CD163, CD169, and CD206 on

monocyte/macrophages appears to be regulated by a var-
iety of factors including cytokines, with interferons and
TNFα preventing or downregulating expression, and IL-
4 and IL-10 upregulating expression of these 3 receptors
[46, 76, 77]. In addition, CD169 binds sialic acid resi-
dues, and CD206 binds mannose residues on pentraxins
[7], and both receptors appear to interact with Fc recep-
tors to regulate Fc receptor signaling, internalization,
and recycling [46, 78]. Therefore, pentraxins may regu-
late the expression of these three receptors either by
altering the cytokine milieu and/or by directly binding
to the receptors, and the presence of the ligands may
alter these processes.
IL-10 is an anti-inflammatory cytokine released by

many cells, including macrophages and epithelial cells,
in response to Fcγ receptor and CD209 (DC-SIGN)
activation by IgG, SAP, and CRP [8, 11, 17, 53, 79]. In
macrophages, the production of IL-10 appears to be
dependent on FcγR ligation, leading to ERK activation,
which in turn causes remodeling of the chromatin at the
IL-10 locus, making it more accessible to transcription
factors [80]. In IL-10 knockout mice, the protective ef-
fects of CRP and SAP on inflammation, nephritis, EAE,
and lung fibrosis is reduced or absent, suggesting that
these systemic pentraxins can act to quench ongoing in-
flammatory responses [11, 17, 18, 53, 55]. As SAP, in

most animals, is relatively constant and CRP is the acute
phase response proteins (whereas in mice the situation
is revered), these data also suggest that the two pentra-
xins may cooperate to regulate inflammation [7]. The
situation with PTX3 is different, as PTX3 does not ap-
pear to stimulate IL-10 production, but PTX3 produc-
tion is stimulated by IL-10 [7]. This suggests that the
upregulation of PTX3 following inflammation may in
part be modulated by SAP and CRP-induced IL-10 pro-
duction, suggesting a feedback loop between the three
pentraxins.
In health, the systemic levels of Factor H, MBL, and

C1q are relatively constant [47–51]. However, during in-
flammation the local activation of complement and the
presence of bacteria and cell debris can lead to a local
reduction in Factor H, MBL, and C1q levels, whereas
the levels of CRP and PTX3 may increase (due to sys-
temic and local production) at these same sites [7, 81].
In addition, either a genetic deficiency of C1q or Factor
H, or reduced serum concentrations due to increased
consumption and/or neutralization by autoantibodies,
leads to activated macrophages and is a major suscepti-
bility factor for the development of systemic lupus ery-
thematosus (SLE) [82–84]. Similar MBL deficiencies lead
to increased infection by influenza and exaggerated
macrophage activation and increases in inflammatory
cytokines, such as IL-1β and TNFα [85–87].

Conclusion
Together, our results suggest that the levels of pentra-
xins and their ligands affect monocyte differentiation
and macrophage priming, and that as CRP is a potent
inducer of the anti-inflammatory cytokine IL-10, ele-
vated levels of this pentraxin may not always be associ-
ated with pro-inflammatory responses.

Additional file

Additional file 1: Figure S1. Effect of standard polarization conditions
on IL-10 and IL-12 production PBMC were cultured with either 25 ng/ml M-
CSF or GM-CSF for 6 days and then polarized for 2 days with either LPS +
IFNγ or IL-4. Supernatants were then collected from the cells and tested by
ELISA for IL-10 and IL-12. Values are mean ± SEM, n = 3. (TIF 107 kb)
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