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Abstract

Background: Transforming growth factor beta (TGF-β) is a typical immuno-inhibitory cytokine and highly secreted
by lung cancer cells. It was supposed that its immunosuppressive effects to NK cell might be related with the
altered expression of activating and inhibitory molecules in lung cancer cells. In this study, we examined the
expression of NKG2DLs, PD-L1 and PD-L2 in lung cancer cells after treatment of TGF-β and a TGF-β inhibitor,
Galunisertib (LY2157299).

Results: TGF-β reduced the level of surface proteins of five NKG2DLs without altered transcription levels in lung
cancer cells. Galunisertib reversed the effect of TGF-β on the expression of NKG2DLs. Since MMP inhibitors, MMPi III
and MMP2 inhibitor I, restored the reduced expression of NKG2DLs after treatment of TGF-β, it was thought that
TGF-β induced the expression of MMP2 which facilitated the shedding of the NKG2DLs in cancer cells. However,
the expression of PD-L1, L2 were not changed by treatment with TGF-β or Galunisertib.

Conclusions: Therefore, inhibition of TGF-β might reverse the immunosuppressive status on immune cells and
restore NK cell mediated anticancer immune responses by upregulation of NKG2DLs in cancer cells.
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Background
Lung cancer is one of the most commonly diagnosed can-
cer and also the leading cause of cancer-associated mortal-
ity [1]. Even with more advanced chemotherapeutic
agents and molecularly targeted drugs, the prognosis of
this disease is still poor due to limited treatment efficiency
[2, 3]. Thus, given the higher recurrence and mortality
rates, novel therapeutic strategies are warranted in order
to improve the outcome of patients with lung cancer.
Natural-killer group 2, member D (NKG2D), is

expressed by human NK cells and some kinds of T cells,

and transduces activating signals through binding to the
NKG2DLs [4]. In this process, upregulation of
NKG2DLs could activate the NK cells and evoke im-
mune responses against the target cells [5]. Programmed
cell death protein 1 (PD-1) is an immune checkpoint
molecule and transduces inhibitory signaling which is
expressed by mainly lymphocytes [6]. It binds to PD-L1
and PD-L2 on target cells, and decrease anti-cancer im-
mune responses [7]. Since the activity of NK cells were
modulated by the signaling balance derived from inhibi-
tory and activating receptors, it was suggested that these
NKG2DLs and PD-L1/2 might significantly influence on
the killing ability of NK cells against cancer cells.
Among various immunomodulatory factors, trans-

forming growth factor-β (TGF-β) is a potent cytokine
with immune suppressive effects including the negative
regulation of lymphocyte proliferation, differentiation
and survival [8] and TGF-β inhibitor may attenuated the
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immune suppressive effects [9–11].. It was known that
TGF-β could inhibit the activity of natural killer (NK)
cells and susceptibility of cancer cells to NK cells [12,
13]. In addition, TGF-β regulates chemotaxis and the ac-
tivity of other immune cells such as dendritic cells, mac-
rophages, mast cells and granulocytes [8]. Therefore,
TGF-β is associated with tumor growth and malignant
progression in various types of cancers [14–16]. It was
known that promoted metastasis and invasion of cancer
cells through TGF-β signaling was associated with the
increased expression and activity of matrix metallopro-
teinases (MMPs) [17, 18]. MMPs are zinc-dependent en-
zymes which play an important role in extracellular
matrix degradation in the tumor microenvironment [19].
In addition, some kinds of metalloproteinase family facil-
itated the shedding and reduction of surface expression
of NKG2DLs [20, 21]. Since TGF-β was highly secreted
in lung cancer cells [22], it was supposed that TGF-β
might change the expression of signaling on NK cells
through the altered expression of NKG2DLs and PD-L1/
L2. Therefore, high expression of MMPs might suppress
NK cell-mediated anti-cancer immune responses.
In this study, it was evaluated that TGF-β and TGF-β

inhibitor could altered expression of NKG2DLs and PD-
L1/L2. In addition, a possible modulating molecule,
MMP2 could mediate the expression of NKGD2DLs
through TGF-β signaling. Finally, it was investigated that
TGF-β inhibitor could enhance the susceptibility of lung
cancer cells to NK cell.

Results
TGF-β decreased the surface expression of NKG2DLs in
lung cancer cells
The surface expression of NKG2DLs in lung cancer
cells was analyzed using flow cytometry after treat-
ment with TGF-β. The surface expression levels of
five NKG2DLs including ULBP1 and ULBP2 were de-
creased by - 0.3-fold after treatment with 20 ng/ml
TGF-β. ULBP1 was supressed at 10 ng/ml TGF- β in
NCI-H23 cells (Fig. 1A). The surface expression levels
of ULBP1, ULBP2 and ULBP3 were decreased by 0.3-
fold, 0.4-fold and 0.3-fold, respectively, after treatment
with 10 ng/ml TGF-β in SW-900 cells. The reduction
of these three kinds of NKG2DLs was more profound.
(Fig. 1B). MICA and ULBP1/2/3 were decreased by
0.3-fold, 0.1-fold, 0.2-fold and 0.3-fold, respectively,
after treatment with 20 ng/ml TGF-β. ULBP3 was
supressed at 10 ng/ml TGF- β in A549 cells (Fig. 1C).
ULBP3in NCI-H23 cells and MICA in SW-900 cells
were not detected and marked by ND. These results
suggest that TGF-β could affect the surface expres-
sion of NKG2DLs in lung cancer cells. The kinds of
NKG2DLs which were decreased after treatment with
TGF-β were different depending on the cell lines.

Galunisertib reversed the surface expression of NKG2DLs
in lung cancer cells
To block the role of TGF-β, three kinds of lung cancer
cells were treated with a TGF-β inhibitor, Galunisertib,
and the surface expression of five NKG2DLs was ana-
lyzed by flow cytometry. Galunisertib reversed the effects
of TGF-b in surface expression of NKG2DLs in lung
cancer cells. In NCI-H23 cells, the surface expression of
MICA, ULBP1 and ULBP2 was increased by TGF-β in-
hibitor (Fig. 2A). In SW-900 cells, the surface expression
of MICB and ULBP1/2/3 was increased by TGF-β in-
hibitor (Fig. 2B). In A549 cells, five kinds of NKG2DLs
were reversed by TGF-β inhibitor (Fig. 2C). As results
from Figs. 1 and 2, it was supposed that TGF-β signaling
might regulate the expression of NKG2D ligands in lung
cancer cells.

Combined treatment of TGF-β and Galunisertib did not
alter the transcription levels of NKG2DLs in lung cancer
cells
The transcription levels of NKG2DLs were analyzed by
multiplex RT-PCR. When treated with TGF-β and Galu-
nisertib, the transcription levels of NKG2DLs in three
lung cancer cells were not changed significantly (Fig. 3).
Therefore, TGF-β signaling may modulate the expres-
sion of NKG2DLs at post-transcriptional level without
significant changes of transcription.

Treatment with TGF-β and Galunisertib altered the
expression of MMP2
Since previous results showed that TGF-β regulates the
surface expression of NKG2D s, it was needed to investi-
gate how TGF-β regulates the expression of NKG2DLs.
It was known that many kinds of MMPs were induced
by TGF-β and some kinds of MMPs such as MMP2,
MMP9 and MMP14 could reduce the surface expression
of NKG2DLs [19, 21, 23, 24]. Therefore, it was supposed
that the surface expression of NKG2DLs might be regu-
lated by the role MMPs induced by TGF-β. In these
studies, we investigated the changes of MMPs through
TGF-β signaling which were related with the reduction
of surface NKG2DLs.
The transcription of MMP2 was significantly increased

by treatment with TGF-β in three lung cancer cells
(Figs. 4 and 5). The other MMPs including MMP1,
MMP9 and MMP14 were differentially changed in three
lung cancer cells depending on specific cell types.
MMP1 was increased in SW-900 cells and A549 cells by
treatment with TGF-β 10 ng/ml and 20 ng/ml (Fig. 4B
and C). MMP9 in NCI-H23 cells, and MMP1 in SW-900
cells were also increased by treatment with TGF-β (Fig.
4A and B). When TGF-β and Galunisertib were
cotreated, increased MMPs were reversed except MMP1
in SW-900 and A549. It was demonstrated that TGF-β

Lee et al. BMC Immunology           (2021) 22:44 Page 2 of 13



Fig. 1 Decrease surface expression levels of some kinds of NKG2DLs by treatment with TGF-β. The surface expression levels of NKG2DLs were
showed as histograms and graphs in (A) NCI-H23, (B) SW-900 and (C) A549 lung cancer cells, which were treated with TGF-β (10 ng/ml, 20 ng/
ml) for 24 h. A representative data was shown. The relative expression ratios were calculated from mean fluorescence intensities (MFI) of treated
cells compared to those of control cells. Filled gray, dotted gray, gray and black lines represent isotype, media control, TGF-β 10 ng/ml treatment
and TGF-β 20 ng/ml treatment, respectively. The experiments were performed three times. (p < 0.05, *; p < 0.01, **)
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Fig. 2 (See legend on next page.)
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induced the expression of MMP2 and Galunisertib re-
versed the changes of MMPs in three kinds of lung can-
cer cells (Fig. 4). Interestingly, the expression of MMP1
in NCI-H23 cells was decreased by treatment with TGF-
β (Fig. 4A). MMP14 in NCI-H23 cells, MMP9 in SW-
900 cells, and MMP9 and MMP14 in A549 cells were
not detected and marked as ND.
When the protein levels of MMP2 were measured,

TGF-β induced the expression of MMP2 and Galuniser-
tib reversed its level at three kinds of lung cancer cells
(Fig. 5). It was supposed that high level of MMP2 might
reduce the surface NKG2DLs.

MMP inhibitors increased the surface expression of
NKG2DLs in lung cancer cells
To investigated the role of MMPs through TGF-β sig-
naling, three lung cancer cells treated with MMP in-
hibitor III (MMPi III), and MMP2 inhibitor I (MMP2i
I) which are a broad spectrum MMP inhibitor and
MMP2 specific inhibitor, respectively. Both MMP in-
hibitors dramatically increased NKG2DLs except
ULBP3 in NCI-H23 cells and MICA in SW-900 which
was not detected any condition (Fig. 6). When MMP
inhibitors were co-treated with TGF-β, the suppres-
sion of NKG2DLs was blocked partially in three lung
cancer cell lines. Although it was treated with MMP2
inhibitor, the expression of NKG2DLs showed a ten-
dency to decrease with treatment of TGF-β. It means
that TGF-β has another mechanism to reduce the ex-
pression of NKG2DLs besides the induction of
MMP2. In previous studies, it can be suggested that
there are two possible mechanisms which are upregu-
lation of proteasomal activity and induction of
miRNA [25–27].

Galunisertib reversed susceptibility of lung cancer cells to
NK cells
Since TGF-β downregulated the expression of NKG2DLs
in lung cancer cells, it might repress the susceptibility of
lung cancer cells to NK-92 cells. By treatment of TGF-
beta, NK cell-mediated cytotoxicity was suppressed. The
susceptibility of lung cancer cells to NK-92 cells was re-
versed by co-treatment of Galunisertib in three lung
cancer cells (Fig. 7).

Discussion
TGF-β signaling plays a crucial role in various tumor
microenvironments and performs a variety of functions
such as cell proliferation, differentiation, apoptosis,
extracellular matrix reorganization and epithelial-
mesenchymal transition (EMT) [28]. In addition, TGF-β
is a cytokine which has immune suppressive effects [8].
In previous studies, TGF-β directly suppressed cytotoxic
T lymphocyte and induced regulatory T cells. TGF-β
also inhibited NK cell and B cell proliferation and func-
tions [29–33]. Therefore, it is thought that the inhibition
of TGF-β is important to restore function of NK cells
and suppress the cancer progression.
NKG2DLs in cancer cells are known to promote im-

mune responses by binding to NKG2D in immune ef-
fector cells such as some kinds of T cells and NK cells
[5, 34]. Although it was known that TGF-β could inhibit
the activity of NK cells and the susceptibility of cancer
cells to NK cells [35], the mechanism by which TGF-β
affect the expression of NKG2DLs in lung cancer cells
has not been identified. We supposed that TGF-β might
affect the expression of activating ligands such as
NKG2DLs and inhibitory ligands such as PD-L1/L2 in
lung cancer cells. In this study, it was investigated
whether NKG2DLs and PD-L1/L2 in lung cancer cells
could be regulated by TGF-β signaling. As a result,
TGF-β and a TGF-β inhibitor, Galunisertib, could regu-
late the surface expression of NKG2DLs in lung cancer
cells. The transcription levels of NKG2DLs were not re-
lated with TGF-β signaling. Although the exact mechan-
ism of TGF-β in regulation of NKG2DLs is not clear, it
was thought that the main regulation step is post-
transcriptional level.
There are many reports that TGF-β stimulates the ex-

pression of variety of MMPs in mammary carcinoma,
squamous cell carcinoma (SSC), melanoma and other
types of cancer cells [17, 36–38]. Since inhibition of
MMPs could increase the expression levels of NKG2DLs
[19, 38, 39], it was suggested that MMPs mediated the
regulation of NKG2DLs through TGF-β signaling.
In this study, it was demonstrated that the mRNA and

protein levels of MMP2 were increased by treatment
with TGF-β and reversed by co-treatment with Galuni-
sertib. The inhibition of MMPs by treatment with MMPi
III and MMP2i I upregulated the surface expression of
NKG2DLs which were suppressed by TGF-β. These

(See figure on previous page.)
Fig. 2 Restored surface expression levels of NKG2DLs by blocking of TGF-β signaling. The surface expression levels of NKG2DLs were analyzed
using flow cytometry in (A) NCI-H23, (B) SW-900 and (C) A549 lung cancer cells. The lung cancer cells were treated with TGF-β (10 ng/ml) and
followed by Galunisertib (10 μM, 20 μM) for 24 h. The relative expression ratios were calculated from mean fluorescence intensities (MFI) of treated
cells compared to those of control cells. Filled gray, dotted gray, dark gray, light gray and black lines represent isotype, media control, TGF-β 10
ng/ml treatment, TGF-β 10 ng/ml with Galunisertib 10 μM treatment and TGF-β 10 ng/ml with Galunisertib 20 μM treatment, respectively. The
experiments were performed three times. (p < 0.05, *; p < 0.01, **; p < 0.001, ***)
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results suggest that MMP2 might be a main regulator in
the expression of NKG2DLs through TGF-β signaling.
TGF-β induced the expression of MMP2 commonly in
three lung cancer cells and other MMPs were regulated
differentially depends on cell types.
It has been suggested that metalloproteinase family in-

cluding MMPs and ADAMs could increase the level of
soluble NKG2DLs and decrease the level of surface
NKG2DLs simultaneously [20, 21]. It was also reported
that MMP2 in renal carcinoma cells, MMP9 and
MMP14 in osteosarcoma cells could increase soluble
MICA [23, 24, 40, 41] and MMP9 specific inhibitor
could increase MICA/B and ULBP2 in some kinds of
gastric cancer cells [19].
NK cells are cytotoxic against many cancer cells and

the cytotoxicity of NK cells is regulated by the signal
transduction balance between activation and inhibition
receptors [34, 42–45]. Thus, beside of the induction of
activating ligands such as NKG2DLs in cancer cells, the
reduction of inhibition ligands is necessary to enhanced
NK cell mediated anticancer responses. It was investi-
gated whether a kind of inhibition ligands, PD-L1 and
PD-L2, in cancer cells could be regulated by TGF-β sig-
naling. In result, TGF-β signaling did not influence on
the expression of PD-L1 and PD-L2 (Fig. S2).
Many kinds of cancer overexpress TGF-β and high

levels of TGF-β in cancer patients frequently associated
with poor prognosis. Recently anti TGF-β therapy has
been tried to control cancer progression. We supposed
that anti TGF-β therapy might inhibit cancer progres-
sion as well as restore anti-cancer immune responses
through reactivation of immune cells and enhance the
susceptibility of cancer cells.

Conclusion
Stimulation of TGF-β signaling could decrease the ex-
pression of NKG2DLs in lung cancer cells which might
be related with increased expression of MMP2. There-
fore, inhibition of TGF-β might block the immunosup-
pressive effects on immune cells and restore NK cell
mediated anticancer immune responses by upregulation
of NKG2DLs in cancer cells.

Methods
Cell lines and reagents
Three human lung cancer cell lines were used in this
study including A549, NCI-H23, and SW-900. These cell

lines were obtained from the Korean Cell Line Bank
(Seoul, South Korea) and were maintained in RPMI-
1640 medium supplemented with 10% fetal bovine
serum (Gibco, Grand Island, NY, USA), 2 mM L-glutam-
ine, 100 mg/mL streptomycin, and 100 U/mL penicillin.
All cell lines were cultured at 37 °C in a humidified at-
mosphere containing 5% CO2 [46].
Recombinant human TGF-β was purchased from R&D

systems, Inc. (Minneapolise, MN, USA), dissolved at
20 μg/ml in sterile 4 mM HCl containing 1 mg/ml bovine
serum albumin and used at 10 and 20 ng/ml doses.
Galunisertib were purchased from Selleckchem (Hous-
ton, TX, USA), dissolved at 10 mM in dimethyl sulfoxide
and used at 5, 10, and 20 μM doses. MMP Inhibitor III,
a pan inhibitor of MMPs, and MMP2 inhibitor I, a spe-
cific inhibitor of MMP2, were purchased from Calbio-
chem (Merck KGaA, Darmstadt, Germany) and
dissolved at 10 mM in dimethyl sulfoxide and used at
10 μM dose. \.

Total RNA extraction and multiplex reverse transcription
(RT)-PCR
Total RNA extraction and qPCR were performed as de-
scribed by previous methods [47]. Briefly, total RNA was
extracted from the cells using the RNeasy® Mini kit (Qia-
gen, Hilden, Germany), according to the manufacturer’s
instructions. cDNA was synthesized from 1 μg extracted
total RNA, using 100 pmol random primers (Takara Bio
Inc., Otsu, Japan) and 100 UM-MLV reverse transcriptase
(Promega Corporation, Madison, WI, USA). The resulting
cDNA was used in the PCR reaction, which was per-
formed using the QIAGEN Multiplex PCR kit (Qiagen).
Numerous primer pairs were used to investigate the
mRNA expression levels of NKG2DLs [47]: MHC class-I
polypeptide-related chain proteins MICA and MICB, UL-
16 binding proteins (ULBP)1–3, MMPS: of matrix metal-
loproteinases (MMP)1, 2, 9 and 14; PD-1 ligands: Pro-
grammed death-ligand 1 (PD-L1), Programmed cell death
1 ligand 2 (PD-L2) (Bioneer Corporation, Daejeon, South
Korea). β-actin and ribosomal protein L19 were used as
the loading control and degradation marker, respectively.
The PCR products were separated and quantified by Mul-
tiNA (Shimadzu, Tokyo, Japan).

Flow cytometry
To determine the surface NKG2DLs on cancer cells,
the cells were incubated with mouse anti-MICA,

(See figure on previous page.)
Fig. 3 No significant the changes of transcription of NKG2DLs by combined treatment of TGF-β and Galunisertib in lung cancer cells. The
transcription levels of NKG2DLs were analyzed in (A) NCI-H23, (B) SW-900 and (C) A549 lung cancer cells by multiplex RT-PCR. The flung cancer
cells were treated with TGF-β (10 and 20 ng/ml) and Galunisertib (5 and 10 μM) for 18 h. The PCR products were separated and quantified by
MultiNA. All experiments were done in triplicate. Changes of transcriptions were normalized by ACTB and presented as the mean fold changes
compared to media treated groups. The experiments were performed three times
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anti-MICB, anti-ULBP1–3 (R&D systems, Minneap-
olis, MN, USA), which were NKG2D ligand-specific
monoclonal antibodies (mAbs) or the corresponding
isotype controls at 1 μg/100 μl followed by incubation
with PE goat anti-mouse Ig (BD Phamingen Inc., San
Diego, CA, USA). The analysis was performed on
the BD FACSCANTO II (Becton Dickinson and
Company, Franklin Lakes, NJ, USA) using FlowJo
software (BD Biosciences, Franklin Lakes, NJ, USA)
and the cell surface expression was quantified by the
value of the mean fluorescence intensities (MFI) ob-
tained with the specific mAbs [48].

Western blotting analysis
Western blotting analysis was performed to evaluate the
expression of MMP. The cells were washed twice with
cold phosphate buffered saline and lysed. Equal amounts
of cell extracts were resolved by 4–20% SDS-PAGE and
analyzed by Western blot. The separated proteins were
transferred onto nitrocellulose membranes (Hybond-
ECL, GE healthcare, Buckinghamshire, UK). In the next
step, the membranes were blocked with 4% nonfat milk
in Tris buffered saline containing 0.1% Tween 20 at
room temperature. Proteins of interest were then de-
tected with the primary antibodies (MMP 1 and 2: Cell

(See figure on previous page.)
Fig. 4 The transcriptions of MMPs were regulated by treatment with TGF-β and Galunisertib. The transcription levels of MMPs were analyzed in
(A) NCI-H23, (B) SW-900 and (C) A549 lung cancer cells by multiplex RT-PCR. Lung cancer cells were treated with TGF-β (10 and 20 ng/ml) and
Galunisertib (5 and 10 μM) for 18 h. The PCR products were separated and quantified by MultiNA. All experiments were done in triplicate. The
changes of transcripts were compared to media treated groups after treatment with TGF-β without Galunisertib. The changes of transcription
levels were compared to TGF-β treated groups after combined treatment with TGF-β with Galunisertib. The experiments were performed three
times. (*# P < 0.05, **## P < 0.01, ***### P < 0.001)

Fig. 5 The level of MMP2 was modulated by treatment with TGF-β and Galunisertib. The MMP2 at protein level were analyzed in (A) NCI-H23, (B)
SW-900 and (C) A549 lung cancer cells by western blot. Lung cancer cells were treated with TGF-β (10 and 20 ng/ml) and Galunisertib (5 and
10 μM) for 18 h. Bands were cropped from original images (Fig. S4) and intensity was measured using the ImageJ software and the expression
levels were calculated by ratio against β-actin. The experiments were performed three times and showed representative data
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Fig. 6 The induction of NKG2DLs by treatment with MMP inhibitors and limited induction by co-treatment with TGF-β in lung cancer cells.
Surface expression levels of NKG2DLs were analyzed using flow cytometry in (A, D) NCI-H23, (B, E) SW-900 and (C, F) A549 lung cancer cells.
Lung cancer cells were treated with MMP inhibitors and TGF-β (10 ng/ml) for 18 h. The relative expression ratios were calculated from mean
fluorescence intensities (MFI) of treated cells compared to those of control cells. Filled gray, dotted gray, gray and black lines represent isotype,
media control, MMP inhibitors 10 μM treatment and TGF-β 10 ng/ml with MMP inhibitors 10 μM treatment, respectively. The experiments were
performed three times. (p < 0.05, *; p < 0.01, **)

Fig. 7 The enhanced NK cell-mediated cytotoxicity by treatment of Galunisertib. The susceptibility of lung cancer cells to NK-92 cells were
analyzed using flow cytometry in (A) NCI-H23, (B) SW-900 and (C) A549 lung cancer cells. Lung cancer cells were treated with TGF-β (10 ng/ml)
and Galunisertib (10 μM) for 24 h. Black, red and blue lines represent media control, TGF-β treatment and TGF-β with Galunisertib treatment,
respectively. The experiments were performed three times. (p < 0.05, *; p < 0.01, **)
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signaling, Beverly, MA; MMP9: Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) and with horseradish perox-
idase (HRP)-conjugated secondary antibodies (Cell
Signaling Technology, MA, USA) using an enhanced
chemiluminescence detection system (Amersham™ ECL™
Select Western Blotting Detection Reagent; GE Health-
care) in accordance with the manufacturer’s instructions.
Each blot was probed with an anti-β-actin antibody
(Sigma-Aldrich, St. Louis, MO, USA). Bands were de-
tected using AI 680 (Amersham™ Imager 680 – Blot and
Gel Imager, GE Healthcare) and intensity quantification
was performed using the ImageJ software (version 1.52;
National Institutes of Health, Bethesda, MD, USA). The
protein expressions in the treated cells were divided by
the level of β-actin to calculate relative protein expres-
sion ratios.

NK cell-mediated cytotoxicity
NK cell mediated cytotoxicity was determined using
FC500 flow cytometer (Beckman Coulter, CA, USA).
The lung cancer cells were stained with 50mM carboxy-
fluorescein succinimidyl ester (CFSE) for 30 min at 37 °C
and washed three times. NK 92 cells and CFSE stained
lung cancer cells were co cultured for 4 h. Propidium
iodide (PI) was added to the co cultured samples for
identification of the dead cells. Cytotoxicity were calcu-
lated by formula of (CFSE+PI+ cells / CFSE+ cells) X
100 (%).

Statistical analysis
To evaluate the altered gene expression levels, the mean
folds of gene expressions among the groups and the
standard error of the mean were calculated. For compar-
isons of the groups, a paired Student’s t-test was per-
formed. The analysis was performed using the SPSS
statistical package (version 14.0; SPSS Inc., IL, USA).
P < 0.05 indicates a statistically significant difference in
all of the experiments.
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