Light RW. Update on tuberculous pleural effusion. Respirology. 2010. https://doi.org/10.1111/j.1440-1843.2010.01723.x.
Article
PubMed
Google Scholar
Dong X, Yang J. High IL-35 pleural expression in patients with tuberculous pleural effusion. Med Sci Monit. 2015. https://doi.org/10.12659/MSM.892562.
Article
PubMed
PubMed Central
Google Scholar
WHO Report: World Health Organization. Global Tuberculosis Report 2017, vol. 249. Geneva: World Health Organization; 2017. https://apps.who.int/iris/handle/10665/259366. Accessed 20 Nov 2018
Google Scholar
Neves DD, Dias RM, Cunha AJ. Predictive model for the diagnosis of tuberculous pleural effusion. Braz J Infect Dis. 2007. https://doi.org/10.1590/S1413-86702007000100019
Article
Google Scholar
Sales RK, Vargas FS, Capelozz VL, Seiscento M, Genofre EH, Teixeira LR, Antonangelo L. Predictive models for diagnosis of pleural effusions secondary to tuberculosis or cancer. Respirology. 2009. https://doi.org/10.1111/j.1440-1843.2009.01621.x
Article
PubMed
Google Scholar
Candela A, Andujar J, Hernández L, Martín C, Barroso E, Arriero JM, Romero S. Functional sequelae of tuberculous pleurisy in patients correctly treated. Chest. 2003. https://doi.org/10.1378/chest.123.6.1996
Article
PubMed
Google Scholar
Sonmezoglu Y, Turna A, Cevik A, Demir A, Sayar A, Dincer Y, Bedirhan MA, Gurses A. Factors affecting morbidity in chronic tuberculous empyema. Thorac Cardiovasc Surg. 2008. https://doi.org/10.1055/s-2007-965301
Article
CAS
PubMed
Google Scholar
Kataria YP, Khurshid I. Adenosine deaminase in the diagnosis of tuberculous pleural effusion. Chest. 2001. https://doi.org/10.1378/chest.120.2.334
Article
CAS
PubMed
Google Scholar
Morisson P, Neves DD. Avaliação da adenosina desaminase no diagnóstico da tuberculose pleural: uma metanálise brasileira. J Bras Pneumol. 2008. https://doi.org/10.1590/S1806-37132008000400006
Article
PubMed
Google Scholar
Araujo LS, Maciel RM, Trajman A, Saad MH. Assessment of the IgA immunoassay diagnostic potential of the Mycobacterium tuberculosis MT10.3-MPT64 fusion protein in tuberculous pleural fluid. Clin Vaccine Immunol. 2010. https://doi.org/10.1128/CVI.00372-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sardella IG, Mulinari ACP, Fonseca LS, Saad MHF. Cloning, expression and characterization of fusion proteins based on peptides of Rv1980c disrupting Rv3019c sequence and evaluation of its potential immunoreactivity in pulmonary tuberculosis sera. Mycobact Disv. 2015. https://doi.org/10.4172/2161-1068.1000183
Cole ST, Barrell BG. Analysis of the genome of Mycobacterium tuberculosis H37Rv. Novartis Found Symp. 1998. https://doi.org/10.1002/0470846526.ch12 (discussion 172–167).
Al-Attiyah R, Mustafa AS. Characterization of human cellular immune responses to novel Mycobacterium tuberculosis antigens encoded by genomic regions absent in Mycobacterium bovis BCG. Infect Immun. 2008. https://doi.org/10.1128/IAI.00199-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Karboul A, Mazza A, Gey Van Pittius NC, Ho JL, Brousseau R, Mardass IH. Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: potential role in antigenic variability. J Bacteriol. 2008. https://doi.org/10.1128/JB.00827-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Su X, Zhang Y, Wang S, Shao L, Wu J, Wang F, Zhang S, Wang J, Weng X, Wang H, Zhang W. Novel recombinant RD2- and RD11-encoded Mycobacterium tuberculosis antigens are potential candidates for diagnosis of tuberculosis infections in BCG-vaccinated individuals. Microbes Infect. 2009. https://doi.org/10.1016/j.micinf.2009.05.008
Article
CAS
PubMed
Google Scholar
Mulinari ACP. Obtenção da proteína codificada pelo gene RV3429 de Mycobacterium tuberculosis e avaliação da reatividade imune humoral. Masters Dissertation. Rio de Janeiro: Fundação Oswaldo Cruz; 2016. https://www.arca.fiocruz.br/handle/icict/22982
Google Scholar
Meyer TF, Gibbs CP, Haas R. Variation and control of protein expression in Neisseria. Annu Rev Microbiol. 1990;44:451–77.
Article
CAS
PubMed
Google Scholar
Dheda K, Van Zyl-Smit RN, Sechi LA, Badri M, Meldau R, Meldau S, Symons G, Semple PL, Maredza A, Dawson R, Wainwright H, Whitelaw A, Vallie Y, Raubenheime RP, Bateman ED, Zumla A. Utility of quantitative T-cell responses versus unstimulated interferon-{gamma} for the diagnosis of pleural tuberculosis. Eur Respir J. 2009. https://doi.org/10.1183/09031936.00005309
Article
CAS
PubMed
Google Scholar
Li M, Wang H, Wang X, Huang J, Wang J, Xi X. Diagnostic accuracy of tumor necrosis factor-alpha, interferon-gamma, interleukin-10 and adenosine deaminase 2 in differential diagnosis between tuberculous pleural effusion and malignant pleural effusion. J Cardiothorac Surg. 2014. https://doi.org/10.1186/1749-8090-9-118
Shu CC, Wang JY, Hsu CL, Keng LT, Tsui K, Lin JF, Lai HC, Yu CJ, Lee LN, Luh KT. Diagnostic role of inflammatory and anti-inflammatory cytokines and effector molecules of cytotoxic T lymphocytes in tuberculous pleural effusion. Respirology. 2015. https://doi.org/10.1111/resp.12414
Article
PubMed
Google Scholar
Trajman A, Kaisermann C, Luiz RR, Sperhacke RD, Rossetti ML, Saad MHF, Sardella IG, Spector N, Kritsk AL. Pleural fluid ADA, IgA-ELISA and PCR sensitivities for the diagnosis of pleural tuberculosis. Scand J Clin Lab Invest. 2007. https://doi.org/10.1080/00365510701459742
Article
CAS
PubMed
Google Scholar
Ogata Y, Aoe K, Hiraki A, Murakami K, Kishino D, Chikamori K, Maeda T, Ueoka H, Kiura K, Tanimoto M. Is adenosine deaminase in pleural fluid a useful marker for differentiating tuberculosis from lung cancer or mesothelioma in Japan, a country with intermediate incidence of tuberculosis? Acta Med Okayama. 2011. https://doi.org/10.18926/AMO/46851.
Kashiwabara K, Okamoto T, Yamane H. When pleural potassium exceeds 5.0 mEq/L, high pleural adenosine deaminase levels do not necessarily indicate tuberculous pleuritis. Respirology. 2012. https://doi.org/10.1111/j.1440-1843.2011.02053.x.
Article
Google Scholar
Tyagi S, Sharma N, Tyagi JS, Haldar S. Challenges in pleural tuberculosis diagnosis: existing reference standards and nucleic acid tests. Future Microbiol. 2017. https://doi.org/10.2217/fmb-2017-0028.
Article
CAS
PubMed
Google Scholar
Santos AP, Corrêa RDS, Ribeiro-Alves M, Soares da Silva ACO, Mafort TT, Leung J, Pereira GMB, Rodrigues LS, Rufino R. Application of Venn's diagram in the diagnosis of pleural tuberculosis using IFN-γ, IP-10 and adenosine deaminase. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0202481.
Article
PubMed
PubMed Central
CAS
Google Scholar
Samanich K, Belisle JT, Laal S. Homogeneity of antibody responses in tuberculosis patients. Infect Immun. 2001. https://doi.org/10.1128/IAI.69.7.4600-4609.2001
Article
CAS
PubMed
PubMed Central
Google Scholar
Abebe F, Holm-Hansen C, Wiker HG, Bjune G. Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand J Immunol. 2007. https://doi.org/10.1111/j.1365-3083.2007.01978.x
Article
CAS
PubMed
Google Scholar
Pathakumari B, Prabhavathi M, Anbarasu D, Paramanandhan P, Raja A. Dynamic IgG antibody response to immunodominant antigens of M. tuberculosis for active TB diagnosis in high endemic settings. Clin Chim Acta. 2016. https://doi.org/10.1016/j.cca.2016.06.033.
Article
CAS
Google Scholar
He Y, Zhang W, Huang T, Wang X, Wang M. Evaluation of a diagnostic flow chart applying medical thoracoscopy, adenosine deaminase and T-SPOT.TB in diagnosis of tuberculous pleural effusion. Eur Rev Med Pharmacol Sci. 2015;19:3563–8.
CAS
PubMed
Google Scholar
Li D, Shen Y, Fu X, Li M, Wang T, Wen F. Combined detections of interleukin-33 and adenosine deaminase for diagnosis of tuberculous pleural effusion. Int J Clin Exp Pathol. 2015;1:888–93.
Google Scholar
Kim MC, Kim SM, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH. A diagnostic algorithm for tuberculous pleurisy using the ELISPOT assay on peripheral blood and pleural effusion. Infect Dis (Lond). 2016. https://doi.org/10.1080/23744235.2016.1183816
Article
PubMed
Google Scholar
Liu Y, Ou Q, Zheng J, Shen L, Zhang B, Weng X, Shao L, Gao Y, Zhang W. A combination of the QuantiFERON-TB gold in-tube assay and the detection of adenosine deaminase improves the diagnosis of tuberculous pleural effusion. Emerg Microbes Infect. 2016. https://doi.org/10.1038/emi.2016.80
Google Scholar
Kaisermann M, Sardella IG, Jonas F, Kampfer S, Singh M, Trajmann A, Saad MHF. IgA response to Mycobacterium tuberculosis recombinants MPT64 e MT-10.3 antigens in fluid pleural of patients with tubeculous pleurisy. Int J Tuberc Lung Dis. 2005;9(4):461–6.
CAS
PubMed
Google Scholar
Silva VM, Sardella IG, Luiz RR, Cunha AJ, Cavalcanti AH, Mahavir S, Barreto MM, Rodrigues RS, Carvalho TF, Saad MH. Immunoreactivity of five antigens of Mycobacterium tuberculosis in patients attending a public health care facility in an area with high endemicity for TB. Microbiol Immunol. 2008. https://doi.org/10.1111/j.1348-0421.2008.00072.x
Article
CAS
PubMed
Google Scholar
Van Vooren JP, Farber CM, De Bruyn J, Yernault JC. Antimycobacterial antibodies in pleural effusions. Chest. 1990. https://doi.org/10.1378/chest.97.1.88
Article
PubMed
Google Scholar
Parslow TG. Immunoglobulins & immunoglobulin genes. In: Stites DP, Terr AI, Parslow TG, editors. Medical Immunology. 9th ed. Stamford: Appleton & Lange; 1997. p. 102–42.
Google Scholar
Schuler NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med. 1998. https://doi.org/10.1164/ajrccm.157.3.9708002
Article
CAS
PubMed
Google Scholar
Wilsher ML, Hagan C, Prestidge R, Wells AU, Murison G. Human in vitro immune response to Mycobacterium tuberculosis. Tuberc Lung Dis. 1999. https://doi.org/10.1054/tuld.1999.0223
Article
CAS
PubMed
Google Scholar
Glatman-Freedman A. Advantages in antibody-mediated immunity against Mycobacterium tuberculosis: implications for a novel vaccine strategy. FEMS Immunol Med Microbiol. 2003. https://doi.org/10.1016/S0928-8244(03)00172-X.
Article
CAS
Google Scholar
Bezerra JM, Beck ST, Kanunfre KA, Leite OM, Ferreira AW. A study of IgA antibody response to different Mycobacterium tuberculosis antigens in the diagnosis and monitoring of pulmonary tuberculosis. Braz J Infect Dis. 2009. https://doi.org/10.1590/S1413-86702009000100012
Article
Google Scholar
Zhao J, Shiratori B, Okumura M, Yanai H, Matsumoto M, Nakajima C, Mizuno K, Ono K, Oda T, Chagan-Yasutan H, Ashino Y, Matsuba T, Yoshiyama T, Suzuki Y, Hattori T. Difference in antibody responses to Mycobacterium tuberculosis antigens in Japanese tuberculosis patients infected with the Beijing/non-Beijing genotype. J Immunol Res. 2017. https://doi.org/10.1155/2017/4797856
Google Scholar
Hoff ST, Abebe M, Ravn P, Range N, Malenganisho W, Rodriques DS, Kallas EG, Søborg C, Mark Doherty T, Andersen P, Weldingh K. Evaluation of Mycobacterium tuberculosis--specific antibody responses in populations with different levels of exposure from Tanzania, Ethiopia, Brazil, and Denmark. Clin Infect Dis. 2007. https://doi.org/10.1086/520662
Article
CAS
PubMed
Google Scholar
Seiscento M, Conde MB, Dalcolmo MMP. Tuberculose Pleural. J Bras Pneumol. 2006;32(Sulp 4):S174–81. https://doi.org/10.1590/S1806-37132006000900003.
Article
PubMed
Google Scholar
Minden P, Jarrett C, Mcclatchy JK, Gutterman JU, Hersh EM. Antibodies to melanoma cell and BCG antigens in sera from tumourfree individuals and from melanoma patients. Nature. 1976. https://doi.org/10.1038/263774a0
Article
CAS
PubMed
Google Scholar
Maver C, Kausel C, Lininger L, Mckneally M. Intrapleural BCG immunotherapy of lung cancer patients. Recent Results Cancer Res. 1982. https://doi.org/10.1007/978-3-642-81685-7_36
Google Scholar
Dhand R, Ganguly NK, Vaishnavi C, Gilhotra R, Malik SK. False-positive reactions with enzyme-linked immunosorbent assay of Mycobacterium tuberculosis antigens in pleural fluid. J Med Microbiol. 1988. https://doi.org/10.1099/00222615-26-4-241.
Article
CAS
PubMed
Google Scholar
She RC, Litwin CM. Performance of a tuberculosis serologic assay in various patient populations. Am J Clin Pathol. 2015. https://doi.org/10.1309/AJCP22DBRYZQGRBI.
Article
CAS
PubMed
Google Scholar
Oliveira GP, Torrens AW, Bartholomay P, Barreira D. Tuberculosis in Brazil: last ten years analysis – 2001–2010. Braz J Infect Dis. 2013. https://doi.org/10.1016/j.bjid.2013.01.005
Article
Google Scholar
Rodrigues NCP, Andrade MKN, O’Dwyer G, Flynn M, Braga JU, Almeida AS, Bastos LS, Lino VTS. Distribution of pulmonary tuberculosis in Rio de Janeiro (Brazil): a spatial analysis. Cien Saude Colet. 2017. https://doi.org/10.1590/1413-812320172212.0143016
Article
Google Scholar
Giusti G, Galanti B. Methods of enzymatic analysis. Weinheim: VerlagChemie; 1984. p. 315.
Google Scholar