Murphy K, Weaver C, Janeway's immunobiology. Garland science. 2016.
Sette A, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol. 1994;153(12):5586–92.
CAS
PubMed
Google Scholar
Falk K, Rötzschke O, Stevanovié S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351(6324):290–6. https://doi.org/10.1038/351290a0.
Article
CAS
PubMed
Google Scholar
Kringelum JV, Nielsen M, Padkjær SB, Lund O. Structural analysis of B-cell epitopes in antibody:protein complexes. Mol Immunol. 2013;53(1–2):24–34. https://doi.org/10.1016/j.molimm.2012.06.001.
Article
CAS
PubMed
Google Scholar
Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol. 2013;191(12):5831–9. https://doi.org/10.4049/jimmunol.1302101.
Article
CAS
PubMed
Google Scholar
Barra C, Alvarez B, Paul S, Sette A, Peters B, Andreatta M, et al. Footprints of antigen processing boost MHC class II natural ligand predictions. Genome Med. 2018;10(1):84. https://doi.org/10.1186/s13073-018-0594-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12(5):1007–17. https://doi.org/10.1110/ps.0239403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One. 2007;2(8):e796. https://doi.org/10.1371/journal.pone.0000796.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balada E, Vilardell-Tarrés M, Ordi-Ros J. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int Rev Immunol. 2010;29(4):351–70. https://doi.org/10.3109/08830185.2010.485333.
Article
CAS
PubMed
Google Scholar
Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, et al. Human endogenous retroviruses in neurological diseases. Trends Mol Med. 2018;24(4):379–94. https://doi.org/10.1016/j.molmed.2018.02.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays. 2013;35(9):794–803. https://doi.org/10.1002/bies.201300049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen T. HERVs in neuropathogenesis. J NeuroImmune Pharmacol. 2010;5(3):326–35. https://doi.org/10.1007/s11481-010-9214-y.
Article
PubMed
Google Scholar
Viola MV, Frazier M, White L, Brody J, Spiegelman S. RNA-instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients. J Exp Med. 1975;142(2):483–94. https://doi.org/10.1084/jem.142.2.483.
Article
CAS
PubMed
Google Scholar
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58. https://doi.org/10.1038/nri3871.
Article
CAS
PubMed
Google Scholar
Mager DL, Hunter DG, Schertzer M, Freeman JD. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics. 1999;59(3):255–63. https://doi.org/10.1006/geno.1999.5877.
Article
CAS
PubMed
Google Scholar
Zhu Y, Yao S, Iliopoulou BP, Han X, Augustine MM, Xu H, et al. B7-H5 costimulates human T cells via CD28H. Nat Commun. 2013;4(1):2043. https://doi.org/10.1038/ncomms3043.
Article
CAS
PubMed
Google Scholar
Zhao R, Chinai JM, Buhl S, Scandiuzzi L, Ray A, Jeon H, et al. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci U S A. 2013;110(24):9879–84. https://doi.org/10.1073/pnas.1303524110.
Article
PubMed
PubMed Central
Google Scholar
Janakiram M, Chinai JM, Fineberg S, Fiser A, Montagna C, Medavarapu R, et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein. Clin Cancer Res. 2015;21(10):2359–66. https://doi.org/10.1158/1078-0432.CCR-14-1495.
Article
CAS
PubMed
Google Scholar
Lurquin C, de Smet C, Brasseur F, Muscatelli F, Martelange V, de Plaen E, et al. Two members of the human MAGEB gene family located in Xp21.3 are expressed in tumors of various histological origins. Genomics. 1997;46(3):397–408. https://doi.org/10.1006/geno.1997.5052.
Article
CAS
PubMed
Google Scholar
De Smet C, et al. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999;19(11):7327–35. https://doi.org/10.1128/MCB.19.11.7327.
Article
PubMed
PubMed Central
Google Scholar
Lucas S, De Plaen E, Boon T. MAGE-B5, MAGE-B6, MAGE-C2, and MAGE-C3: four new members of the MAGE family with tumor-specific expression. Int J Cancer. 2000;87(1):55–60. https://doi.org/10.1002/1097-0215(20000701)87:1<55::AID-IJC8>3.0.CO;2-J.
Watkins DI, Burton DR, Kallas EG, Moore JP, Koff WC. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med. 2008;14(6):617–21. https://doi.org/10.1038/nm.f.1759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Achinko DA, et al., Genetic Association between HERV-H LTR Associating 2 (HHLA2) protein and MAGE-B5 Variant in Viral Related Diseases J Hum Genet Genomic Med. 2020;(1):105.
Jurtz V, et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol. 2017;199(9):3360–8.
Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394–406. https://doi.org/10.1111/imm.12889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45(D1):D200–3. https://doi.org/10.1093/nar/gkw1129.
Article
CAS
PubMed
Google Scholar
West J. MacStats. 1996.
Ojwang EMA, et al. In silico identification of universal HLA stimulating B and T-cell restricted mage epitopes for vaccine development. Online J Bioinformatics. 2014;15(1):114–32.
Google Scholar
Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, et al. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc Natl Acad Sci U S A. 2019;116(8):3112–7. https://doi.org/10.1073/pnas.1815239116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogishi M and Yotsuyanagi H. Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space. Front Immunol. 2019;10:827. https://doi.org/10.3389/fimmu.2019.00827.
Mager DL, Freeman JD. HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage. Virology. 1995;213(2):395–404. https://doi.org/10.1006/viro.1995.0012.
Article
CAS
PubMed
Google Scholar
Finn RD, et al. Pfam: the protein families database. Nucleic Acids Res. 2013;42(D1):D222–30.
Article
PubMed
PubMed Central
Google Scholar
Cao J, McNevin J, Malhotra U, McElrath MJ. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J Immunol. 2003;171(7):3837–46. https://doi.org/10.4049/jimmunol.171.7.3837.
Article
CAS
PubMed
Google Scholar
Price DA, Goulder PJR, Klenerman P, Sewell AK, Easterbrook PJ, Troop M, et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci U S A. 1997;94(5):1890–5. https://doi.org/10.1073/pnas.94.5.1890.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cegolon L, Salata C, Weiderpass E, Vineis P, Palù G, Mastrangelo G. Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer. 2013;13(1):4. https://doi.org/10.1186/1471-2407-13-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karpf AR, Bai S, James SR, Mohler JL, Wilson EM. Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP. Mol Cancer Res. 2009;7(4):523–35. https://doi.org/10.1158/1541-7786.MCR-08-0400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molina TJ, Kishihara K, Siderovskid DP, van Ewijk W, Narendran A, Timms E, et al. Profound block in thymocyte development in mice lacking p56lck. Nature. 1992;357(6374):161–4. https://doi.org/10.1038/357161a0.
Article
CAS
PubMed
Google Scholar