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The relationship between symptom burden
and systemic inflammation differs between
male and female athletes following
concussion
Alex P. Di Battista1,2* , Nathan Churchill3, Shawn G. Rhind1,2, Doug Richards1,4 and Michael G. Hutchison1,4,5

Abstract

Background: Inflammation appears to be an important component of concussion pathophysiology. However, its
relationship to symptom burden is unclear. Therefore, the purpose of this study was to evaluate the relationship
between symptoms and inflammatory biomarkers measured in the blood of male and female athletes following
a sport-related concussion (SRC).

Results: Forty athletes (n = 20 male, n = 20 female) from nine interuniversity sport teams at a single institution provided
blood samples within one week of an SRC. Twenty inflammatory biomarkers were quantitated by immunoassay. The
Sport Concussion Assessment Tool version 5 (SCAT-5) was used to evaluate symptoms. Partial least squares (PLS) analyses
were used to evaluate the relationship(s) between biomarkers and symptoms. In males, a positive correlation between
interferon (IFN)-γ and symptom severity was observed following SRC. The relationship between IFN-γ and symptoms was
significant among all symptom clusters, with cognitive symptoms displaying the largest effect. In females, a significant
negative relationship was observed between symptom severity and cytokines IFN-γ, tumor necrosis factor (TNF)-α, and
myeloperoxidase (MPO); a positive relationship was observed between symptom severity and MCP-4. Inflammatory
mediators were significantly associated with all symptom clusters in females; the somatic symptom cluster displayed the
largest effect.

Conclusion: These results provide supportive evidence of a divergent relationship between inflammation and symptom
burden in male and female athletes following SRC. Future investigations should be cognizant of the potentially sex-
specific pathophysiology underlying symptom presentation.
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Background
Sport-related concussion (SRC) is a complex injury
that can lead to somatic, cognitive, visual, sleep and
emotional disturbances. Symptoms typically abate
within weeks but can persist for months to years in a
subset of individuals [1]. Importantly, symptom bur-
den is a key tool for clinicians in guiding patients
through the recovery process; the resolution of symp-
toms is a prerequisite for medical clearance and re-
turn to sport participation [1]. While the biological
mechanisms underlying symptom presentation follow-
ing injury remain elusive, the gap in our understand-
ing comes as no surprise, as there is significant
heterogeneity in symptom presentation between indi-
viduals, both in severity and type. In addition, symp-
toms commonly observed following SRC have also
been reported in a variety of other conditions such as
polytrauma, infection, and mental illness [2–5]. In
views of this, inflammation presents as a unifying
concept, as it has not only been associated with
concussion-like symptoms across numerous medical
conditions [5], but is increasingly recognized as an
important and prominent feature of concussion sec-
ondary injury [6–10]. Therefore, investigating the re-
lationship between inflammation and symptom
burden following concussion may help elucidate clin-
ically meaningful pathophysiological mechanisms that
mediate patient recovery [11, 12].
Rathbone and colleagues suggested inflammation as a

common mechanism underlying the constellation of
symptoms observed following concussion [5]. This asser-
tion was made in light of the evidence linking inflamma-
tory mediators to numerous symptoms commonly
observed following concussion that are seen in medical
maladies such as headache, chronic fatigue syndrome, in
response to immunomodulatory medical treatments, and
psychological conditions such as depression and anxiety
[5]. Importantly, evidence of these relationships was
commonly characterized by the presence of symptom(s)
and altered blood concentrations (typically an increase)
of inflammatory cytokines and/or chemokines [5].
Systemic inflammatory mediators can communicate

with the central nervous system (CNS) via several mech-
anisms. Primary afferent and efferent nerves innervating
the CNS can respond to cytokine and chemokine signal-
ling from either the brain or periphery [13, 14], CNS-
derived neuroendocrine hormones can interact with
their respective receptors on circulating leukocytes in
the periphery [15–18], and the blood brain barrier (BBB)
permits passage of leukocytes and their mediators (cyto-
kines and chemokines) via receptor-mediated transport,
endothelial transmigration, and/or diffusion [19]. As a
result of this bi-directional communicative network, per-
ipheral inflammatory indices may be used to 1) evaluate

the systemic consequences of brain-related maladies, or
2) indirectly elucidate processes occurring in the CNS.
An example of this can be seen in sickness behaviour,
whereby infection or illness results in fatigue, malaise,
decreased appetite, lack of concentration, and feelings of
depression and lethargy [20–22]. This constellation of
behavioural and physiological changes is due primarily
to systemic and centrally produced cytokines, namely
tumor necrosis factor (TNF)-α, interleukins (IL)-1β, IL-
6, and interferons (IFNs) [13, 22–26].
Our group recently identified a unique inflammatory pro-

file in the peripheral blood of athletes following SRC that
was distinct from non-head injury and characterized by ele-
vations in the circulating chemokines monocyte chemo-
attractant protein (MCP)-4 and macrophage inflammatory
protein (MIP)-1β [6]. In addition, higher concentrations of
MCP-1 and -4 were associated with prolonged recovery [6].
Similarly, altered inflammatory gene expression in leukocytes
[8, 9], and increased brain extracellular vesicles containing
TNF-α and IL-8 have also been observed in the peripheral
blood of subjects following SRC [27]. Despite these findings
and the strong linkage between inflammation and sympto-
mology across numerous clinical conditions, human data
characterizing the potential role of inflammation on symp-
tom burden following concussion is scarce. Su and col-
leagues observed that a higher concentration of the
circulating inflammatory index C-reactive protein (CRP) was
associated with a greater symptom burden in subjects in the
months following mTBI [28]. Likewise, Nitta and colleagues
recently identified a positive relationship between serum
interleukin IL-6 concentrations and symptom duration fol-
lowing SRC [10]. While this is intriguing, the relationship be-
tween concussion symptoms and inflammation has yet to be
evaluated across the range of inflammatory mediators previ-
ously studied in TBI [6, 29–31]. Furthermore, probable sex
differences have not been accounted for; despite the pro-
found differences observed in male versus female immune
responses as a consequence of genetic, environment and
hormonal influences [32, 33], few studies evaluating inflam-
mation stratify their cohorts by sex [33].
The present study builds upon prior works by exam-

ining the relationships between symptom burden and
inflammation in males and females following SRC. We
hypothesized that symptoms reported in the subacute
period following injury would correlate with systemic
inflammatory cytokines and chemokines, and that this
relationship would differ between males and females.
This hypothesis was evaluated in a cohort of
university-level athletes assessed within seven days
post-injury using a set of multivariate PLS models.
These analyses were performed with the goal of im-
proving our understanding of how inflammation may
mediate symptom burden in males and females follow-
ing SRC.
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Results
Athlete characteristics and biomarker values
Athlete demographics, symptoms, and recovery time can
be found in Table 1, and participant recruitment and en-
rollment information can be found in Fig. 1. There were
no significant differences in any of the clinical characteris-
tics between male and female athletes; notably, total
symptom reporting (p = 0.522), symptom severity (p =
0.763), and the median days to medical clearance (p =
0.513) were similar. Male and female biomarker values fol-
lowing SRC can be observed in Table 2. While there were
no significant differences in biomarker concentrations be-
tween males and females after correcting for multiple
comparisons, uncorrected MCP-1 (66.6 vs. 53.3 pg/mL,
p = 0.023), MIP-1B (43.6 vs 31.8 pg/mL, p = 0.007) and
Eotaxin (94.2 vs. 81 pg/mL, p = 0.028) concentrations were
significantly lower in females compared to males, and IP-
10 (179.4 vs 207.7 pg/mL, p = 0.026) concentrations were
significantly higher in females compared to males.

Relationship between symptoms and days to recovery
A significant, large correlation between calculated symptom
severity and days to recovery (i.e., medical clearance) was

observed for both males (mean rho = 0.73, p < 0.001, BSR =
6.8) and females (mean rho = 0.63, p < 0.001, BSR = 3.5).

Relationship between inflammatory biomarkers and
symptoms
PLS plots showing the relationship between symptom
severity and inflammatory biomarkers following SRC
can be seen in Fig. 2. The plot depicts biomarker load-
ings which describe their weighted contribution towards
symptom severity, with effect sizes determined via

Table 1 Characteristics of Athletes with SRC

Variable Males (n = 20) Females (n = 20)

Age 21.4 (19.9–22.3) 20.4 (18.9–22)

Concussion History (n, %) 12 (60) 11 (55)

Sport (n, %)

Basketball 1 (5) 1 (5)

Field hockey – 2 (10)

Football 6 (30) –

Ice hockey 5 (25) 5 (25)

Lacrosse 1 (5) 3 (15)

Mountain biking – 1 (5)

Rugby 5 (25) 6 (30)

Soccer – 1 (5)

Volleyball 2 (10) 1 (5)

Days from injury to assessment 4 (3–5.2) 5 (3–5)

SCAT5 symptoms

Total Symptoms 9.5 (4.8–17.2) 9.0 (5.8–12.2)

Symptom Severity 16.0 (4.8–43.5) 14.5 (6.8–23.5)

Symptom Clusters

Somatic 9.5 (2.8–17.5) 10 (3.8–14)

Cognitive 6 (2.5–14) 3.0 (1.8–6.2)

Sleep 1.5 (0–6.5) 2.0 (1–4.2)

Emotion 1 (0–4.0) 0 (0–2.0)

Days to medical clearance 27 (21–46.2) 23 (12–60)

sport-related concussion (SRC); sport concussion assessment tool 5 (SCAT5).
All values reported as the median and interquartile range, unless
otherwise stated

Fig. 1 Athlete enrollment from the objective measures of sport
concussion project, and study participant selection. SRC = sport-
related concussion. * Nine athletes who consented to provide blood
were lost for various reasons: n = 3 were lost due to no SCAT5 data,
n = 2 were lost due to the use of prescribed medications that
potentially interfere with the inflammatory response, and n = 4 were
lost due to an inability to acquire a blood sample
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bootstrap ratios (BSR) (see methods section). In male
athletes, symptom severity significantly positively corre-
lated with blood concentrations of IFN-γ (p = 0.04,
BSR = 2). Conversely, in female athletes, symptom sever-
ity negatively correlated with IFN-γ (p = 0.01, BSR = 2.6),
MPO (p = 0.008, BSR = 2.6), and TNF-α (p = 0.001,
BSR = 3.2), and positively correlated with MCP-4 (p =
0.04, BSR = 2.1) (Fig. 2). Cross-correlation (R2) of the
PLS model containing symptom severity and inflamma-
tory biomarkers was 0.07 (95% CI = 0.04–0.1) in males
and 0.29 (95% CI = 0.24–0.35) in females.
PLS plots showing the correlation between symptom

clusters and inflammatory biomarkers in male and female
athletes following SRC can be found in Figs. 3 & 4. Latent
variables are plotted, describing the two most relevant
structures describing the relationship between symptoms
and biomarkers. In male athletes, there were two latent var-
iables describing 86% of the covariance between symptoms
and biomarkers. The first latent variable (LV) (explaining
61% of covariance between symptoms and biomarkers) was
characterized by a significant positive correlation between
all symptom clusters and IFN-γ (p = 0.03, BSR = 2.1); the

Fig. 2 Correlation between Inflammatory biomarkers and symptom severity in male and female athletes following a sport-related concussion.
Eotaxin, interferon (IFN)-γ, interleukin (IL)-8, interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, − 4,
macrophage inflammatory protein (MIP)-1β, Myeloperoxidase (MPO), thymus and activation-regulated chemokine (TARC), and tumor necrosis
factor (TNF)-α. Plots show the contributions of biomarkers measured in the subacute period following injury towards symptom severity in male
(n = 20) and female (n = 20) athletes. Bars represent variable loadings and the standard error derived from bootstrapped resampling (5000
iterations, male = red, female = green). Significance is displayed at p < 0.05 *, p < 0.01** and p < 0.001***

Table 2 Inflammatory biomarker concentrations in athletes with
SRC
Marker Males (n = 20) Females (n = 20) p value FDR

IFN-γ 3.1 (2.5–5.0) 4.1 (2.5–5.9) 0.326 no

TNF-α 1.7 (1.4–2.2) 1.5 (1.3–1.9) 0.305 no

MPO (ng/mL) 13.4 (7.5–21.4) 9.0 (7.9–11.4) 0.018 no

IL-8 2.0 (1.7–2.6) 2.0 (1.3–2.4) 0.149 no

MCP-1 66.6 (57.6–73.5) 53.3 (45.8–65.4) 0.090 no

MCP-4 27.5 (20.5–32.4) 23.0 (18.9–29.1) 0.505 no

MIP-1β 43.6 (31.5–53.6) 31.8 (25.0–40.0) 0.021 no

IP-10 179.4 (133.2–219.8) 207.7 (166.4–294.8) 0.016 no

TARC 72.7 (44.3–94.9) 55.1 (48.2–67.5) 0.061 no

Eotaxin 94.2 (82.2–127.5) 81.0 (66.0–94.8) 0.028 no

sport-related concussion (SRC); false discovery rate (FDR); interferon (IFN)-γ,
tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), interleukin (IL)- 8,
monocyte chemoattractant protein (MCP)-1, −4, macrophage inflammatory
protein (MIP)-1β, interferon gamma-induced protein (IP)-10, and thymus and
activation-regulated chemokine (TARC)
All values reported as the median and interquartile range in pg/mL, unless
otherwise stated
P values are derived from bootstrap ratios (BSR) of the mean difference
between biomarker values in male and female athletes, corrected
at FDR = 0.05
In the case of deviations from normality, the BSR was calculated from the
winsorized mean difference
Bold values indicate pre-corrected p < 0.05
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cognitive symptom cluster displayed the greatest effect size
(p < 0.001, BSR = 5.5), while the fatigue symptom cluster
displayed the lowest (p = 0.03, BSR = 2.1) (Fig. 3a). The sec-
ond LV, (explaining 25% of covariance) was characterized
by a positive correlation between symptoms of emotion
(p < 0.001, BSR = 3.9) and IL-8 (p = 0.03, BSR = 2.2), MCP-
4 (p < 0.001, BSR = 3.5), and thymus and activation regu-
lated chemokine (TARC) (p < 0.001, BSR = 3.7) (Fig. 3b).
In female athletes, there were two latent variables de-

scribing 79% of the covariance between symptoms and
biomarkers. The first LV (explaining 55% of covariance)
was characterized by a negative relationship between
symptom clusters and inflammatory biomarkers: Higher
symptoms (all clusters) were negatively correlated with
TNF-α (p = 0.01, BSR = 2.6), IFN-γ (p = 0.01, BSR = 2.4)
and myeloperoxidase (MPO) (p = 0.02, BSR = 2.3). How-
ever, a positive correlation was observed between

symptoms (all clusters) and MCP-4 (p = 0.04, BSR = 2.0).
The largest effects were seen with somatic symptoms
(p < 0.001, BSR = 6.8), while the smallest effects were
seen with cognitive symptoms (p = 0.009, BSR = 2.6)
(Fig. 4a). In the second LV (explaining 24% of covari-
ance), while there was a relationship between cognitive
symptoms (p = 0.03, BSR = 2.1) and biomarkers, there
were no significant associations with individual inflam-
matory biomarker loadings (Fig. 4b).

Discussion
In this study, we identified a significant relationship be-
tween symptom burden and systemic inflammation fol-
lowing SRC, with differences between males and females.
Within the first week of injury, reported symptom severity
was inversely correlated with inflammatory cytokines in
the peripheral blood of female athletes, yet positively

Fig. 3 Correlation between Inflammatory biomarkers and symptom clusters in male athletes following sport-related concussion. Tumor necrosis
factor (TNF)-α, interferon (IFN)-γ, Myeloperoxidase (MPO), interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, − 4, macrophage
inflammatory protein (MIP)-1β, interferon gamma-induced protein (IP)-10, thymus and activation-regulated chemokine (TARC), and eotaxin. Plots
show the correlation between biomarkers measured in the subacute period following injury and symptom clusters on a) the first latent variable,
and b) the second latent variable. Circles represent the variable loadings and standard error derived from bootstrapped resampling. Significance
is displayed at p < 0.05 *, p < 0.01** and p < 0.001
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correlated in males. Importantly, these differences were
noted despite male and female groups having a compar-
able symptom burden and time to recovery. This suggests
that inflammation is an important and clinically relevant
component of secondary injury following SRC but may
present differently in males and females.
We observed greater symptom burden was associated

with lower concentrations of the classical inflammatory
cytokines IFN-γ and TNF-α, and the innate immune func-
tion marker MPO in female athletes following SRC; a
positive relationship was observed with the chemokine
MCP-4. The somatic symptom cluster displayed the great-
est effect, while the cognitive cluster displayed the lowest,
and the overall relationship between symptoms and in-
flammation was comparatively more generalizable in fe-
males than males (PLS cross-correlation R2 = 0.07 in
males, R2 = 0.29 in females). While we hypothesized a sex-

difference in the relationship between inflammation and
symptom burden following injury, the direction of the as-
sociation observed in female athletes is seemingly non-
intuitive. The preponderance of evidence linking concus-
sion symptoms to inflammation suggests a positive rela-
tionship (for review see [5]), and females typically have a
greater inflammatory response to challenge compared to
males [33]. However, in a recent meta-analysis evaluating
peripheral chemokine and cytokines in depression, while
the majority of studies found positive relationships, lower
concentrations of TNF-α and IFN-γ were also observed
(for review see [34]). Furthermore, a number of perturba-
tions to inflammatory genes in peripheral leukocytes have
been observed following SRC, displaying both upregula-
tion and downregulation [8, 9]. Hence, it is possible that
both the complexity of the inflammatory response to con-
cussion as well as potentially divergent responses in males

Fig. 4 Correlation between Inflammatory biomarkers and symptom clusters in female athletes following sport-related concussion. Tumor necrosis
factor (TNF)-α, interferon (IFN)-γ, Myeloperoxidase (MPO), interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, − 4, macrophage
inflammatory protein (MIP)-1β, interferon gamma-induced protein (IP)-10, thymus and activation-regulated chemokine (TARC), and eotaxin. Plots
show the correlation between biomarkers measured in the subacute period following injury and symptom clusters on a) the first latent variable,
and b) the second latent variable. Circles represent the variable loadings and standard error derived from bootstrapped resampling. Significance
is displayed at p < 0.05 *, p < 0.01** and p < 0.001
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and females contribute to these mixed findings. In
addition, it is conceivable that the menstrual cycle may
have had an effect; immune function can vary widely with
hormonal changes during the menstrual cycle, with poten-
tial immunosuppression in the luteal phase [35–37].
While it is still unclear why we observed that symptom
burden was correlated with lower levels of inflammatory
cytokines in females following SRC, the results of this in-
vestigation provide supportive evidence that inflammation
following concussion should not be looked at without di-
chotomizing groups by sex.
As opposed to females, in the current study symptom se-

verity was positively correlated with blood concentrations
of IFN-γ in male athletes following SRC. This observation
is generally supported by literature that has shown a posi-
tive association between the family of IFN proteins and
symptoms such as headache, fatigue, irritability, hostility,
and depression [34, 38, 39] in numerous maladies. While
we found IFN-γ was associated with all symptom clusters,
cognitive symptoms displayed the highest effect; in females
cognitive symptoms displayed the lowest effect. Further-
more, we observed a small, stable effect in males between
the emotion symptom cluster and the chemokines IL-8,
MCP-4 and TARC. These mediators are primarily respon-
sible for neutrophil [40], monocyte [40] and lymphocyte
chemoattraction [41], respectively, and chemokines have
been broadly implicated in leukocyte trafficking to the
brain following TBI [29, 40, 42, 43]; indeed, higher concen-
trations of IL-8 in the blood acutely following severe TBI
have been correlated with unfavorable outcome [30]. Re-
garding symptom burden, although chemokines have been
broadly implicated in depression, the specific relationship(s)
between MCP-4, IL-8 and TARC and the behaviours and
mood states comprising the “emotion” symptom cluster in
the current study (emotional, irritability, sadness, nervous/
anxious) are not well defined. Furthermore, it is important
not to overstate this relationship, as these findings were
found on the second LV comprising only 25% of the covari-
ance in the PLS model and are comparatively small relative
to the magnitude of the relationship observed between
symptoms and IFN-γ. Taken together, further research is
warranted both to replicate these findings and to investigate
the mechanisms mediating the relationship between inflam-
mation and symptom burden in male athletes following
SRC.
The mechanism(s) underlying the relationship observed

in the current study between symptom burden and inflam-
mation following SRC are unknown. However, given the
strong influence of the neuroendocrine system on inflam-
mation [44–46], its role in both brain injury [9, 17, 47–49]
and related symptomology [50–53] along with the differ-
ences in neuroendocrine biology between males and fe-
males [54–56], it is plausible that the stress-immune axis
mediates the relationship between symptoms and

inflammation following concussion. The two major arms of
the body’s stress system, the sympathetic nervous system
(SNS) and the hypothalamic pituitary adrenal (HPA) axis
can augment the immune system in numerous ways. For
example, the HPA-axis, through the actions of glucocorti-
coids can have strong immunosuppressive effects [57–59],
while the SNS can be pro- or anti-inflammatory depending
on the nature of the stimulus and subsequent
catecholamine-adrenergic receptor pairing [15, 32, 31], and
have recently observed that neuroendocrine hormones in
the blood following sport concussion are associated with
both symptom burden and time to medical clearance [60].
In support of the latter, Merchant-Borna and colleagues ob-
served a change in lymphocyte transcription of genes regu-
lating HPA-axis activity and inflammation at seven days
post-SRC [9]. However, the complex interactions between
sex, neuroendocrine-immune signalling, their effect on
symptom burden, and the temporal shifts in these pro-
cesses that likely occur to restore homeostasis throughout
recovery are not understood. Lastly, given the pleiotropicity,
biological redundancy, and dynamic nature of the inflam-
matory response, it is difficult to control for the vast num-
ber of confounds when conducting a human study. As a
result, a normative healthy group can be a potential source
of biological noise in statistical analyses. The purposeful ex-
clusion of a healthy control sample in the current study
allowed for a direct evaluation of the relationship between
symptom burden and inflammation post-injury. However,
this approach also allows for the possibility that pre-injury
biological conditions and/or phenotypes affecting the in-
flammatory system or that contribute to symptom burden,
impacted our findings. In view of this, in the current
study we observed a relationship between inflammatory
biomarkers and concussion history in male athletes follow-
ing SRC (Supplementary Fig. 1), and it is unclear how this
may have impacted post-injury inflammation. Hence future
studies aimed at uncovering the intricacies of these interre-
lationships, including both pre- and post-injury biology and
the potential mediating effect of concussion history, are
necessary.
The results of the study must be interpreted within

the context of its limitations. While the sport concussion
assessment tool (SCAT) symptom profile is a well-
studied and useful tool utilized by clinicians and concus-
sion researchers, investigation into specific symptoms
may have benefited from more directed measures. For
example, clinical screening tools for depression (i.e., the
Beck Depression Inventory) and anxiety disorders (i.e.,
the general anxiety disorder questionnaire-7) may have
provided utility to the current analysis, as would physio-
logical evaluations of sleep (i.e., heart rate variability
monitoring), and more objective neuropsychological
evaluations of cognitive function. Furthermore, a larger
study sample would have permitted a greater degree of
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subgroup analysis (i.e., prior concussion history, men-
strual cycle in females), and baseline evaluations would
have allowed for the consideration of potential pre-
injury differences in symptom presentation between
males and females [61, 62]. Finally, a more narrow and
acute sample timepoint may have helped capture a more
profound inflammatory response to injury; despite there
being no relationship between the time elapsed from
SRC to blood draw and either symptom severity (spear-
man rho = 0.05, p = 0.75), or time to medical clearance
(spearman rho = 0.17, p = 0.29), we observed a correl-
ation between inflammatory biomarkers and days from
SRC to blood draw (Supplementary Fig. 2). Lastly, our
study focused on evaluating the relationship between
symptom burden and systemic inflammation at a single
time point post-injury, therefore follow-up studies are
required to characterize this relationship throughout re-
covery; given our groups’ prior findings of persistent
symptoms at medical clearance utilizing both advanced
neuroimaging [63, 64] and blood biomarkers [65], it re-
mains unclear how symptom burden tracks biological
recovery.

Conclusion
Symptom burden is associated with unique inflammatory
profiles in male and female athletes following SRC. Symp-
tom severity is associated with elevated blood concentra-
tions of IFN-γ in males, yet lower levels of IFN-γ, TNF-α,
and MPO in females: the relationship between symptoms
and inflammation appears to be more generalizable in fe-
males. Future investigations into inflammation as a clinic-
ally meaningful secondary injury process following
concussion should not ignore the potentially divergent
pathophysiology underlying symptom presentation in males
and females.

Methods
Participants
Participant eligibility and enrolment information are vi-
sualized in Fig. 1. From August 2015 – February 2018,
113 athletes with SRC were eligible for study enrollment.
From this, 70 athletes were enrolled, and 49 consented
to blood draw. Due to an inability to draw blood (n = 4),
medications that interfered with inflammatory processes
(n = 2), and an absence of SCAT symptom information
(n = 3), 40 interuniversity athletes with a clinician diag-
nosed SRC were enrolled (n = 20 male (M), n = 20 fe-
male (F)) from nine sport teams: basketball (M & F),
field hockey (F), football (M), ice hockey (M & F), la-
crosse (M & F), mountain biking (F), rugby (M & F),
soccer (F), volleyball (M & F). This cohort was analyzed
in a previously published study by our group [6]. Con-
cussion diagnosis and medical clearance decisions were
made by a staff physician at the university sport

medicine clinic in accordance with the Concussion in
Sport Group guidelines [1]. Prior to enrollment, all par-
ticipants provided written informed consent; all study
procedures were in accordance with the declaration of
Helsinki, and approved by the Health Science Research
Ethics Board, University of Toronto (protocol reference
# 27958).

Blood biomarkers
Blood was sampled from athletes within a range of 2–7
days following an SRC (males, median = 4 days; females,
median = 5 days). Athletes were excluded if they were tak-
ing medications other than birth control, or if they were
currently symptomatic as a result of a known infection, ill-
ness or seasonal allergies. Venous blood was drawn into a
10-mL K2EDTA tube and was equilibrated for approxi-
mately one hour at room temperature before a two min
centrifugation using a PlasmaPrep 12™ centrifuge (Separ-
ation Technology Inc., FL, USA). Plasma supernatant was
then aliquoted and frozen at − 80 °C until analysis.
Nineteen cytokines and chemokines were analyzed by

immunoassay using Meso Scale Diagnostics 96-well
MULTI-SPOT® technology: interferon (IFN)-γ, interleukin
(IL)-1β, − 2, − 4, − 6, − 8, − 10, −12p70, − 13, tumor necro-
sis factor (TNF)-α, eotaxin, eotaxin-3, interferon gamma-
induced protein (IP)-10, monocyte chemoattractant protein
(MCP)-1, − 4, macrophage-derived chemokine (MDC),
macrophage inflammatory protein (MIP)-1α, −1β, and thy-
mus and activation-regulated chemokine (TARC). Myelo-
peroxidase (MPO) was run as a single-plex assay. All assays
were run according to manufacturer’s instructions, with in-
dividual samples run in duplicate.

Symptoms
On the day of the blood draw, athletes’ concussion symp-
toms were ascertained via a 22-item post-concussion symp-
tom scale using a seven-point Likert rating as part of the
Sport Concussion Assessment Tool (SCAT). The SCAT is
the most widely used tool to assist in the diagnosis, man-
agement, and prognosis of individuals with concussion [1],
and has shown reliability and validity for the assessment of
both symptom presence and severity [66, 67]. A total symp-
tom score was obtained by summing the presence or ab-
sence of each symptom irrespective of severity, with a
maximum value of 22; symptom severity was evaluated by
summing the rated symptom score for each symptom. In
addition, four distinct symptom clusters were obtained by
combining and summing the scores of SCAT symptoms re-
lated to somatic complaints (headache, pressure in head,
neck pain, nausea/vomiting, dizziness, blurred vision, bal-
ance problems, sensitivity to light, sensitivity to noise), cog-
nition (feeling slowed down, feeling in a fog, don’t feel
right, difficulty concentrating, difficulty remembering, con-
fusion), sleep (fatigue/low energy, drowsiness, trouble
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falling asleep), and emotion (more emotional, irritability,
sadness, nervous/anxious). This approach has been previ-
ously employed by our group [6, 68].

Statistical analysis
Prior to statistical analysis, we applied a previously pub-
lished set of biomarker detection criteria [6], retaining
only biomarkers that contained individual values for >
80% of subjects per biomarker. Biomarker values were
removed if they 1) did not fall within the manufacturer
provided limits of detection, or 2) displayed a > 25% co-
efficient of variation between individual sample repli-
cates. Hence, 10 of 20 inflammatory biomarkers satisfied
these criteria and were evaluated in the current study.
See Supplementary Table 1 for biomarker detection data
in both male and female participant groups.
All variables (biomarkers and symptoms) were tested

for deviations from normality by calculating sample skew-
ness and kurtosis, with empirical p-values obtained by
comparison against a simulated null distribution (random
gaussian noise, 1000 simulated samples). In males, skew-
ness ranged from 0 (p = 0.448) to 1.5 (p = 0.003), and kur-
tosis ranged from 3.2 (p = 0.721) to 9.4 (p = 0.001). In
females, skewness ranged from – 0.9 (p = 0.949) to 2.2
(p < 0.001), and kurtosis ranged from 3.1 (p = 0.796) to
10.6 (p < 0.001). Hence, prior to all statistical comparisons,
missing values were imputed separately in male and fe-
male subjects using the variable median, followed by rank
transformation for symptom variables and a two-tailed
winsorization (10%) of biomarkers that significantly devi-
ated from normality.
Univariate comparisons of demographic variables and

biomarkers between male and female athletes following
SRC (Tables 1 & 2) were evaluated by calculating the
mean differences, followed by bootstrapping of the mean
difference scores (1000 resamples) to obtain standardized
effect size in terms of bootstrap ratios (BSR; mean / stand-
ard error) and empirical p values based on the bootstrap
estimates of the standard error, which were corrected at a
false discovery rate (FDR) of 0.05. Univariate correlation
analyses were conducted between calculated symptom se-
verity and days to recovery via Spearman correlation with
bootstrapping used to obtain BSRs and empirical p values.
The primary aim of the study was to test for associations

between symptom reporting and inflammatory biomarker
profiles in male and female athletes following SRC using a
statistical framework designed to elucidate the potential
complexity of these relationships, and without the poten-
tial confounds that would arise by including a comparison
to a healthy athlete population. To accomplish this, a par-
tial least squares (PLS) correlation analysis was employed
[69]. PLS is a multivariate data reduction technique that
creates orthogonal latent variables describing the maximal
covariance between a set of predictor (biomarkers) and

response (symptoms) variables [69]. In the current study,
PLS was used in a bootstrap resampling framework (5000
iterations) to generate sets of variable loadings (i.e.,
weighted combinations of biomarkers / symptom clus-
ters), along with corresponding BSRs and empirical p-
values based on the bootstrap estimates of the standard
error. For analyses evaluating the correlation between in-
flammatory biomarkers and calculated symptom severity,
an out-of-sample, leave-two-out cross correlation (R2)
value was calculated on the PLS model. PLS plots repre-
sent the mean and standard deviation (SD) of the resam-
ples for each variable. All statistical analyses and graphs
were completed with R (RStudio, version 1.1.456, Boston,
United States).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12865-020-0339-3.

Additional file 1: Figure S1. Correlation between inflammatory
biomarkers and concussion history in male and female athletes
following sport-related concussion. Eotaxin, interferon (IFN)-γ, interleukin
(IL)-8, interferon gamma-induced protein (IP)-10, monocyte chemoattract-
ant protein (MCP)-1, − 4, macrophage inflammatory protein (MIP)-1β,
Myeloperoxidase (MPO), thymus and activation-regulated chemokine
(TARC), and tumor necrosis factor (TNF)-α. Plots show the variable load-
ings in male (n = 20) and female (n = 20) athletes subacutely following a
sport-related concussion, depicting their correlation to concussion history.
Bars represent variable loadings and the standard error derived from
bootstrapped resampling (5000 iterations, male = red, female = green).
Significance is displayed at p < 0.05 *, p < 0.01** and p < 0.001***.

Additional file 2: Figure S2. Correlation between inflammatory
biomarkers and days elapsed between sport-related concussion and
blood draw. Eotaxin, interferon (IFN)-γ, interleukin (IL)-8, interferon
gamma-induced protein (IP)-10, monocyte chemoattractant protein
(MCP)-1, − 4, macrophage inflammatory protein (MIP)-1β, Myeloperoxi-
dase (MPO), thymus and activation-regulated chemokine (TARC), and
tumor necrosis factor (TNF)-α. Plots show the variable loadings in male
(n = 20) and female (n = 20) athletes subacutely following a sport-related
concussion, depicting their correlation to the number of days between
injury and blood draw. Bars represent variable loadings and the standard
error derived from bootstrapped resampling (5000 iterations, male = red,
female = green). Significance is displayed at p < 0.05 *, p < 0.01** and
p < 0.001***.

Additional file 3: Table S1. Biomarker Detectability.
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