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Abstract

Background: Oncolytic viruses have been proposed to be employed as a potential treatment of cancer. Well
targeted, they will serve the purpose of cracking tumor cells without causing damage to normal cells. In this
category of oncolytic viral drugs human pathogens herpes simplex virus (HSV) is especially suitable for the cause.
Although most viral infection causes antiviral reaction in the host, HSV has multiple mechanisms to evade those
responses. Powerful anti-tumor effect can thus be achieved via genetic manipulation of the HSV genes involved in
this evading mechanism, namely deletions or mutations that adapt its function towards a tumor microenvironment.
Currently, oncolytic HSV (oHSV) is widely use in clinical; moreover, there’s hope that its curative effect will be further
enhanced through the combination of oHSV with both traditional and emerging therapeutics.

Results: In this review, we provide a summary of the HSV host antiviral response evasion mechanism, HSV expresses
immune evasion genes such as ICP34.5, ICP0, Us3, which are involved in inducing and activating host responses, so
that the virus can evade the immune system and establish effective long-term latent infection; we outlined details of
the oHSV strains generated by removing genes critical to viral replication such as ICP34.5, ICP0, and inserting
therapeutic genes such as LacZ, granulocyte macrophage colony-stimulating factor (GM-CSF); security and
limitation of some oHSV such G207, 1716, OncoVEX, NV1020, HF10, G47 in clinical application; and the achievements
of oHSV combined with immunotherapy and chemotherapy.

Conclusion: We reviewed the immunotherapy mechanism of the oHSV and provided a series of cases. We also
pointed out that an in-depth study of the application of oHSV in cancer treatment will potentially benefits cancer
patients more.

Keywords: Oncolytic herpes simplex virus, Cancer, Immune escape, Genetically engineered, Oncolytic viral therapy

Review
Introduction
For the past few years,despite constant new attempts
finding phenomenal cancer treatments, chemotherapy,
radiation and targeted drugs therapy are still the main
therapeutic method in clinical practice. However, many
problems remain in these methods, such as incomplete-
ness, severe side effects, easy development of drug resist-
ance, and lack of control in tumor recurrence and
metastasis, etc., all of which lead to unsatisfactory result
in treating tumor. The shortcomings of these major
therapies call for new strategies in the field of cancer [1].

The Oncolytic virus is a subtype of a lytic virus that
selectively replicates and kills cancer cells and spreads
within the tumor without damaging normal tissue. The
activities of oncolytic virus reflect the basic biological
principles of the virus and the interaction of host-virus
in the fight between pathogenesis and the immune sys-
tem [2].
HSV, a member of the alpha-herpesviruses subfamily,

shares many similarities with pseudorabies virus,
varicella-zoster virus and infectious bovine rhinotrachei-
tis virus [3]. The virus contains double stranded DNA
genomes of at least 120 kb, encoding for 70 or more
genes. At present, lysotype HSV is the first virus to be
developed into a recombinant oncolytic viral therapeutic
vector, and the first oncolytic virus to fight cancer. As a
cytolytic virus HSV possesses the following advantages:
(1) HSV replicate quickly in cells and has capability to

* Correspondence: hongbinhe@sdnu.edu.cn; hongmeiwang@sdnu.edu.cn
Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of
Animal Resistance Biology, College of Life Sciences, Shandong Normal
University, Jinan 250014, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ma et al. BMC Immunology           (2018) 19:40 
https://doi.org/10.1186/s12865-018-0281-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12865-018-0281-9&domain=pdf
mailto:hongbinhe@sdnu.edu.cn
mailto:hongmeiwang@sdnu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


infect multiple types of cancer cells; (2) HSV has a large
genome, which can be easily modified and be inserted
with multiple additional transgenes [4, 5]; (3) HSV can
be prevented with antiviral drugs when the dose start to
impose threat to the patients’ lives [6–8]; (4) Modifying
the glycoprotein of HSV can improve the targeting of
tumor cells [9].
As efficient OVs, HSV has some ability to escape the

host’s immune response including: To complement and
incapacitate immunoglobulins via viral glycoproteins; to
inhibit the production of cytokine/chemokine from in-
fected cells [10]; to block the antigen presenting cells’
(APCs) maturation [11]; to evade host immunological
surveillance via negative-regulation of the expression of
MHC class I [12] and to inhibit the apoptosis and cell
death induced by cytotoxic T lymphocyte(TL) [13]. For
deletion or mutation of those genes that were involved

in HSV’s escape through its host’ immune defense will
prohibit its replication in normal cells. Tumor micro-
environment is often in an immunosuppressive state,
which may allow the virus’ entry and replication, which
in turns eventually leads to the dissolution and death of
tumor cells (Fig. 1). oHSV can also reverse the immune
suppression of tumor microenvironment, enhance tumor
immunogenicity, promote the infiltration of inflamma-
tory cells, and play an effective anti-tumor effect.
This review elaborates on how the HSV surmounts

the anti-viral defense mechanism of the host; the
oHSVs’ involvements in deletion or modification of
viral gene and the clinical development of oHSV. A
better understanding of the complex pattern of the
interaction between HSV and host, and combination
with current clinical oHSV is essential to the refine-
ments the strategy of oHSV, thus to improve the

Fig. 1 Mechanisms of oncolytic virus selective killing tumor cells. Local replication of oncolytic virus induces lysis of tumor cells results in release
of tumor-derived antigens which promote the activity of the cancer-immunity cycle, resulting in the specific antitumor immunity in the course of
its oncolytic activities that act on remote lesions, ultimately killing the tumor cells selectively
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therapeutic effects and to comprehend the oHSV im-
mune imperfection.

The mechanism of HSV confronted the host immune
response
The infection of HSV causes to a cascade reaction of
host anti-viral immunity responses. As a successful
pathogen, HSV expresses proteins which are involved in
inducing and activating host responses, so that the virus
can escape from the immune system and set up effective
long-term latent infection. HSV has various mechanisms
to escape the host reactions (Fig. 2):

Envelope glycoprotein
The envelope glycoproteins of HSV can escape humoral
immunity mechanisms, such as Glycoprotein C binding
and inactivating properdin and complement protein
C3b, C5 to protect the virus from virus neutralization
mediated by complement induced via natural IgM and
antibody-independent complement neutralization [14,
15]. gE and gI encode Fc receptors, which can attach to

IgG [16]. This binding inactivation of complement medi-
ated via antibody and cytotoxicity of antibody depend-
ence conduce pathogenicity [17]. gD inhibit the
expression of CD112, which binds to the natural killer
(NK) cells excitating receptors DNAX accessory mol-
ecule 1 (DNAM1), leading to a noneffective binding and
lysis to HSV-infected or gD-transfected cells via NK
[18]. HSV inhibits the expression of CD1d, surface mole-
cules of APCs, and thus reduces NKT cells stimulate
[19].

Immune evasion genes
A series of genes encoded via HSV escape the host anti-
viral immune monitoring mechanism [10, 20]. In cancer
cells, some of these pathways are flawed [21]. Interferon
(IFN) 1 signaling pathway, crucial for antiviral innate im-
munity [22], relates to genes that are involved in path-
ways such as the TLR signaling pathway: Us3 inhibit the
signal transmission of TLR3 and TLR2 to TRAF6 [23],
deubiquitinase for UL36 down-regulate the expression
of TRAF3 [20], ICP0 inhibite the expression of P50 and

Fig. 2 Mechanism of HSV evades host immune responses. HSV expresses genes which evade host immune surveillance via inactive immune
regulation factor involved in the antiviral inmate immunity pathway, such the TLR signaling pathway, RLR signaling pathway and the DNA sensor
signaling pathway
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P65, the subunits of MyD88 and NF-κB [24], UL42 and
Us3 inhibit the process of nuclear translocation via
NF-κB [25, 26], and ICP27 bind to IκBa inhibits NF-κB
[27]. In the RLR signaling pathway: the Us11 can com-
bine with RIG-I and MDA-5, thus inhibits the integra-
tion with MAVS [28, 29]. ICP34.5 inhibit the
phosphorylation of IRF3 by binding TBK1 [30], US3 in-
hibit production of IFN-β via hyperphosphorylation of
IFN regulatory factor 3 (IRF3) [31], ICP0 prevents IRF3
sustained activation, thus inhibiting translocation from
the nucleus to cytoplasm [32]. Influence of the DNA
sensor signaling pathway is also present: IFI16, involved
in sensing pathogen DNA and initiating signaling path-
ways, inhibits via ICP0 in the nucleus [33]. In addition,
IFN-stimulated genes, UL41 the virion host shutoff pro-
tein (Vhs), inhibits viperin, ZAP, and tetherin via de-
graded mRNA [20, 34], Us11 inhibits OAS [35] and
protein kinase R (PKR) [36]. Eukaryotic Initiation Factor
2 (eIF2a) phosphorylated via PKR, shuts down the syn-
thesis of protein. ICP27 blocks the phosphorylation and
activation of STAT-1 [37]. Due to the defection of cancer
cells in IFN signaling [38], deletion or mutation in these
immune evasion genes such as ICP34.5, ICP0, Us3 in
oHSV will avail ourselves of a cancer therapy [21].

Block dendritic cells function
Dendritic cells (DCs) are polymorphisms and heteroge-
neous antigen presenting cells, it has vital function for
the recognition of pathogens at the site of infection and
the initiation of protective HSV-specific T cells [39].
HSV has numerous mechanisms to inhibit DCs function
[11]. ICP34.5 binds to TBK1 and IKKα/β, impeding the
maturation of DCs and inhibits autophagy by interfering
with antigen presentation [40, 41]. ICP0 induces CD83
degradation as a DCs maturation marker, leading to a
decrease in T cell stimulation [42] ICP47 blocks trans-
porter associated with antigen presentation (TAP), in-
hibits MHC I-peptide presentation, and thus leads to a
mediated by MHC I to CD8+ T-cells to escapes im-
munological surveillance in host cells without antigen
presentation. Pourchet A et al. showed that oHSV ex-
press UL49.5 from BHV-1 has a high efficacy treating
cancer models, which is rely on CD8+ T cells [43]. gB
binds to HLA-DM and HLA-DR, which yields a
negtive-regulation of MHC II pathway in CD4+ T cells
[44]. ICP34.5 and UL41 interfere with antigen presenta-
tion of CD4+ T cells via down-regulated MHC II accu-
mulation on the surface of glioblastoma cells [45].
T cells are also influenced via HSV infection. Firstly

Us3 inhibits LAT, which is the linker activating T cells,
and in turns blocks TCR signaling [24]. Secondly oHSV
infection has an impact on the pathway in T cells, such
as inhibiting NF-κB, activating STAT3, JNK and MAPK
p38 pathways, and suppressing the pro-inflammatory

cytokines synthesis, such as IL-2, TNF-a and increasing
IL-10 synthesis [46].

Inhibition of autophagy
Autophagy is an important cellular degradative pathway
[47], which exerts on cellular pathogens like oHSV with
a process similar to the MHC I and II presented in APCs
[48]. ICP34.5 targets Beclin1 and interacts with PPP1CA,
blocking the formation of autophagosome [49–51]. HSV
induced EIF2AK2 activation down-regulates the Beclin1-
mediated autophagy [49, 51]. In additional, ICP34.5
directly inhibits TBK1, which can regulated the phos-
phorylation of autophagic receptors SQSTM1/p62 and
optineurin (OPTN) to mediate substances recruitment
into phagophores for degradation [52]. Us11 interacts
with EIF2AK2, inhibiting the phosphorylation of EIF2S1,
mediated via EIF2AK2, to block autophagy [53].

Inhibition of apoptosis
Apoptosis, the programmed cell death, can clear up the
infected cells. HSV encoding anti-apoptotic virulence
factors to suppress apoptosis then gives the virus enough
time to replicate after infection [13, 54]. After HSV in-
fection, some genes like ICP6, Us3, gD and Us5 (gJ) play
role in the suppression of cells apoptosis. Us3 suppresses
the expression of cytochrome c and the activation of
caspase-3 [54], Us3 protein kinase activates the proapop-
totic proteins Bad and Bid [55]. Us5 (gJ) antagonizes
Fas/UV-induced apoptosis and weakens the granzyme
B-mediated pathways of CTL-induced apoptosis [56].
Compared to gJ, Us6 (gD) blocks apoptosis at different
stages of the viral life cycle. Necroptosis, another pro-
grammed cell death, which absence of caspases. ICP6
suppress apoptosis by blocking caspase 8 mediated via
TNF-α and Fas ligand [57], also blocking necroptosis in-
duced by TNF via inhibits the binding of RIP1 and RIP3
[58]. However, ICP6 had the reverse effect, in mice [13, 59].
The interactions of these host viruses are crucial to

harmonize the OV activity, regulate the OVs anti-viral
immune responses, and inducing anti-tumor immunity.

Genetically engineered oHSV
The key to eradicate tumors in this new therapy is to
improve the precision when targeting oHSV for tumors,
and enhance the suppression. Genetic engineering can
affect many aspects of how viruses’ work. To enhance
tumor selectivity by removing key genes in healthy cells
that replicate with the virus. Table 1 summarizes the
modified viral genes in oHSV and the functions of viral
proteins encoded by these genes.
Dlsptk, the first type 1 herpes simplex virus mutants, in-

cludes a mutation within the UL23 gene that encodes the
thymidine kinase (TK) gene. Dlsptk can inhibit the growth
of glioma in nude rat brain [60, 61]. Nevertheless, high
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doses of Dlsptk can cause fatal encephalitis. For this rea-
son, it is necessary to look for other engineered herpes
mutants with low toxicity [62].
HrR3, the recombinant HSV-1, insert a LacZ in HSV-1

UL39 (encode ICP6), alternatively replicates in cancer
cells, which has remarkable anticancer activity [63, 64].
HSV1716 was isolated from HSV-1 (17+) strain, de-

letes two copies of the main neurotoxic determinant
generepeat RL1, which encodes neurotoxic determinant
ICP34.5). PKR phosphorylates eIF2a, thus inhibits pro-
tein translation and induces cell apoptosis and kills the
virus. ICP34.5 mediated dephosphorylation of eIF2a pre-
vent cell apoptosis and protect the survival and
reproduction of virus [65]. 1716 targets cancer cells that
uncontrollable protein synthesis [66].
R3616, isolated from HSV-1 (F) strain, deletes the two

replicas of ICP34.5 genes. R3616 can effectively induce
host anti-tumor immune response by inducing a series
of immune cells [67]. Kanzaki et al. showed that R3616
infects tumor antigen-specific lymphocytes; this not only
effect on primary tumors, but also regulates multiple
metastases [68].
NV1020 is an attenuated HSV that contains a diploid

gene (RL1, RL2 and s1), with UL56 in the genome

deleted [69]. Moreover, NV1020 attenuated via delete
the TK gene and the UL24 genes promoter, and then in-
serts an exogenous copy of TK gene. These changes
allow NV1020 highly attenuated and only proliferates in
tumor cells.
G207, the first oHSV to be tested in clinical trials, de-

letes the ICP34.5 and inserted the LacZ gene, so the
virus can selectively spread in tumor cells [70]. The dele-
tion mutants ICP34.5 induced the down-regulate of late
viral genes including US11 via PKR [9]. G207 can induce
systemic anti-tumor immunity, which is related to the
activation of cytotoxic T lymphocytes [8].
G47Δ derived from G207, contain two of the muta-

tions in the RL1 and ICP47 genes, and insert the LacZ
in ICP6 gene (coding ribonucleic acid reductase large
subunit) area cause its inactivation. Inactivation of ICP6
then induces the oHSV’s only replicate in proliferating
cells. Furthermore, the ICP47 mutation can effectively
activate the host’s anti-tumor immune response via en-
hanced MHC-I expression [71]. Due to the three
remoulds in the genome, G47Δ may be less toxic and
more secure than G207 and T-Vec.
DM33 includes deletions of ICP34.5 and LAT gene.

Unlike Dlsptk, DM33 was isolated from the McKrae

Table 1 Immune evasion genes of HSV

Gene Protein Function oHSV name

UL27 gB Part of initial attachment of the virus to the cell by binding to heparan sulfate. With
gH/gL, enables fusion of the envelope with the cell membrane. Down-regulation of
MHC II processing pathway in CD4+ cells.

R5141; KNE

UL44 gC Forms the initial attachment of the virus to the cell by binding to heparan sulfate.
Inactivates serum complement proteins.

R5141

US6 gD Binds to HVeM and/or nectin-1, leading to a conformation change that initiates fusion.
Down-regulates NK receptor ligand and NK-mediated lysis; inhibition of apoptosis.

R5141; R-LM249; HSV1716EGFR; KNE

RL1 ICP34.5 Major neurovirulence gene. Suppression of PKR/eIF-2a signaling pathway and IFN-
induced anti-viral mechanisms; Inhibits DC maturation and antigen. Presentation;
Blocks MHC class II accumulation on the cell surface; Binds to Beclin-1, inhibiting
autophagy.

HSV1716; R3616; OncoVexGMCSF; G47;
ΔG207; DM33;

RL2 ICP0 Blocks NF-κB-mediated transcription of immunomodulatory cytokines, and IRF3-
induced and IRF7-induced anti-viral signaling pathways; inhibits IRF3 translocation to
the nucleus; inhibits IFI16; degradation of mature DC marker (CD83). Involved in
transcription of viral genes. Has ubiquitin ligase activity. Inhibits interferon response.
Alters the cellular environment to promote viral replication.

R7020 (NV1020);

UL39 ICP6 Major subunit of ribonucleotide reductase. Blocks TNF-a-mediated and Fas ligand-
mediated apoptosis through interacting with caspase 8 and necroptosis.

hrR3; G47Δ

UL54 ICP27 Inhibits cellular mRNA splicing. Recruits necessary proteins involved in viral
transcription and translation. Activates cellular pathways to promote viral replication.
Blocks NF-κB and IRF3 signaling pathways; blocks STAT1 activation and its translocation
to the nucleus.

HF10

US12 ICP47 Down-regulates MHC class I by inhibiting TAP. G47Δ; OncoVexGMCSF

US11 US11 Binds to and is phosphorylated by PKR, preventing cellular inhibition of protein
synthesis and autophagy; blocks OAS.

G47Δ

US3 US3 Inhibits NF-κB activation and reduces cytokine expression, such as IL-8; inhibits induction
of apoptosis; hyperphosphorylates IRF3 to block activation of RLR signaling pathway.

R7041

UL48 VP16 Initiates transcription of immediate early genes. Inhibits NF-κB activation and blocks
IRF3 pathway and IFN-β production.

KM100
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strain, which promotes viral growth and kills cancer
cells [72, 73].
HF10, remove the 3.9 kb connection point between

the right end of UL and UL/IRL, which caused the loss
expression of UL56, and reproduction of UL53 (gK),
UL54 (ICP27) and UL55 [9]. HF10 enhances angiogen-
esis and induces acytotoxic T lymphocytes anti-tumor
response [62].
OncovexGM-CSF, ICP34.5 and ICP47 genes in HSV-1

were strike out, and the integration of human GM-CSF
was step in the ICP34.5 site. A series of cytokines such
as IL12, GM-CSF, IFN-α and tumor necrosis factor
(TNF-α) used with oHSV can modify and enhance the
anti-tumor immunity. The GM-CSF shows the most ef-
fective results. TNF-α, IL-12 and IFN-α preclinical can-
cer studies have also show promising contributions [74,
75]. OncovexGM-CSF enhanced antigen-specific T cell re-
sponse and decreased inhibitory CD4+ regulation of T
cell expression, with a specific antitumor effects
achieved in CD8+ T cells [76].

Clinical development and limitations of oHSV
Oncolytic viruses have assessment for treatment of a
series of mlignation tumors. The first clinical trials of
engineered virus was conducted in the 1990s [77]. Sev-
eral different oHSV have been or will be tested world-
wide for various cancers; some have been developed to
phase II/III trials, such as G207, 1716, OncoVEX,
NV1020, HF10, G47Δ (Table 2) [78].
Initially, oHSVs lay emphasis on security vectors,

which included the deletes ICP34.5 gene, such as
HSV1716. HSV1716 was first demonstrated to be safe
and toxic in patients with pleomorphic glioblastoma and

intersex astrocytoma [79]. The results showed that
HSV1716 had good tolerance and no adverse reactions
occurred after high dose of 1 × 105 PFU treatment.
HSV1716 has been used in the treatment of glioma and
oral squamous cell carcinoma [80–82].
Then strains with additional multiple deletions or mu-

tations in case of the reversion of wild type virus, like
the G207 [83], became the first oHSVs used in clinical
trial. G207 has been used for recurrent malignant glioma
in phase I studies, untoward effect have been moderated
to slight fever and local erythema/inflammation reac-
tions at the sites of injection [84].
G47Δ enhances the anti-tumor efficacy while retaining

the safety characteristics of G207 [85–87]. G47Δ showed
efficacy in all solid tumor models tested in vivo, such as
hepatocellular carcinoma [88], schwannoma [89], pros-
tate cancer [87, 90, 91], nasopharyngeal carcinoma [71],
glioma, thyroid carcinoma [92], colorectal cancer, breast
cancer [93] and malignant peripheral nerve sheath
tumor. G47Δ has the ability to killing cancer stem cells
[94]. At present, G47 Δ is the only third generation
oHSVs tested on humans [85].
NV1020 safety and efficacy have been demonstrated in

some cancer diseases, such as colon carcinoma, pleural
cancer, bladder cancer and pancreatic cancer [95–98].
Kemeny N et.al investigated the safety and tolerance of
NV1020 in liver metastasis of colorectal cancer in a
phase I clinical trial [99]. NV1020 was also tested for
liver metastasis from colorectal cancer in phase II trials.
The results show that NV1020 is safe and effective in
anti-tumor therapy [100]. In phase III trials, NV1020
was used in combination with cytotoxic and targeted
drugs [62].

Table 2 oHSVs of genetic engineering and its clinical application

oHSV name Genetic modification Descrption Clinical application

Dlsptk TK−(UL23) Internal deletion within UL23 Malignant human gliomas

hrR3 UL39 Insertion of LacZ (encodes β-galactosidase) in UL39 Pancreatic cancer; colon carcinoma; liver cancers

HSV1716 ICP34.5 Deletion in both copies of ICP34.5 Glioblastoma multiforme; anaplastic astrocytoma; oral
squamous cell carcinoma

R3616 ICP34.5 Deletion of two copies of ICP34.5 Pancreatic cancer; colon carcinoma

G207 ICP34.5 Deletions of two copies of the ICP34.5; insertion of an
Escherichia coli LacZ

Prostate adenocarcinoma; glioblastoma; hepatocellular
carcinoma; colorectal cancer

R7020
(NV1020)

UL23, UL55, UL56,
RL1, RL2, RS1

Deletion of UL23, as well as the region encoding UL55,
UL56, and one copy of RL1, RL2, and RS1 (though not
the RS1 promoter)

Pancreatic cancer; colon carcinoma; bladder cancer;
pleural cancer

G47Δ RL1, UL39, US11,
US12

Deletion of the overlapping US11 promoter/US12
region, putting expression of the normally late US11
gene under the immediate early US12 promoter

Prostate adenocarcinoma; glioblastoma; rectal cancer;
nasopharyngeal carcinoma; breast cancer

OncoVexGM-CSF ICP34.5 and ICP47 Deletion of two copies of ICP34.5 gene and the viral
ICP47 genes; insertion of GM-CSF

Breast cancer; head and neck cancer; gastrointestinal
cancers; malignant melanoma

HF10 UL53, UL54, UL55,
UL56

Spontaneous deletion of UL56 as well as duplication of
UL53, UL54, and UL55

Breast cancer; malignant melanoma; pancreatic cancer

DM33 ICP34.5 Deletions of γ-34.5 and LAT gene Human gliomas and glioma cell line
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OncovexGM-CSF is the first type of oncolytic virus.
After genetic engineering, oncogm-csf can selectively
replicate in tumor cells, directly inject into the lesion,
express GM-CSF, and enhance systemic anti-tumor im-
mune response [68, 101]. GM-CSF insertion can pro-
mote complementary anti-tumor immune response by
recruiting APCs [102]. After intratumoral injection of
oncovexGM-CSF, the lesions of 8/50 patients with meta-
static malignant melanoma disappeared completely
[103]. The safety of an oncovexGM-CSF has been deter-
mined in phase I studies [104]. Direct injection of
oncovexGM-CSF into melanoma lesions yielded an object-
ive response rate of 28% in phase II clinical trials. Phase
III clinical trials are ongoing [62].
However, oncolytic viruses all have the peculiarity of

parental viruses and have some defects. Although HSV-1
is transmitted between cells and does not cause viremia,
the most effective method for oncolytic HSV-1 is intra-
cellular administration, which may not be suitable for
intravenous infusion [105]. Because there are some
drawbacks in intravenous administration, circulating
antibodies may reduce the efficacy [106]. Viremia natur-
ally causes viruses to be easily neutralized by antibodies;
so the antineoplastic effect of intravenous administration
of such viruses is limited in patients who have been
treated or vaccinated. Clinical trials using oncolytic mea-
sles virus in the treatment of multiple myeloma fully
demonstrated the adverse effects of circulating anti-
bodies [107]. In dose-increasing studies, intravenous
measles virus injection showed efficacy only when the
dose reached a high dose of 1011 TCID50. In mice with
transplanted tumors, intravenous injection of reovirus
(REV) for 3 weeks after initial inhibition of tumor
growth resulted in tumor regeneration, while the serum
titer of anti- REVs antibodies increased [108]. Phase I
study showed that 12 of 33 patients (36%) reached the
maximum neutralizing REV antibody titer on the 7th
day and 20 patients (61%) reached the maximum neu-
tralizing REV antibody titer on the 14th day [109].
Hence, in the first week of treatment, speediness, repeti-
tive, high-dose administration should be given before
serum neutralizing antibodies rise, and should be com-
bined with other anticancer therapies [106].

Increase the efficacy of oHSV deliver to tumor cells
At present, in the application of ohsv, there are some
problems that limit its therapeutic effect, whether intra-
tumoral or intravenous injection, there are some defects.
Intratumoral injection can ensure that virus particles
reach the lesion directly, but it is difficult to spread to
the lesion area outside the injection area. Intravenous in-
jection provides an opportunity for the virus to infect all
cancer cells, and is particularly effective in the treatment
of metastatic lesions [110]. Nevertheless, viral particles

injected into veins are bound to suffer innate immune
responses from the host [111], which may result in the
virus particles being neutralized by antibodies before
reaching the target cells.
The receptors that bind oHSV to cells are repositioned

to ensure that the virus is more readily accessible to can-
cer cells. The co-injection of oHSV and collagenase can
degrade the extracellular matrix of tumors by collage-
nase, and make the region outside the injection site of
virus particles diffuse. The method for delivery of the
oHSV can be enhanced or reduced by pretreatment with
antiangiogenesis molecules. When oHSV was adminis-
tered by direct injection, prior injection of cyclic RGD
peptide, an antiangiogenic agent, reduced tumor vascu-
lar permeability and infiltration of leukocytes [112].
When oHSV is injected intravenously, the blood-brain
barrier will increase the difficulty of injection. In order
to solve this problem, it has been proved that destruc-
tion of the blood-brain barrier through hypertonic solu-
tion of mannitol can increase the number of viruses
reaching tumors [110]. Ultrasound technique is also
used to enhance the permeability of cell membrane and
the efficacy of chemotherapeutic drugs anti-cancer
[113]. Shintani et al. showed that effective use of ultra-
sound technology to help oHSV-1 enter squamous cell
carcinomas [114]. Combination with key immunoregu-
latory inhibitors can improve the efficacy of oncolytic
virus. For example, a study showed that intravenous in-
jection of anti-PD-1 antibodies combined with Reolysin
was significantly more effective in treating subcutane-
ous melanoma in mice than intravenous injection of
Reolysin or anti-PD-1 alone [115]. Combination of
anti-PD-1 antibody therapy can improve NK cells’ ef-
fective lysis of REV infected malignant cells by reducing
the activity of regulatory T cells. Phase I study of com-
bined therapy of oncolytic virus T-Vec and pembrolizu-
mab (anti-PD-1) for head and neck cancer has been
completed [105].
Besides, the oHSV combination with chemotherapy is

also an effective strategy for tumor treatment. Toyoi-
zumi et al. showed that combining the HSV1716 with
chemotherapeutic drug MMC to treat the human
non-small cell lung cancer yielded profound efficacy
[116]. This study showed that chemotherapy and oHSV
can work together treat cancer, and this synergistic effect
will strengthen anti-tumor ability. Co-administrated with
cyclophosphamide, the anticancer activity of HrR3 im-
proved effectively [117]. Cyclophosphamide can enhance
the replication of oncolytic virus by inhibiting the im-
mune response of the system and has better anti-cancer
effect [118]. However, in all oncolytic theatmets, the
long range of side effects of inducing via body
anti-tumor immunity, such as the emergence of AIDs,
requires close study.
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Conclusion
Oncolytic therapy, successes or failure hangs on the
interaction of antiviral and antitumor immune responses
between virus and host. HSV has been shown to be a
site virus gets for oncolytic treatment because it is sus-
ceptible to genetic changes, deletions or mutations in
genes with immunoregulatory function like ICP0, ICP
34.5, ICP 27, Us3 and UL39. This genetic alteration may
result in an enhanced innate immune response, weaken-
ing viral replication and spreading in tumors.
At present, oHSV applied in clinical trials have not ex-

perienced serious adverse result and has achieved some
effectiveness. For example, HSV1716 has been used for
the treatment of oral squamous cell carcinoma and
gloma [85–87]; G47Δ showed efficacy in glioma, breast
cancer [93], malignant peripheral nerve sheath tumor
[92], schwannoma [89], nasopharyngeal carcinoma [71],
hepatocellular carcinoma [88], prostate cancer [87, 90,
91], colorectal cancer and thyroid carcinoma; NV1020
can effectively control liver metastasis and prolong sur-
vival via re-sensitizing to chemotherapy [100].
Although the deleted or mutated genes confer safety

and selectivity to oHSV in the treatments of tumor
cells, efficacy has been attenuated. Direct injection of
oHSVs is usually preferred during treatment, but this
procedure limits the delivery to the sites where the
tumor actually occurs. Physical factors like the extracel-
lular matrix can limit the initial distribution and exter-
nal diffusion of oHSV in the tumors [119]. The inborn
and acquired anti-virus immunity can limit the replica-
tion and spread of oHSV [120]. In oncolytic virother-
apy, these are only some examples of the many hurdles
to be overcome. This made it necessary to combine
oHSV with other therapies. The expectations are to de-
velop a combination therapy regimen that produces
synergic action against tumor cells without overlapping
side effects. For examples, the combinations of oHSV
with collagenase can degrade the extracellular matrix of
tumors by collagenase, and make the region outside the
injection site of virus particles diffuse; Injection of cir-
culating RGD peptide before oHSV infection can re-
duce the permeability of blood vessels and infiltration
of leukocytes in tumors [112]; and many published
combination joint research tested the efficacy of oHSV
combined with immunotherapies and chemotherapies
in vitro. These identified combinations have achieved
some good results.
With the development of preclinical research into clin-

ical application, it is more likely to achieve greater suc-
cess in understanding the combination of oHSV and
other treatments. In a word, there are many areas to be
researched in development of oHSV combined with
other therapies. But hopefully all would join hand to
cure cancer patients.
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