Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. https://doi.org/10.1002/ijc.29210.
Article
CAS
PubMed
Google Scholar
Schmittel A, Sebastian M, Fischer von Weikersthal L, Martus P, Gauler TC, Kaufmann C, et al. A German multicenter, randomized phase III trial comparing irinotecan-carboplatin with etoposide-carboplatin as first-line therapy for extensive-disease small-cell lung cancer. Ann Oncol. 2011;22(8):1798–804. https://doi.org/10.1093/annonc/mdq652.
Article
CAS
PubMed
Google Scholar
Jotte R, Conkling P, Reynolds C, Galsky MD, Klein L, Fitzgibbons JF, et al. Randomized phase II trial of single-agent amrubicin or topotecan as second-line treatment in patients with small-cell lung cancer sensitive to first-line platinum-based chemotherapy. J Clin Oncol. 2011;29(3):287–93. https://doi.org/10.1200/JCO.2010.29.8851.
Article
CAS
PubMed
Google Scholar
Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The Role of the NKG2D Immunoreceptor in Immune Cell Activation and Natural Killing. Immunity. 2004;20(6):799.
Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene. 2008;27(45):5944–58. https://doi.org/10.1038/onc.2008.272.
Article
CAS
PubMed
Google Scholar
Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21(1):24–33. https://doi.org/10.1016/j.molmed.2014.10.009.
Article
CAS
PubMed
Google Scholar
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654–68. https://doi.org/10.1172/JCI99317.
Article
PubMed
PubMed Central
Google Scholar
Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13(18 Pt 1):5262–70. https://doi.org/10.1158/1078-0432.CCR-07-1157.
Article
CAS
PubMed
Google Scholar
Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29(2):117–29. https://doi.org/10.1038/ng1001-117.
Article
CAS
PubMed
Google Scholar
Xue XY, Zhao S, Zhang ZN, Wang YM, Chang Y, Xu YL, et al. The relationship of transforming growth factor-beta and lung cancer. Int J Clin Exp Med. 2016;9(6):9766–80.
CAS
Google Scholar
Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 2001;91(5):964–71. https://doi.org/10.1002/1097-0142(20010301)91:5<964::AID-CNCR1086>3.0.CO;2-O.
Article
CAS
PubMed
Google Scholar
Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A. 2003;100(7):4120–5. https://doi.org/10.1073/pnas.0730640100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res. 2004;64(20):7596–603. https://doi.org/10.1158/0008-5472.CAN-04-1627.
Article
CAS
PubMed
Google Scholar
Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol. 1989;143(10):3222–9.
CAS
PubMed
Google Scholar
Leitlein J, Aulwurm S, Waltereit R, Naumann U, Wagenknecht B, Garten W, et al. Processing of immunosuppressive pro-TGF-beta 1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J Immunol. 2001;166(12):7238–43. https://doi.org/10.4049/jimmunol.166.12.7238.
Article
CAS
PubMed
Google Scholar
Pasche B. Role of transforming growth factor beta in cancer. J Cell Physiol. 2001;186(2):153–68. https://doi.org/10.1002/1097-4652(200002)186:2<153::AID-JCP1016>3.0.CO;2-J.
Article
CAS
PubMed
Google Scholar
Sun L, Diamond ME, Ottaviano AJ, Joseph MJ, Ananthanarayan V, Munshi HG. Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression. Mol Cancer Res. 2008;6(1):10–20. https://doi.org/10.1158/1541-7786.MCR-07-0208.
Article
CAS
PubMed
Google Scholar
Kim ES, Kim MS, Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol. 2004;25(5):1375–82.
CAS
PubMed
Google Scholar
Shiraishi K, Mimura K, Kua LF, Koh V, Siang LK, Nakajima S, et al. Inhibition of MMP activity can restore NKG2D ligand expression in gastric cancer, leading to improved NK cell susceptibility. J Gastroenterol. 2016;51(12):1101–11. https://doi.org/10.1007/s00535-016-1197-x.
Article
CAS
PubMed
Google Scholar
Zingoni A, Cecere F, Vulpis E, Fionda C, Molfetta R, Soriani A, et al. Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells. J Immunol. 2015;195(2):736–48. https://doi.org/10.4049/jimmunol.1402643.
Article
CAS
PubMed
Google Scholar
Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Furst D, et al. Shedding of endogenous MHC class I-related chain molecules a and B from different human tumor entities: heterogeneous involvement of the "a disintegrin and metalloproteases" 10 and 17. Int J Cancer. 2013;133(7):1557–66. https://doi.org/10.1002/ijc.28174.
Article
CAS
PubMed
Google Scholar
Saito A, Horie M, Nagase T. TGF-beta Signaling in Lung Health and Disease. Int J Mol Sci. 2018;19(8):2460.
Sun D, Wang X, Zhang H, Deng L, Zhang Y. MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol Int. 2011;35(6):569–74. https://doi.org/10.1042/CBI20100431.
Article
CAS
PubMed
Google Scholar
Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule a independent of a disintegrin and metalloproteinases. J Immunol. 2010;184(7):3346–50. https://doi.org/10.4049/jimmunol.0903789.
Article
CAS
PubMed
Google Scholar
Li H, He G, Yao H, Song L, Zeng L, Peng X, et al. TGF-beta induces degradation of PTHrP through ubiquitin-proteasome system in hepatocellular carcinoma. J Cancer. 2015;6(6):511–8. https://doi.org/10.7150/jca.10830.
Article
PubMed
PubMed Central
Google Scholar
Terme JM, Lhermitte L, Asnafi V, Jalinot P. TGF-beta induces degradation of TAL1/SCL by the ubiquitin-proteasome pathway through AKT-mediated phosphorylation. Blood. 2009;113(26):6695–8. https://doi.org/10.1182/blood-2008-07-166835.
Article
CAS
PubMed
Google Scholar
Trinh TL, Kandell WM, Donatelli SS, Tu N, Tejera MM, Gilvary DL, et al. Immune evasion by TGFbeta-induced miR-183 repression of MICA/B expression in human lung tumor cells. Oncoimmunology. 2019;8(4):e1557372. https://doi.org/10.1080/2162402X.2018.1557372.
Article
PubMed
PubMed Central
Google Scholar
Syed V. TGF-beta signaling in Cancer. J Cell Biochem. 2016;117(6):1279–87. https://doi.org/10.1002/jcb.25496.
Article
CAS
PubMed
Google Scholar
Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83. https://doi.org/10.1158/0008-5472.CAN-09-2123.
Article
CAS
PubMed
Google Scholar
Trapani JA. The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell. 2005;8(5):349–50. https://doi.org/10.1016/j.ccr.2005.10.018.
Article
CAS
PubMed
Google Scholar
Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45. https://doi.org/10.1016/j.immuni.2009.04.010.
Article
CAS
PubMed
Google Scholar
Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med. 2001;194(5):629–44. https://doi.org/10.1084/jem.194.5.629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 2005;202(8):1075–85. https://doi.org/10.1084/jem.20051511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, et al. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain. 2006;129(Pt 9):2416–25. https://doi.org/10.1093/brain/awl205.
Article
PubMed
Google Scholar
Bellone G, Aste-Amezaga M, Trinchieri G, Rodeck U. Regulation of NK cell functions by TGF-beta 1. J Immunol. 1995;155(3):1066–73.
CAS
PubMed
Google Scholar
Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P. The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat. 2011;128(3):657–66. https://doi.org/10.1007/s10549-010-1147-x.
Article
CAS
PubMed
Google Scholar
Malaponte G, Zacchia A, Bevelacqua Y, Marconi A, Perrotta R, Mazzarino MC, et al. Co-regulated expression of matrix metalloproteinase-2 and transforming growth factor-beta in melanoma development and progression. Oncol Rep. 2010;24(1):81–7. https://doi.org/10.3892/or_00000831.
Article
CAS
PubMed
Google Scholar
Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal. 2014;2014:521754.
Article
Google Scholar
Huang BC, Sikorski R, Sampath P, Thorne SH. Modulation of NKG2D-ligand cell surface expression enhances immune cell therapy of Cancer. J Immunother. 2011;34(3):289–96. https://doi.org/10.1097/CJI.0b013e31820e1b0d.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 2019;18(1):29. https://doi.org/10.1186/s12943-019-0956-8.
Article
PubMed
PubMed Central
Google Scholar
Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 2013;78(2):120–9. https://doi.org/10.1111/sji.12072.
Article
CAS
PubMed
Google Scholar
Benson DM Jr, Bakan CE, Zhang S, Collins SM, Liang J, Srivastava S, et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood. 2011;118(24):6387–91. https://doi.org/10.1182/blood-2011-06-360255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delgado DC, Hank JA, Kolesar J, Lorentzen D, Gan J, Seo S, et al. Genotypes of NK cell KIR receptors, their ligands, and Fcgamma receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res. 2010;70(23):9554–61. https://doi.org/10.1158/0008-5472.CAN-10-2211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7(5):329–39. https://doi.org/10.1038/nri2073.
Article
CAS
PubMed
Google Scholar
Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27(45):5932–43. https://doi.org/10.1038/onc.2008.267.
Article
CAS
PubMed
Google Scholar
Lee YS, Heo W, Nam J, Jeung YH, Bae J. The combination of ionizing radiation and proteasomal inhibition by bortezomib enhances the expression of NKG2D ligands in multiple myeloma cells. J Radiat Res. 2018;59(3):245–52. https://doi.org/10.1093/jrr/rry005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SW, Bae JH, Kim SD, Son YO, Kim JY, Park HJ, et al. Comparison of level of NKG2D ligands between normal and tumor tissue using multiplex RT-PCR. Cancer Investig. 2007;25(5):299–307. https://doi.org/10.1080/07357900701208824.
Article
CAS
Google Scholar
Lee YS, Heo W, Son CH, Kang CD, Park YS, Bae J. Upregulation of Myc promotes the evasion of NK cellmediated immunity through suppression of NKG2D ligands in K562 cells. Mol Med Rep. 2019;20(4):3301–7. https://doi.org/10.3892/mmr.2019.10583.
Article
CAS
PubMed
PubMed Central
Google Scholar