Handel BMC Immunology (2020) 21:1
https://doi.org/10.1186/512865-019-0321-0

BMC Immunology

SOFTWARE Open Access

A software package for immunologists to
learn simulation modeling

Andreas Handel

Check for
updates

Abstract

Background: As immunology continues to become more quantitative, increasingly sophisticated computational tools
are commonly used. One useful toolset are simulation models. Becoming familiar with such models and their uses
generally requires writing computer code early in the learning process. This poses a barrier for individuals who do not
have prior coding experience.

Results: To help reduce this barrier, | wrote software that teaches the use of mechanistic simulation models to
study infection and immune response dynamics, without the need to read or write computer code. The software,
called Dynamical Systems Approach to Immune Response Modeling (DSAIRM), is implemented as a freely available
package for the R programming language. The target audience are immunologists and other scientists with no or
little coding experience. DSAIRM provides a hands-on introduction to simulation models, teaches the basics of
those models and what they can be used for. Here, | describe the DSAIRM R package, explain the different ways
the package can be used, and provide a few introductory examples.

Conclusions: Working through DSAIRM will equip individuals with the knowledge needed to critically assess studies
using simulation models in the published literature and will help them understand when such a modeling approach
might be suitable for their own research. DSAIRM also provides users a potential starting point towards development

and use of simulation models in their own research.

Keywords: Mechanistic simulation models, Teaching software, R package

Background

Immunological data continues to increase rapidly in
quantity, quality and complexity. Concomitant with this
increase in data acquisition is an increased sophistication
in the way data are analyzed. Modern approaches in-
clude many often complex analytical and computational
tools. One useful set of such tools are mechanistic simu-
lation models. Several books and review articles describe
applications of such computational models to study in-
fection and immune response (see e.g. [1-7]). While
these are good resources, reading alone is often not suf-
ficient for thorough learning. Active learning often leads
to better outcomes [8-10]. To learn about computa-
tional simulation models, directly engaging with them is
an obvious method that can facility such active learning.
However, this generally requires writing computer code.

Correspondence: ahandel@uga.edu

Department of Epidemiology and Biostatistics and Health Informatics
Institute and Center for the Ecology of Infectious Diseases, The University of
Georgia, Athens, GA, USA

K BMC

The need to write code can pose a significant bar-
rier for individuals who do not have prior coding ex-
perience. To reduce this barrier, I wrote software that
allows individuals to obtain an introduction to
simulation modeling of within-host infection and im-
mune dynamics, without the need to read or write
computer code. The software, called Dynamical
Systems Approach to Immune Response Modeling
(DSAIRM), is implemented as a freely available pack-
age for the widely used R programming language.
The DSAIRM package is meant for immunologists
and other bench scientists who have little or no cod-
ing and modeling experience and who are interested
in learning how to use systems simulation models to
study within-host infection and immune response
dynamics.

By engaging with DSAIRM, users will be provided
with a hands-on introduction to simulation models
and will learn the basics of how those models work
and what they can be used for. This will allow users

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12865-019-0321-0&domain=pdf
http://orcid.org/0000-0002-4622-1146
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ahandel@uga.edu

Handel BMC Immunology (2020) 21:1

to understand modeling results reported in the litera-
ture. It will also allow users to determine if modeling
is a useful tool for them and if so, DSAIRM provides
a starting point to using such models for their own
research.

This paper describes the DSAIRM package and

provides a quick start guide and some illustrating
examples.

Implementation

The package consists of simulations (in the following
referred to as apps) that allow the exploration and
learning of different infection and immune response
modeling topics. The underlying models are imple-
mented as either deterministic or stochastic comp-
artmental dynamical models (ordinary differential
equations, discrete-time models, or their stochastic
counterparts). While some mathematical details are
provided for the models, all are described in plain
language such that users do not need to be familiar
with differential equations or other advanced math-
ematics to use DSAIRM and learn the material. A
graphical user interface is wrapped around each
simulation. This allows exploration of models and
topics without the need to read or write any com-
puter code. Each app includes a detailed description
of the model and topic being covered, and a list of
tasks a user should try. The documentation included
in DSAIRM strives to be detailed enough to serve as
a stand-alone learning environment. References are
provided with each app for further reading and
learning. The package is structured in a modular
way to allow users a fairly seamless transition toward
more flexibility and power by directly interacting
with and modifying the underlying simulations. This
comes with a gradual increase in the required
amount of coding. The different ways of interacting
with and progressing through the package are de-
scribed below.

Results

Installing and running the package

Package installation is a one-time process, unless R it-
self is being reinstalled. The package depends on
other packages, which will be automatically installed
as needed. At every new start of R, the package needs
to be loaded before it is ready for use. The following
are quick-start instructions:

e Install R from https://cran.r-project.org/

e Optional, recommended: Install RStudio from
https://www.rstudio.com/

e Open R/Rstudio, install the package by typing
install.packages('DSAIRM’) into the R console.

Page 2 of 7

(This will also install packages required by
DSAIRM).

e Load the package with library(‘DSAIRM’).

e Call the main menu by typing dsairmmenu() into
the R console. A graphical interface showing the
main menu (Fig. 1) should open in the browser.

e You are ready to explore!

Using the package

The different ways DSAIRM can be used are described
in the following sections. All users are expected to start
with Level 1. Further progression to Levels 2 and 3 is op-
tional and based on needs and interests.

Level 1: interactive use through the graphical user
interface

Using the graphical interface to interact with and ex-
plore the models and topics is the main intended use
of DSAIRM. To get to the graphical interface, load
the package and call the main menu as described
above. This will bring up a menu (Fig. 1) from which
one can select each simulation app.

Each app has input boxes on the left which allow one
to specify model parameters and other settings. To the
right, results are displayed as text and graphs. See Fig. 2
for an example.

Below the input and output areas are several tabs
which contain detailed information for each app. The
Overview section briefly states the topic covered by
the app. The Model section describes the model in
detail and provides additional background information
on specific modeling topics. Where applicable, the
model diagram and equations are shown. Figure 3
shows a screenshot of part of the Model section for
one of the apps. The What to do section contains a
list of suggested tasks. Together, the Model and What
to do sections are the main teaching components of
each app. By working through those sections, the user
will be able to get a good understanding of what the
model is and what it does and will learn about im-
portant modeling concepts and topics. The Further
Information section lists the underlying simulation
functions used in the app, as well as provides pointers
to the literature for additional reading on the covered
topic.

After exploring an app, return to the main menu
to choose another app to explore. Once done, exit
the main menu and close the R session. At this level
of interaction with the models, no code needs to be
read or written. One can fully focus on exploring
and learning about several infection and immune re-
sponse models and gain an understanding of the
strengths, limitations and main use cases for these
kinds of models. This should provide a good

https://cran.r-project.org/
https://www.rstudio.com/

Handel BMC Immunology (2020) 21:1

Page 3 of 7

DSAIRM Menu Analyze

The Basics

Basic bacteria model Basic virus model

Model use examples

Further topics

Pharacokinetics and pharmacodynamics Influenza antivirals and resistance

Virus and immune response model

Bacteria model exploration Antiviral treatment model Basic model fitting
What influences model results
Model variant exploration Uncertainty and sensitivity analysis Stochastic dynamics
Model fitting topics
Confidence intervals Model comparison

Fig. 1 Main menu of the DSAIRM package. From this menu, the user can access and interact with each simulation app. Once finished, the user

can exit the menu and shut down R. No reading or writing of code beyond the single command starting the graphical menu is required

understanding of results from such models reported
in the research literature. It will also allow teach the
user if this type of modeling approach might be suit-
able for their specific research systems and
questions.

This stage of DSAIRM use might provide enough
insight into those types of models, and a user might

want to leave it at that. Alternatively, if the user
wants to implement simulation models for their own
research, they could proceed to the next levels of en-
gagement with DSAIRM. Of course, at this stage it is
also always possible to find a modeling expert and
start a collaboration, which is the approach we sug-
gest for most individuals.

Simulation Settings

Run Simulation Reset Inputs

U, initial number |, initial number of V, initial number n, rate of du, rate at which
of uninfected infected target of i i i cell i cells
target cells cells virions replenishment die

100000 [| © B 1 i || 10000 K || 01 +

g, conversion
p, rate at which between
experimental and
model virus units

dV, rate at which
dl, rate at which infectious virus is b, rate at which infected cells
infected cells die cleared virus infects cells produce virus

1 = 2 = 0.00001 10 = 1 =
f, strength of cell e, strength of dt, times for
infection virus production tstart, Start time tfinal, Final time of which result is

by drug ion by drug of sil i il i returned

0) 0 = 0 = 30 = 0.1 [
txstart, time at
which treatment Start at steady
starts state log-scale for plot plot engine

0] no v none v ggplot v

Fig. 2 Graphical interface for the Antiviral treatment model app. Inputs are on the left, outputs in the form of graphs and useful numbers (e.g.
maximum of each variable during the simulation) are provided on the right

Simulation Results

Variables === U = =" | == vV

1e+05 1
14
[0}
Qo
£
3
z 5e+04 1

0e+00 1

0 10 20 30
Time

Minimum / Maximum / Final value of U: 9233.73 / 1e+05 / 21589.07
Minimum / Maximum / Final value of I: 0.00 / 32017.35/7723.74
Minimum / Maximum / Final value of V: 0.65 / 135663.05 / 35182.14
Numbers are rounded to 2 significant digits.

Handel BMC Immunology (2020) 21:1

Page 4 of 7

-

Model Overview

treatment and differs from the basic virus model in the following ways:

of drug uptake and decay.

Model Diagram

The diagram illustrating this compartmental model is shown in the figure

Model Equations

This model is a variation of the 'Basic Virus" model. A detailed description of the basic virus model can be found in the corresponding app. The model for this app includes drug

« The drug can reduce infection of uninfected cells at a strength/efficacy given by the parameter 7. This value is between 0 (completely ineffective) and 1 (100% effective).
« The drug can reduce production of progeny virus at a strength/efficacy given by the parameter e. This value is between 0 (completely ineffective) and 1 (100% effective)

Note that the drug is not explicitty modeled here, it is not given its own compartment/equation. Instead, we model the drug by its effects on some of the model parameters, and assume
that this effect is either absent or present but does not otherwise change with time. The Pharmacokinetics and Pharmacodynamics app provides a model that includes explicit modeling

7 dyU _7dl /de
Uninfected (1-f)bUV Infected (1-e)pl .
Cells, U > Cels,1 —777 > Virus, V
n_» — s

Flow diagram for the virus infection and drug treatment model.

Implemenlmg this model as a continuous-time, deterministic model leads to the foIIowmg set of ordlnary differential equatlons
U=n—dyU— (1— UV
I =(1-fHpUV —dil

V =(1-e)pl —dvV — ghUV

Fig. 3 Part of the Model documentation tab for the Antiviral treatment model app. The app in which a model is first used includes a detailed
verbal explanation of all variables and all processes that are part of the model. This is followed by a model diagram and model equations. If a
model is re-used in subsequent apps, as is the case here, the previous app is referenced and the model description is shortened

Level 2: directly interacting with the simulation functions
To continue the modeling journey, it is possible to
use the simulations provided in DSAIRM in a more
direct manner, without the graphical user interface.
This provides more flexibility at the cost of having to
write a limited amount of code. The Further Informa-
tion section of each app provides the name of the
underlying simulation function that one can interact
with directly.

Consider as example the first app, called “Basic Bac-
teria Model”. This model has 2 underlying simulator
functions, one that runs a discrete-time model called
simulate_basicbacteria_discrete and one that runs a
continuous, differential equation model called simu-
late_basicbacteria_ode. Assume we are interested in
the latter. The documentation for this function pro-
vides details regarding model inputs and outputs. This
documentation can be accessed by typing the follow-
ing into the R console (the DSAIRM package needs
to be loaded for this to work):

help('simulate basicbacteria_ode')

The help file explains that one can run the simula-
tion by specifying initial number of bacteria and

immune response strength, the different model pa-
rameters, as well as some time values. For most
apps, time units for the model are determined by
the time unit chosen to express the parameters in.
Each model input has a default value, which is used
if the model is called without providing specified in-
puts. One can overwrite those default settings. For
instance, the following line of code calls the simula-
tor and overwrites the default values for the rate at
which bacteria grow, g, and the rate at which the
immune response is induced and grows, r, while
using the default values for the remainder (this is
equivalent to setting different inputs through the
graphical interface in level 1):

result <- simulate_basicbacteria_ode
(g=0.5, r=0.002)

Calling the simulation function executes the under-
lying model. For this simulation, the function returns
time-series for each of the variables that are tracked,
namely bacteria and immune response. Not all simu-
lation functions return time series. For every simula-
tion function, the help file explains what is returned.
One can further process those returned results. A

Handel BMC Immunology (2020) 21:1

basic plot of bacterial load as function of time can be
produced with this line of code (resulting plot not
shown):

plot(result$ts[,"time"],result$ts[,
"B"],xlab="'Time',ylab='Bacterial Load',
type='1")

Calling the simulation functions without using the
graphical interface makes model exploration more effi-
cient and flexible. Assume we wanted to determine how
some parameter influences the outcome of the model,
for instance how the peak bacterial load changes with
the immune response activation rate, r, (while keeping
all other parameters fixed). With the graphical interface,
one needs to manually set different parameter values for
r, run the model for each parameter value and write
down the peak bacterial load. This can be automated
by calling the simulation function directly. The fol-
lowing lines of code show how this can be achieved.

oo00000g o
>y
e °o A)
© 8 °
= o
g A °
O < °
o 2 | o
g °
(&} — o
o o
= o
& 0
o T [1 [
1e-05 5e-05 5e-04 5e-03

Immune activation rate, r

%o
%o
o
o

5e+10
|

%o B)

Peak immune response
1e+09 5e+09
| |
o]

T T T T
1e-03 1e-01 1e+01 1e+03

Saturation parameter, s

Fig. 4 Examples for level 2 and level 3 use of the package. a Peak
bacterial load as function of immune response activation rate for the
model described in the level 2 section. b Maximum of the immune
response as a function of the saturation parameter for the model
described in the level 3 section

2e+08

Page 5 of 7

A loop is run over different r values, for each r value
the simulation is run, and the peak bacterial load is
recorded. At the end, this quantity as a function of
the immune activation rate is plotted. This plot is
shown in Fig. 4a.

#values for Iimmune activation rate, r,
for which to run the simulation

rvec = 10"seq(-5,-2,1length=20)

#this variable will store the peak values
for each r

Bpeak = rep(0,length(rvec))

for (n in l:1length(rvec))

{

#run the simulation model for different
values of r

#for simplicity, all other inputs are
kept at their defaults

result <- simulate_basicbacteria_ode(r =
rvec[n])

#peak bacterial load for each value of r

Bpeak[n] <- max(result$ts[,"B"])

}

#plot final result
plot(rvec,Bpeak,type="'p',xlab="'Immune
activation rate, r',ylab='Peak bacterial

load',log='xy")

This example illustrates how, with a few lines of extra
R code, one can explore the models much more effi-
ciently and flexibly than would be possible through the
graphical interface. The trade-off is that one needs to
write some code and thus acquire some familiarity with
the basics of R.

Level 3: modifying the simulation functions

While the Level 2 approach allows one to use the
models in a way that would be hard or impossible
using the graphical interface, there is still one major
constraint. Namely the Level 2 approach only allows
analysis of existing DSAIRM simulation models.
While it might be possible that one of these models
is applicable to a specific research question, it is
much more likely that a model that is somewhat dif-
ferent from those that come with DSAIRM is needed.
In that case, it is possible to use the code for one of
the DSAIRM models as starting point and modify it
as needed.

Copies of all simulator functions can be down-
loaded directly from the main menu. The code for
each simulator function is (hopefully) well docu-
mented. However, the level of coding and R know-
ledge required to modify the functions is higher than
that required to use the functions as described in

Handel BMC Immunology (2020) 21:1

Level 2. To provide an example, assume a system for
which the basic bacteria ODE model in DSAIRM is
almost, but not quite applicable. Instead of the model
provided by DSAIRM, a model is needed in which
the immune system growth term includes saturation
at some maximum rate when bacterial load is high.
This can be accomplished by a change of the term
rBI to rBI/(B +s). (See the documentation for this app
for an explanation of each model term). This change
leads to a growth at rate B proportional to the num-
ber of bacteria if B is smaller than some threshold
parameter s, and turns into a growth at fixed max-
imum rate r, independent of bacterial load, if B is lar-
ger than s.

To implement this, one can modify the code for
this model, which is in the file simulate basicbac-
teria_ode.R. (To make things easy, the name of a. R
file containing the code and the name of the function
itself are the same.) After finding the file, making a
copy and renaming it (here called mysimulator.R),
one can edit the model from the one provided to the
one needed by making the following modifications to
the code:

old:

simulate basicbacteria ode <- func-
tion(B=10, I =1, g=1, Bmax = 1e+t05, dB =
0.1, k=1e-06, r=0.001,dI=1, tstart=0,
tfinal =30, dt =0.05)

new:

mysimulator <- function(B=10, I =1, g=
1, Bmax = 1let+05, dB=0.1, k = 1le-06, r=1e3,
dI=1, tstart = 0, tfinal = 30, dt = 0.05, s=
1E3)

Note the changed default value for r to ensure the im-
mune response is sufficiently triggered.

old:

pars =
d1=dI1)

new:

pars =
dI=dI,s=s)

old:

dBdt = g*B*(1-B/Bmax) — dB*B — K*B*I

dIdt = r*B*I - dI*I

new:

dBdt = g*B*(1-B/Bmax) — dB*B — kK*B*I

dIdt = r*B*I/(s+B) — dI*I

¢ (g=g,Bmax=Bmax,dB=dB, k=k,r=r,

¢ (g=g,Bmax=Bmax,dB=dB, k=k,r=r,

With these changes made, one can investigate the
behavior of this new model. For instance, one can ex-
plore how different values of the saturation param-
eter, s, impact the maximum level of the immune
response. This requires a slight modification of the

Page 6 of 7

code shown above in Level 2 as follows, the resulting
plot is shown in Fig. 4b.

#initialize the new function

#it needs to be in the same directory as
this code

source('mysimulator.R')

#values of saturation
explore

svec = 10"seq(-3,3,length=20)

#this will record the maximum immune re-
sponse level

Ipeak = rep(0,length(svec))

for (n in 1:1length(svec))

{

#run the simulation model for different
values of s

#for simplicity, all other inputs are
kept at their defaults

result <- mysimulator(s = svec[n])

#record max Iimmune response for each
value of s

Ipeak[n] <- max(result$ts[,"I"])

}
plot(svec,Ipeak,type="'p',xlab="'Satura-
tion parameter, s',ylab='Peak immune re-

sponse',log='xy")

parameter to

Using one of the provided simulator functions as
starting point and modifying it is likely easier than
having to write a new model completely from scratch.
Eventually, with more coding experience, the user
gains (almost) unlimited flexibility regarding the
models they can create, of course at the cost of hav-
ing to write increasingly more R code. The limit is
only what can be accomplished using the R program-
ming language and one’s ability and interest in writ-
ing customized code.

Beyond level 3

The source code for DSAIRM is public and available
on GitHub [11]. It is quite likely that there are still
bugs and typos in the package and its documentation.
Submission of bug reports, feature requests, or any
other feedback is very welcome. The preferred mode
of such input is through the package’s GitHub site.
Contributions of new apps or other enhancements are
also very welcome. More information is provided on
the DSAIRM website [11].

Depending on the modeling task, it might be suit-
able to go beyond what DSAIRM provides. Special-
ized software suitable for implementing more
complex models exists. SIMMUNE allows the graph-
ical building and analysis of rather detailed spatial

Handel BMC Immunology (2020) 21:1

models [12]. IMMSIM is another software that allows
implementation and simulation of detailed immune
response models [13]. ENISI focuses on modeling
immunology for enteric pathogens [14]. More gener-
alist software packages such as COPASI [15], BioNet-
Gen [16] or Berkeley Madonna [17] also allow
implementation and analysis of within-host and im-
mune system models. Monolix [18] allows analysis
and fitting of similar models with a focus on drug
development. These are some examples of software
suitable for immunology, others exist [19]. Some of
these software packages require coding, others allow
a graphical approach to model building and analysis.

The main difference between those software packages
and DSAIRM is that DSAIRM'’s focus is on teaching and
learning and providing a gentle introduction to simula-
tion models. As such, models are kept simple and pre-
sented in a user-friendly, teaching-focused manner.
While the option to access the underlying code and
modify it exists, this will require coding in R and thus
has all the general advantages and disadvantages of the
R language. While R is flexible and powerful, for certain
tasks other software like the ones just mentioned might
be more suitable.

Conclusions

I described DSAIRM, an R software package which al-
lows individuals to learn the basics of mechanistic simu-
lation modeling applied to infection and immune
response dynamics. The primary goal for this software is
to provide immunologists and other bench scientists
with a hands-on, interactive introduction to the basics
and uses of simulation modeling, without having to read
or write code, or knowing any advanced mathematics.
At the same time, the package is designed to allow easy
advancement toward increased flexibility in addressing
questions of interest, with a concomitant (gentle) in-
crease of required coding. Users have the option of cus-
tomizing the provided models to their specific needs and
are eventually able to tap into all functionality available
within the powerful R language eco-system. My hope is
that this package will continue to grow and become a
widely used and useful resource for individuals inter-
ested in learning about and potentially using such mod-
eling approaches as part of their research.

Abbreviation
DSAIRM: Dynamical Systems Approach to Immune Response Modeling

Acknowledgements
For a full list of contributors to DSAIRM, please see the DSAIRM website [11].

Authors’ contributions
The author wrote the article and is the main developer of the described
software, DSAIRM. The author read and approved the final manuscript.

Page 7 of 7

Funding

The software development was partially supported by NIAID/NIH grant
U19A1117891. The funder had no influence on any aspects of the design and
creation of the software package or the writing of this the manuscript.

Availability of data and materials
All materials described in this article are freely available on the package's
GitHub site.

Ethics approval and consent to participate
NA

Consent for publication
NA

Competing interests
The author declares that he/she has no competing interests.

Received: 10 May 2019 Accepted: 14 October 2019
Published online: 02 January 2020

References

1. Nowak MA, May RM. Virus Dynamics: Mathematical principles of
immunology and virology. Oxford: Oxford University Press; 2001.

2. Wodarz D. Killer cell dynamics mathematical and computational approaches
to immunology. New York: Springer; 2007. http://public.eblib.com/
EBLPublic/PublicView.do?ptilD=302146. .

3. Bassaganya-Riera J. Computational immunology: models and tools.
Academic Press; 2015.

4. Hernandez-Vargas EA. Modeling and control of infectious diseases in the
host. Academic Press; 2019.

5. Perelson AS. Modelling viral and immune system dynamics. Nat Rev
Immunol. 2002;2:28-36.

6. Antia R, Ganusov W, Ahmed R. The role of models in understanding CD8+
T-cell memory. Nat Rev Immunol. 2005;5:101-11.

7. Perelson AS, Ribeiro RM. Introduction to modeling viral infections and
immunity. Immunol Rev. 2018;285:5-8.

8. Fink LD. Creating significant learning experiences: an integrated approach
to designing college courses. San Francisco: John Wiley & Sons; 2013.

9. Miller MD. Minds online: teaching effectively with technology. Cambridge:
Harvard University Press; 2014.

10. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et al.
Active learning increases student performance in science, engineering, and
mathematics. Proc Natl Acad Sci U S A. 2014;111:8410-5.

11. Handel A. DSAIRM - dynamical systems approach to immune response
modeling. 2019. https://ahgroup.github.io/DSAIRM/.

12. Zhang F, Angermann BR, Meier-Schellersheim M. The simmune modeler
visual interface for creating signaling networks based on bi-molecular
interactions. Bioinformatics (Oxford, England). 2013;29:1229-30.

13. Baldazzi V, Castiglione F, Bernaschi M. An enhanced agent based model of
the immune system response. Cell Immunol. 2006,244:77-9.

14. Wendelsdorf KV, Alam M, Bassaganya-Riera J, Bisset K, Eubank S, Hontecillas
R, et al. ENteric immunity simulator: a tool for in silico study of gastroenteric
infections. IEEE transactions on nanobioscience. 2012;11:273-88.

15. Bergmann FT, Hoops S, Klahn B, Kummer U, Mendes P, Pahle J, et al. COPASI
and its applications in biotechnology. J Biotechnol. 2017,261:215-20.

16. Harris LA, Hogg JS, Tapia J-J, Sekar JAP, Gupta S, Korsunsky |, et al.
BioNetGen 2.2: Advances in rule-based modeling. Bioinformatics (Oxford,
England). 2016;32:3366-8.

17. Macey R, Oster G, Zahley T. Berkeley Madonna. http://berkeleymadonna.
com. 2000. http://berkeleymadonna.com.

18, Lixsoft. Monolix. http://monolix lixoft.com/. 2019.

19. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser IDC. Systems
biology in immunology: a computational modeling perspective. Annu Rev
Immunol. 2011,29:527-85.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://public.eblib.com/EBLPublic/PublicView.do?ptiID=302146
http://public.eblib.com/EBLPublic/PublicView.do?ptiID=302146
https://ahgroup.github.io/DSAIRM/
http://berkeleymadonna.com
http://berkeleymadonna.com
http://berkeleymadonna.com
http://monolix.lixoft.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results
	Installing and running the package
	Using the package
	Level 1: interactive use through the graphical user interface
	Level 2: directly interacting with the simulation functions
	Level 3: modifying the simulation functions
	Beyond level 3

	Conclusions
	Abbreviation
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

